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The zero-range process

1-p p
Lattice: A of size L SNy
State space: X = {0,1,..}A .
P r=10.1,} 93

Jump probabilities: p(z,y) € [0,1]
Jump rates: ¢, : {0,1,..} = [0,00), g.(k)=0 < k=0

Generator: feCo(Xr)
LEm= " g(na)p(e,y) (F0*) = ()

z,yEA

[Spitzer (1970), Andjel (1982)]
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The zero-range process

g.(k) =k = independent identical particles
9:(k) =g, = network of M/M/1 server queues
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The zero-range process

g.(k) =k = independent identical particles
9:(k) =g, = network of M/M/1 server queues

Condensation phenomena

o spatial heterogeneity
= condensation on the 'slowest’ site

[Evans (1996), Krug, Ferrari (1996), Benjamini, Ferrari, Landim (1996), Ferrari, Sisko (2007)]
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g:(k) =k = independent identical particles

9:(k) =g = network of M/M/1 server queues

Condensation phenomena

o spatial heterogeneity
= condensation on the 'slowest’ site

[Evans (1996), Krug, Ferrari (1996), Benjamini, Ferrari, Landim (1996), Ferrari, Sisko (2007)]

o effective attraction of particles due to g(k)
= condensation on a random site

gn)~1+L  p>2 [Evans (2000)]

g(n) ~ne=2"
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1/2 1/2

Lattice: A of size L
State space: Xy = {0,1,..}*

n=(Nz)zen

Jump rates: p(z,y) g(n.)
choose g(k) = (%)b ~ 1+ 2 withb>0
9(0) =0, g(1)

choose  p(x,y) = §0y041 + 50y0-1

1

Generator: Lf(n)= Y g(n.)(3f 0" ™) + 5f """ —f(m))

zeEAL

[Spitzer '70; Andjel '82; Evans '00]
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Canonical measures and condensation

fixed number of particles N: iy n[-] = Mz':"”—[n'w]zm, Vs [nx = k] o« T5
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Canonical measures and condensation

fixed number of particles N:  pp n[-] = MZI/¢—[77!=N}’ Vg [nm = k:] o i—:

Equivalence of ensembles
In the thermodynamic limit L,N — oo, N/L —p

— <
WL, N —> Ve Where D00 P e
¢=¢c, p=pe
5 :
pc(b)
4,
3f fluid : condensed
P
1 2r M /L-0 M/L-p—pc 1
N condensed
fluid 256 (p-poL
1,
O L
e 0 1 2 3 4 5,
X b X

[Jeon, March, Pittel '00; Grosskinsky, Schiitz, Spohn '03; Ferrari, Landim, Sisko '07; A., Loulakis '09]
R o BlroxlA e E— e B/



Metastability: dynamics of the condensate

Potential theoretic approach: [Bovier, Gayrard, Eckhoff, Klein '01, '02,...]
[Bovier, den Hollander, Metastability - a potential theoretic approach (2016)]

Martingale approach: [Beltran, Landim '10, '11, '15]
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Metastability: dynamics of the condensate

Potential theoretic approach: [Bovier, Gayrard, Eckhoff, Klein '01, '02,...]
[Bovier, den Hollander, Metastability - a potential theoretic approach (2016)]

Martingale approach: [Beltran, Landim '10, '11, '15]
Trace process e metastable wells

gw:{nIZN—pCL—aL,nygﬁLay#x}’
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Trace process n°

e 1% is a Markov process on £ = U,caE® with generator £ and rates

r,8) =r(n, &) + > r(n, Q) P[Te = T¢]

CeA

|. Armendariz (Buenos Aires) July 4, 2016 7/18



Trace process n°

e 1% is a Markov process on £ = U,cAE® with generator ££ and rates

r€(m,&) =r(m, &) + > r(n, Q) Pc[Te = T¢]

CeA
XLy
—o
& —_—0
g [ES—
n ¥—o0 ——
)

time
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Trace process n°

e 1% is a Markov process on £ = U,cAE® with generator ££ and rates
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Trace process n°

e 1% is a Markov process on £ = U,cAE® with generator ££ and rates

r€(m,&) =r(m, &) + > r(n, Q) Pc[Te = T¢]

CeA
Xy
¢ —_—0
é’ —
7 $—o0 —o0

\J

time

|. Armendariz (Buenos Aires) July 4, 2016 7/18



Trace process n°

e 1% is a Markov process on £ = U,cAE® with generator ££ and rates

r€(m,&) =r(m, &) + > r(n, Q) Pc[Te = T¢]

CeA
Xy
e invariant measure
ul) = prnl- | €] 3 —°
é’ JES—
7 +——o )

