Metastability in condensing zero-range processes

Inés Armendáriz

Universidad de Buenos Aires

in collaboration with A. de Masi, S. Grosskinsky, M. Loulakis and E. Presutti

July 4, 2016

Condensation phenomena in stochastic systems, BATH

Lattice: Λ of size L

State space: $X_L = \{0, 1, ..\}^{\Lambda}$

Jump probabilities: $p(x, y) \in [0, 1]$

Jump rates: $g_x: \{0,1,..\} \rightarrow [0,\infty)$, $g_x(k) = 0 \Leftrightarrow k = 0$

Generator: $f \in C_0(X_L)$

$$\mathcal{L}f(\eta) = \sum_{x,y \in \Lambda} g_x(\eta_x) p(x,y) \left(f(\eta^{x,y}) - f(\eta) \right)$$

[Spitzer (1970), Andjel (1982)]

 $g_x(k) = k \quad \Rightarrow \quad \text{independent identical particles}$ $g_x(k) = g_x \quad \Rightarrow \quad \text{network of M/M/1 server queues}$

 $g_x(k) = k \quad \Rightarrow \quad \text{independent identical particles}$

 $g_x(k) = g_x \quad \Rightarrow \quad \text{network of } \mathsf{M}/\mathsf{M}/1 \text{ server queues}$

Condensation phenomena

- spatial heterogeneity
 - \Rightarrow condensation on the 'slowest' site

[Evans (1996), Krug, Ferrari (1996), Benjamini, Ferrari, Landim (1996), Ferrari, Sisko (2007)]

 $g_x(k) = k \implies$ independent identical particles

 $g_x(k) = g_x \quad \Rightarrow \quad \text{network of } M/M/1 \text{ server queues}$

Condensation phenomena

- spatial heterogeneity
 - \Rightarrow condensation on the 'slowest' site

[Evans (1996), Krug, Ferrari (1996), Benjamini, Ferrari, Landim (1996), Ferrari, Sisko (2007)]

effective attraction of particles due to g(k) ∖ →
 ⇒ condensation on a random site

 $g(n) \simeq 1 + \frac{b}{n}, \quad b > 2$ [Evans (2000)] $g(n) \simeq ne^{-2n}$

Evans model

Lattice: Λ of size LState space: $X_L = \{0, 1, ..\}^{\Lambda}$ $\eta = (\eta_x)_{x \in \Lambda}$

Jump rates: $p(x, y) g(\eta_x)$

choose
$$g(k) = \left(\frac{k}{k-1}\right)^b \simeq 1 + \frac{b}{k}$$
 with $b > 0$
 $g(0) = 0, g(1) = 1$
choose $p(x, y) = \frac{1}{2}\delta_{y,x+1} + \frac{1}{2}\delta_{y,x-1}$

Generator: $\mathcal{L}f(\eta) = \sum_{x \in \Lambda_L} g(\eta_x) \left(\frac{1}{2}f(\eta^{x,x+1}) + \frac{1}{2}f(\eta^{x,x-1}) - f(\eta)\right)$

[Spitzer '70; Andjel '82; Evans '00]

Canonical measures and condensation

fixed number of particles N: $\mu_{L,N}[\,\cdot\,] = \frac{\nu_{\phi}[\,\cdot\,]}{\nu_{\phi}[\sum_{x} \eta_{x} = N]}, \ \nu_{\phi}[\eta_{x} = k] \propto \frac{\phi^{k}}{k^{b}}$

Canonical measures and condensation

fixed number of particles N: $\mu_{L,N}[\cdot] = \frac{\nu_{\phi}[\cdot]}{\nu_{\phi}[\sum_{x} \eta_x = N]}, \quad \nu_{\phi}[\eta_x = k] \propto \frac{\phi^k}{k^b}$

Equivalence of ensembles

In the thermodynamic limit $~~L,N\rightarrow\infty$, $~~N/L\rightarrow\rho$

$$\mu_{L,N} \to \nu_{\phi} \quad \text{where} \quad \begin{cases} \phi \leftrightarrow \rho \ , \ \rho \leq \rho_c \\ \phi = \phi_c \ , \ \rho \geq \rho_c \end{cases}$$

[Jeon, March, Pittel '00; Grosskinsky, Schütz, Spohn '03; Ferrari, Landim, Sisko '07; A., Loulakis '09]

I. Armendariz (Buenos Aires)

Metastability: dynamics of the condensate

Potential theoretic approach: [Bovier, Gayrard, Eckhoff, Klein '01, '02,...]