\J

time
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Main result

Theorem. A., Grosskinsky, Loulakis [arXiv:1507.03797]

The ZRP with b > 20, as L,N — oo, N/L — p> pc,
exhibits metastability w.r.t. the rescaled condensate location

viE = (0rt)) Z zles (n®(0rt)) € T on the scale 0 = LT .
acEA
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Main result

Theorem. A., Grosskinsky, Loulakis [arXiv:1507.03797]

The ZRP with b > 20, as L,N — oo, N/L — p> pc,
exhibits metastability w.r.t. the rescaled condensate location

Y,[‘ =y, ( (0rt)) Zx]lgz (0Lt ) €T onthescale ¢, = L',
aceA
For all initial conditions L (0) € £° we have weakly on pathspace
(Vl:t>0)= (Y;:t>0) with Y5=0,
where (Y; : t > 0) is a Lévy-type jump process on T with generator

£pw =Ky [ s (@) = ) e

where  d(v,u) = [v—u|(1 — [v—u|) is the distance in T .
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Proof
o (Y :t>0)is tight on D([0,T],T)

o identify limit points (Y; : t > 0) as solutions of the martingale problem

f(Y2) — £(Yo) —/t LTF(Y,)ds is a martingale . (1)

0
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o (Y :t>0)is tight on D([0,T],T)

o identify limit points (Y; : t > 0) as solutions of the martingale problem

fYy) — f(Yo) — /Ot LTf(Ys)ds is a martingale . (1)

Introduce the auxiliary process £* on A with averaged rates

A (z,y) = — ST ulmlrtm, ¢

ulee] neET, ECEY

and write

/ C(CTFOE) — 0,L5 (0 1) (nF (015))) ds
t
0

:/Ot(LTf(YSL)—GLEAf(YSL))ds+9L/( <£Af(YsL)—£g(f0¢L)(775(0L5)))d5

July 4, 2016 9/18



o (Y :t>0)is tight on D([0,T],T)

o identify limit points (Y; : t > 0) as solutions of the martingale problem

fYy) — f(Yo) — /Ot LTf(Ys)ds is a martingale . (1)

Introduce the auxiliary process £* on A with averaged rates

A (z,y) = — ST ulmlrtm, ¢

ulee] neET, ECEY

and write

t
| (£2 500 = 0025 (1 0 w0 (019)) ) s
t t
:/(LTf(YSL)—GLEAf(YSL))ds+9L/ (L2125 (F 0 pr) (0 (01.9)) ) ds
0 0
@ Prove equilibration within wells on a scale

Q Prove convergence of averaged dynamics on the scale 0r,

Q central Lemma: uniform bounds on exit rates
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1 — Equilibration within a well

Restricted process to a well £ by ignoring jumps outside, u* = u[- |E%]

o bound on relaxation time t,e, mixing time tmx(€)

tet < CL* and  tmix(€) < trelog ( ) < CLPlog (1/6)

€lmin
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1 — Equilibration within a well

Restricted process to a well £ by ignoring jumps outside, u* = u[- |E%]

o bound on relaxation time t,e, mixing time tmx(€)

tet < CL* and  tmix(€) < trelog ( ) < CLPlog (1/6)

€EMmin
e ergodic L? bound for functions with u%(h) =0, 2 € A

EH‘ /0 h(n) clu‘2 < 24t ty Z,u[é'm] 1* (%), (2)

zeA

[J. Beltrén and C. Landim '15, Martingale approach to metastability]
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1 — Equilibration within a well

Restricted process to a well £ by ignoring jumps outside, u* = u[- |E%]

o bound on relaxation time t,e, mixing time tmx(€)

te < CLY and  tmie(e) < tre log( ) < CL”log (1/e€)

€EMmin
e ergodic L? bound for functions with u%(h) =0, 2 € A

E,| /0 b du\2 < 24tta Y u[€7] u"(h%), (2)

zeA

[J. Beltrén and C. Landim '15, Martingale approach to metastability]

o Apply (2) + 3. + bounds on 3=, 7*(x,y) from 2. to h = 7% — 7" to get

o [ (2500~ 2507 o v @u) s

ne&
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2 — Mean rates as capacities

1
P A (A, As) = plEM] T S rfay) A Ay CA

z€A
yEAg

= %(cap(SAl,E\SAI) + cap(f,’Az,g\gAz) _ Cap(gAluA«z’g \ 8A1UA2)>

Prove bounds

O cap(E4,E\ M) < K(b,p) (1 +¢1) Z capy (z,y)
€A
ygA

HL Ca’p(gAlag \ gAl) > K(b7 p) (1 - gL) Z CapA(I7y)
€A
ygA

where cap, (z,y) capacities of symmetric rw on A.