[Bovier, den Hollander, Metastability - a potential theoretic approach (2016)]

Martingale approach: [Beltrán, Landim '10, '11, '15]

Metastability: dynamics of the condensate

Potential theoretic approach: [Bovier, Gayrard, Eckhoff, Klein '01, '02,...]

[Bovier, den Hollander, Metastability - a potential theoretic approach (2016)]

Martingale approach: [Beltrán, Landim '10, '11, '15]

Trace process • metastable wells

$$\mathcal{E}^x := \left\{ \eta_x \ge N - \rho_c L - \alpha_L, \, \eta_y \le \beta_L, \, y \ne x \right\} \, ;$$

$$r^{\mathcal{E}}(\eta,\xi) = r(\eta,\xi) + \sum_{\zeta \in \Delta} r(\eta,\zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

$$r^{\mathcal{E}}(\eta,\xi) = r(\eta,\xi) + \sum_{\zeta \in \Delta} r(\eta,\zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

$$r^{\mathcal{E}}(\eta,\xi) = r(\eta,\xi) + \sum_{\zeta \in \Delta} r(\eta,\zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

$$r^{\mathcal{E}}(\eta,\xi) = r(\eta,\xi) + \sum_{\zeta \in \Delta} r(\eta,\zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

• $\eta^{\mathcal{E}}$ is a Markov process on $\mathcal{E} = \cup_{x \in \Lambda} \mathcal{E}^x$ with generator $\mathcal{L}^{\mathcal{E}}$ and rates

$$r^{\mathcal{E}}(\eta,\xi) = r(\eta,\xi) + \sum_{\zeta \in \Delta} r(\eta,\zeta) \mathbb{P}_{\zeta}[T_{\mathcal{E}} = T_{\xi}]$$

• invariant measure

 $\mu[\cdot] = \mu_{L,N}[\ \cdot \mid \mathcal{E}]$

Main result

Theorem.

A., Grosskinsky, Loulakis [arXiv:1507.03797]

The ZRP with b>20, as $~L,N\to\infty$, $~N/L\to\rho>\rho_c,$ exhibits metastability w.r.t. the rescaled condensate location

$$Y_t^L := \psi_L(\eta^{\mathcal{E}}(\theta_L t)) := \frac{1}{L} \sum_{x \in \Lambda} x \mathbb{1}_{\mathcal{E}^x} \big(\eta^{\mathcal{E}}(\theta_L t) \big) \in \mathbb{T} \quad \text{on the scale } \theta_L = L^{1+b}$$

Main result

Theorem.

A., Grosskinsky, Loulakis [arXiv:1507.03797]

The ZRP with b > 20, as $L, N \to \infty$, $N/L \to \rho > \rho_c$, exhibits metastability w.r.t. the rescaled condensate location

$$Y_t^L := \psi_L(\eta^{\mathcal{E}}(\theta_L t)) := \frac{1}{L} \sum_{x \in \Lambda} x \mathbb{1}_{\mathcal{E}^x} \big(\eta^{\mathcal{E}}(\theta_L t) \big) \in \mathbb{T} \quad \text{on the scale } \theta_L = L^{1+b}$$

For all initial conditions $\eta^L(0)\in \mathcal{E}^0$ we have weakly on pathspace

$$\left(Y_t^L:t\geq 0\right) \Rightarrow \left(Y_t:t\geq 0\right) \quad \text{with} \quad Y_0=0 \ ,$$

where $(Y_t : t \ge 0)$ is a Lévy-type jump process on \mathbb{T} with generator

$$\mathcal{L}^{\mathbb{T}}f(u) = K_{b,\rho} \int_{\mathbb{T}\setminus\{0\}} \frac{1}{d(v,u)} \big(f(v) - f(u)\big) \, dv \;,$$

where d(v,u) = |v-u| (1-|v-u|) is the distance in $\mathbb T$.