_ 1
T le—yl (L=le—yl)
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2 — Regularization
o Total exit rate from a well o log L

@ Upper and lower bounds for rates 7*(z,y) do not match
see also [A. Bovier, R. Neukirch '14]
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2 — Regularization
o Total exit rate from a well o log L

@ Upper and lower bounds for rates 7*(z,y) do not match
see also [A. Bovier, R. Neukirch '14]

o Coarse graining in A & Lipschitz test functions to regularize

D) = 3 PV Ve V(1) - 1(3)) ot
m=1

with |Vi| = ¢ < aplog® L — 0o, L = L/L.

( — leads to choice of oy, = L/2+5/(20))

@ matching bounds from capacity representation for 7 (V;, V;,,)

s [ (€10 ) o
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largest possible arrival rate for ZRP
z € A, couple (n,(t) : t > 0) with a growing system of BD chains ¥ |

indexed by the m-regular tree R,,

o Each chain (, has birth rate 1 and death rate g((,).
Arrival events for 7, (t) are used only for one of the coupled chains

o At any time ¢, only m of the chains are coupled to 7,(t), and the rest are
evolving independently.
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largest possible arrival rate for ZRP
z € A, couple (n,(t) : t > 0) with a growing system of BD chains ¥ |
indexed by the m-regular tree R,

o Each chain ¢, has birth rate 1 and death rate g((,).
Arrival events for 7, (t) are used only for one of the coupled chains

o At any time ¢, only m of the chains are coupled to 7,(t), and the rest are
evolving independently.

o Number of chains grows linearly with time
o maxy (¥(t) > n,(t) for all times t > 0.

1
Uniform exit rate bound: sup Z ré(n,¢) <C T5los L
1 g
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3 — Coupling to a branching system of BD processes

Example for m = 2
arrows — : identical copies
coupled chains : red encircled

independent chains : in blue

o coupled at generation n = 1 (top)

o particle arrives at = (middle)

chains in 1st gen. turn independent

2 descendants on top coupled

@ second particle arrives, etc.

|. Armendariz (Buenos Aires)
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Condensing zero-range with vanishing density

Lattice: complete graph A of size L
State space: X, = {0,1,..}"
77 = (na:)mej\
Jump rates: p(z,y) g(n:)
choose g(k) = ke 2b=DLZland  p(z,y) = 15

Grand canonical measures: 1/¢!(k) = ek2*"”/lf!7 do not exist

enﬂc
Canonical measure: - LTL. e i I p.=N

Number of particles: N = (1+v)logL, N/L — 0.
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Metastability

o Metastable wells

8z={anN_aLany§BL7y7éw}

|. Armendariz (Buenos Aires) Metastability in condensing ZRPs July 4, 2016 16 / 18



Metastability

o Metastable wells
gm:{nzzN_aLa nySﬁL,y7éx}

o Trace process (15 ,t > 0)
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Metastability

o Metastable wells
={n. >N —ar,n, <Br,y#z}
o Trace process (15 ,t > 0)

o Time scale 6y, : |M %]—)0
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Metastability

o Metastable wells

={n. >N —ar,n, <Br,y#z}

o Trace process (15 ,t > 0)

142
o Time scale 6y, : |$ﬂ (;ﬁrfr | =0

Theorem. A., de Masi, Presutti

The ZRP withas L,N o0, N=(1+7)logL, ~vE€ (0,\%),
exhibits metastability w.r.t. the rescaled condensate location

V= gr(n®(0rt)) Za:]lgz (¢0,t)) €T on the scale §f, .
xEA

For all n%(0) € &', (Y :¢t>0) = (Y;:t >0, Yy = 0), rate 1, uniform on T.
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Metastability

o Condensates n® : nmy = N, ny =0,y #
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Metastability

o Condensates n® : nmy = N, ny =0,y #

° FIuid.F:{n:nygl,y=1,...,L}
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Metastability

o Condensates n® : nmy = N, ny =0,y #

° Fluid]-':{n:nygl,yzl,...,L}

Theorem continued A., de Masi, Presutti
The time scale is

1 A(

= Fmiy " cap(0, V),

eL 771»-/—_) =
pr,N(nt)

where cap(0, N) are the capacities of a BD chain on 0,... N with

oy L=N+k

N—k
bk, k+1)= === k<N -1, d(kk—1)=ke =

Jk>1

and invariant measure

_ k2—k
VLN = %(ﬁ—}c) : k!

With probability 1 as L — oo, the trajectory between two condensate n* and 7Y,
x # y, passes through F.
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The end

Metastability in condensing Z
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