Proof

- $\left(Y_t^L: t \ge 0\right)$ is tight on $D\left([0,T], \mathbb{T}\right)$
- identify limit points $(Y_t: t \ge 0)$ as solutions of the martingale problem

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}^{\mathbb{T}} f(Y_s) \, ds \quad \text{is a martingale} . \tag{1}$$

Proof

- $\left(Y_t^L: t \ge 0\right)$ is tight on $D\left([0,T], \mathbb{T}\right)$
- identify limit points $(Y_t: t \ge 0)$ as solutions of the martingale problem

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}^{\mathbb{T}} f(Y_s) \, ds$$
 is a martingale. (1)

Introduce the **auxiliary process** \mathcal{L}^{Λ} on Λ with averaged rates

$$r^{\Lambda}(x,y) = \frac{1}{\mu[\mathcal{E}^x]} \sum_{\eta \in \mathcal{E}^x, \, \xi \in \mathcal{E}^y} \mu[\eta] \, r^{\mathcal{E}}(\eta,\xi)$$

and write

$$\begin{split} &\int_0^t \Big(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\mathcal{E}} (f \circ \psi_L) (\eta^{\mathcal{E}}(\theta_L s)) \Big) ds \\ &= \int_0^t \Bigl(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\Lambda} f(Y_s^L) \Bigr) ds + \theta_L \int_0^t \Bigl(\mathcal{L}^{\Lambda} f(Y_s^L) - \mathcal{L}^{\mathcal{E}} (f \circ \psi_L) (\eta^{\mathcal{E}}(\theta_L s)) \Bigr) ds \end{split}$$

Proof

- $\left(Y_t^L: t \ge 0\right)$ is tight on $D\left([0,T], \mathbb{T}\right)$
- identify limit points $(Y_t: t \ge 0)$ as solutions of the martingale problem

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}^{\mathbb{T}} f(Y_s) \, ds \quad \text{is a martingale} . \tag{1}$$

Introduce the auxiliary process \mathcal{L}^{Λ} on Λ with averaged rates

$$r^{\Lambda}(x,y) = \frac{1}{\mu[\mathcal{E}^x]} \sum_{\eta \in \mathcal{E}^x, \, \xi \in \mathcal{E}^y} \mu[\eta] \, r^{\mathcal{E}}(\eta,\xi)$$

and write

$$\begin{split} &\int_0^t \Big(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\mathcal{E}} (f \circ \psi_L) (\eta^{\mathcal{E}}(\theta_L s)) \Big) ds \\ &= \int_0^t \Bigl(\mathcal{L}^{\mathbb{T}} f(Y_s^L) - \theta_L \mathcal{L}^{\Lambda} f(Y_s^L) \Bigr) ds + \theta_L \int_0^t \Bigl(\mathcal{L}^{\Lambda} f(Y_s^L) - \mathcal{L}^{\mathcal{E}} (f \circ \psi_L) (\eta^{\mathcal{E}}(\theta_L s)) \Bigr) ds \end{split}$$

- $igodoldsymbol{0}$ Prove equilibration within wells on a scale $t_{\mathsf{mix}} \ll heta_L = L^{1+b}$
- ${f O}$ Prove convergence of averaged dynamics on the scale $heta_L$
- central Lemma: uniform bounds on exit rates

I. Armendariz (Buenos Aires

Metastability in condensing ZRPs

1 – Equilibration within a well

Restricted process to a well \mathcal{E}^x by ignoring jumps outside, $\mu^x = \mu[\,\cdot\,|\mathcal{E}^x]$

• bound on relaxation time $t_{\rm rel},$ mixing time $t_{\rm mix}(\epsilon)$

$$t_{\mathsf{rel}} \leq CL^4 \quad \mathsf{and} \quad t_{\mathsf{mix}}(\epsilon) \leq t_{\mathsf{rel}} \log\left(\frac{1}{\epsilon\mu_{\mathsf{min}}}\right) \leq CL^5 \log\left(1/\epsilon\right)$$

1 – Equilibration within a well

Restricted process to a well \mathcal{E}^x by ignoring jumps outside, $\mu^x = \mu[\cdot | \mathcal{E}^x]$ • bound on relaxation time t_{rel} , mixing time $t_{\text{mix}}(\epsilon)$

$$t_{\mathsf{rel}} \leq CL^4 \quad \mathsf{and} \quad t_{\mathsf{mix}}(\epsilon) \leq t_{\mathsf{rel}} \log\left(\frac{1}{\epsilon\mu_{\mathsf{min}}}\right) \leq CL^5 \log\left(1/\epsilon\right)$$

 \bullet ergodic L^2 bound for functions with $\mu^x(h)=0,\ x\in\Lambda$

$$\mathbb{E}_{\mu} \Big| \int_{0}^{t} h(\eta_{u}^{\mathcal{E}}) \, du \Big|^{2} \leq 24t \, t_{\mathsf{rel}} \sum_{x \in \Lambda} \mu \big[\mathcal{E}^{x} \big] \, \mu^{x} \big(h^{2} \big), \tag{2}$$

[J. Beltrán and C. Landim '15, Martingale approach to metastability]

1 – Equilibration within a well

Restricted process to a well \mathcal{E}^x by ignoring jumps outside, $\mu^x = \mu[\cdot | \mathcal{E}^x]$

ullet bound on relaxation time $t_{\rm rel},$ mixing time $t_{\rm mix}(\epsilon)$

$$t_{\mathsf{rel}} \le CL^4$$
 and $t_{\mathsf{mix}}(\epsilon) \le t_{\mathsf{rel}} \log\left(\frac{1}{\epsilon\mu_{\mathsf{min}}}\right) \le CL^5 \log\left(1/\epsilon\right)$

 $\bullet\,$ ergodic L^2 bound for functions with $\mu^x(h)=0,\ x\in\Lambda\,$

$$\mathbb{E}_{\mu} \Big| \int_{0}^{t} h(\eta_{u}^{\mathcal{E}}) \, du \Big|^{2} \leq 24t \, t_{\mathsf{rel}} \sum_{x \in \Lambda} \mu \big[\mathcal{E}^{x} \big] \, \mu^{x} \big(h^{2} \big), \tag{2}$$

[J. Beltrán and C. Landim '15, Martingale approach to metastability]

• Apply (2) + 3. + bounds on $\sum_{y \neq x} r^{\Lambda}(x,y)$ from 2. to $h = r^{\mathcal{E}} - r^{\Lambda}$ to get

$$\sup_{\eta \in \mathcal{E}} \mathbb{E}_{\eta} \Big| \theta_L \int_0^t \Big(\mathcal{L}^{\Lambda} f(Y_s^L) - \mathcal{L}^{\mathcal{E}} (f \circ \psi_L) (\eta^{\mathcal{E}}(\theta_L s)) \Big) ds \Big| \to 0$$

2 – Mean rates as capacities

$$\mu[\mathcal{E}^{A_1}]r^{\Lambda}(A_1, A_2) = \mu[\mathcal{E}^{A_1}] \frac{1}{|A_1|} \sum_{\substack{x \in A_1 \\ y \in A_2}} r^{\Lambda}(x, y) \qquad A_1, A_2 \subset \Lambda$$
$$= \frac{1}{2} \Big(\operatorname{cap}(\mathcal{E}^{A_1}, \mathcal{E} \setminus \mathcal{E}^{A_1}) + \operatorname{cap}(\mathcal{E}^{A_2}, \mathcal{E} \setminus \mathcal{E}^{A_2}) - \operatorname{cap}(\mathcal{E}^{A_1 \cup A_2}, \mathcal{E} \setminus \mathcal{E}^{A_1 \cup A_2}) \Big)$$

Prove bounds

$$heta_L \operatorname{cap}\left(\mathcal{E}^{A_1}, \mathcal{E} \setminus \mathcal{E}^{A_1}\right) \leq K(b,
ho) \left(1 + \overline{\epsilon}_L\right) \sum_{\substack{x \in A \\ y \notin A}} \operatorname{cap}_{\Lambda}(x, y)$$

$$\theta_L \operatorname{cap}(\mathcal{E}^{A_1}, \mathcal{E} \setminus \mathcal{E}^{A_1}) \ge K(b, \rho) (1 - \underline{\epsilon}_L) \sum_{\substack{x \in A \\ y \notin A}} \operatorname{cap}_{\Lambda}(x, y)$$

where $\operatorname{cap}_{\Lambda}(x,y)=\frac{1}{|x-y|\,(L-|x-y|)}$ capacities of symmetric rw on $\Lambda.$

2 - Regularization

- $\bullet\,$ Total exit rate from a well $\propto \log L$
- Upper and lower bounds for rates $r^{\Lambda}(x,y)$ do not match

see also [A. Bovier, R. Neukirch '14]

2 - Regularization

- Total exit rate from a well $\propto \log L$
- Upper and lower bounds for rates $r^{\Lambda}(x,y)$ do not match

see also [A. Bovier, R. Neukirch '14]

 $\bullet\,$ Coarse graining in Λ & Lipschitz test functions to regularize

$$\theta_L \mathcal{L}^{\Lambda} f(x) = \sum_{m=1}^{\bar{L}} r^{\Lambda}(V_0, V_m) \left(f\left(\frac{x+\ell m}{L}\right) - f\left(\frac{x}{L}\right) \right) + o(1)$$

with
$$|V_i| = \ell \propto \alpha_L \log^3 L \to \infty$$
, $\bar{L} = L/\ell$.
(\to leads to choice of $\alpha_L = L^{1/2+5/(2b)}$)

• matching bounds from capacity representation for $r^{\Lambda}(V_0,V_m)$

$$\sup_{\eta \in \mathcal{E}} \mathbb{E}_{\eta} \Big| \int_{0}^{t} \Big(\mathcal{L}^{\mathbb{T}} f(Y_{s}^{L}) - \theta_{L} \mathcal{L}^{\Lambda} f(Y_{s}^{L}) \Big) ds \Big| \to 0$$

3 – Coupling to a branching system of BD processes

 $m=\lceil 2^b\rceil$ largest possible arrival rate for ZRP $x\in\Lambda,$ couple $\left(\eta_x(t):\,t\geq 0\right)$ with a growing system of BD chains $\zeta_x^{\bf k}$, indexed by the m-regular tree \mathcal{R}_m

- Each chain ζ_x has birth rate 1 and death rate $g(\zeta_x)$. Arrival events for $\eta_x(t)$ are used only for one of the coupled chains
- At any time t, only m of the chains are coupled to $\eta_x(t),$ and the rest are evolving independently.

3 - Coupling to a branching system of BD processes

 $m = \lceil 2^b \rceil$ largest possible arrival rate for ZRP $x \in \Lambda$, couple $(\eta_x(t) : t \ge 0)$ with a growing system of BD chains $\zeta_x^{\mathbf{k}}$, indexed by the *m*-regular tree \mathcal{R}_m

- Each chain ζ_x has birth rate 1 and death rate $g(\zeta_x)$. Arrival events for $\eta_x(t)$ are used only for one of the coupled chains
- At any time t, only m of the chains are coupled to $\eta_x(t),$ and the rest are evolving independently.
- Number of chains grows linearly with time
- $\max_{\mathbf{k}} \zeta_x^{\mathbf{k}}(t) \ge \eta_x(t)$ for all times $t \ge 0$.

$\text{Uniform exit rate bound:} \quad \sup_{\eta \in \mathcal{E}^x} \sum_{\xi \notin \mathcal{E}^x} r^{\mathcal{E}}(\eta,\xi) \leq C \, \frac{1}{L^5 (\log L)^2}$

3 - Coupling to a branching system of BD processes

Example for m = 2arrows \rightarrow : identical copies coupled chains : red encircled independent chains : in blue

- coupled at generation n = 1 (top)
- particle arrives at x (middle) chains in 1st gen. turn independent 2 descendants on top coupled
- second particle arrives, etc.

Condensing zero-range with vanishing density

Lattice: complete graph Λ of size LState space: $X_L = \{0, 1, ..\}^{\Lambda}$ $\eta = (\eta_x)_{x \in \Lambda}$ Jump rates: $p(x, y) g(\eta_x)$ choose $g(k) = ke^{-2(k-1)} \frac{L-1}{L}$ and $p(x, y) = \frac{1}{L-1}$ Grand canonical measures: $1/g!(k) = e^{k^2 - k}/k!$, do not exist

Canonical measure: $\frac{1}{Z} \prod_x \frac{e^{\eta_x^2}}{\eta(x)!} \mathbf{1}_{\sum \eta_x = N}$

Number of particles: $N = (1 + \gamma) \log L$, $N/L \rightarrow 0$.

Metastable wells

$$\mathcal{E}^x = \left\{ \eta_x \ge N - \alpha_L, \, \eta_y \le \beta_L, \, y \ne x \right\}$$

Metastable wells

$$\mathcal{E}^x = \left\{ \eta_x \ge N - \alpha_L, \, \eta_y \le \beta_L, \, y \ne x \right\}$$

• Trace process $\left(\eta_t^{\mathcal{E}}, t \geq 0\right)$

Metastable wells

$$\mathcal{E}^x = \left\{ \eta_x \ge N - \alpha_L, \, \eta_y \le \beta_L, \, y \ne x \right\}$$

- Trace process $\left(\eta_t^{\mathcal{E}}, t \geq 0\right)$
- Time scale θ_L : $\left|\frac{\log \theta_L}{N^2} \frac{(1+2\gamma)^2}{4(1+\gamma)^2}\right| \to 0$

Metastable wells

$$\mathcal{E}^x = \left\{ \eta_x \ge N - \alpha_L, \, \eta_y \le \beta_L, \, y \ne x \right\}$$

- Trace process $\left(\eta_t^{\mathcal{E}}, t \geq 0\right)$
- Time scale θ_L : $\left|\frac{\log \theta_L}{N^2} \frac{(1+2\gamma)^2}{4(1+\gamma)^2}\right| \to 0$

Theorem.

A., de Masi, Presutti

The ZRP with as $L, N \to \infty$, $N = (1 + \gamma) \log L$, $\gamma \in (0, \frac{1}{\sqrt{2}})$, exhibits metastability w.r.t. the rescaled condensate location

$$Y^L_t := \psi_L(\eta^\mathcal{E}(heta_L t)) := rac{1}{L} \sum_{x \in \Lambda} x \mathbbm{1}_{\mathcal{E}^x} ig(\eta^\mathcal{E}(heta_L t) ig) \in \mathbb{T}$$
 on the scale $heta_L$.

For all $\eta^L(0) \in \mathcal{E}^1$, $(Y_t^L : t \ge 0) \Rightarrow (Y_t : t \ge 0, Y_0 = 0)$, rate 1, uniform on \mathbb{T} .

• Condensates η^x : $\eta^x_x = N, \ \eta^x_y = 0, \ y \neq x$

- Condensates η^x : $\eta^x_x = N, \, \eta^x_y = 0, \, y \neq x$
- Fluid $\mathcal{F} = \left\{ \eta : \eta_y \leq 1, \, y = 1, \dots, L \right\}$

• Condensates
$$\eta^x$$
 : $\eta^x_x = N, \ \eta^x_y = 0, \ y \neq x$

• Fluid
$$\mathcal{F} = \{ \eta : \eta_y \le 1, \, y = 1, \dots, L \}$$

Theorem continued

A., de Masi, Presutti

The time scale is

$$\theta_L = \frac{1}{r^{\Lambda}(\eta^1, \mathcal{F})}, \quad r^{\Lambda}(\eta^1, \mathcal{F}) = \frac{1}{\mu_{L,N}(\eta^1)} \operatorname{cap}(0, N),$$

where cap(0, N) are the capacities of a BD chain on $0, \ldots N$ with

$$b(k, k+1) = \frac{N-k}{L}, k \le N-1, \quad d(k, k-1) = k e^{-2(k-1)} \frac{L-N+k}{L}, k \ge 1$$

and invariant measure

$$\nu_{L,N} = \frac{1}{Z} {\binom{L-1}{N-k}} \frac{e^{k^2 - k}}{k!}$$

With probability 1 as $L \to \infty$, the trajectory between two condensate η^x and η^y , $x \neq y$, passes through \mathcal{F} .

The end