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1 The zero-range process (ZRP)

1.1 Definition [Spitzer (1970)] “\‘
o Finite integer lattice A :={1,2,...,L} w(4) pu(4)
YN
O qu2 pu(2
e Local occupation variables n, € N for k € A 8 f?)/\
o20_o
o Configuration n= {ny,...,n. } € Nt 1 2 3 4

o Markovian jumps with rates u(n)w™ (interaction and bias)

o Bulk driving field: w, , =p,q

e Open boundaries: w_, = «, f8,7,6 (particle exchange with reservoirs)

edge

e Master equation for probability Pa(t)

_'Dﬂ(t) = Z [Wn,n’Pn’(t) - Wn’tnP"(t)]
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Significance:

A) Toy model for far-from-equilibrium physics:

e Exactly soluble stationary distribution even in absence of detailed balance

e Rigorous derivation of nonlinear hydrodynamics « S

N\ .

e Microscopic model for shock discontinuities
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e Classical analog of BEC O qu(2 pu(2) 4 I~
o Pave'l o
e Coarsening dynamics and metastability 8 o 8 8
Tz 3 45 Lar

B) Applications of condensation transition:

e Granular media (Clustering)
o Networks (Hubs)
e Socio-economic systems (Aggregation of wealth)

o Traffic flow (Traffic jams)




1.2 Quantum Hamiltonian Formalism for master equation

Definitions:

o Probability vector |P) = 3", Pa|n) where [n) = |m) ®--- ® |n;) spans (C>)®t
o Dual basis (n| with orthogonality condition (n|n’) =4,

e Summation vector (S| =3, (n| = (5|P) =1

e Particle creation and annihilation matrices

=S n)(n=1], & = u(m)ln—1)(n]
n=. n=1

e Diagonal loss matrix and particle number operator

d=> u(m|n)(nl, A= nln)(n
n=1 n=1



Generator for ZRP hopping dynamics:
L1
H=ho+> hc+h
k=1
Bulk hopping matrices: by = p(di — & 5{,1) + a(dir1 — 5 55,1)
Boundary matrices: hy = a1 — i+ y(d; — ar), hy =601 - i)+ B(d, — i)

= Master equation
d A
—|P(t)) = —H|P(t
ZIP() = ~AIP(t)

Solution: |P(t)) = Of'qr|P(0)>
Expectation of a function F(n): (S|F|P(t))

Diagonal matrix £ =3 F(n)|n)(n|



1.3 Stationary distribution [Levine, Mukamel, GMS (2005)]

Stationary distribution: H| P*) = 0 (lowest right eigenvector with lowest eigenvalue 0)

o Product measure |P*) = |P})® |P;) ®...® |P})

® Marginals P} := Prob[n, = n] = % I17, u(i)—?t

(ect8)(p—a)—ap+3](£) ' —o+as(8)"

-1 =: etk
¥(p—q—B)+B(p—a+)(2)

o Local fugacities z, =

e Local partition function Z, = >0° 20 T]7_; u(i)~?

e Local mean density py = (ng) = ﬁ In Z

L—-1

s105(3)
[—1

e Steady-state current j* = (p — q) —
w(p—q—ﬁ)+ﬁ(P—q+w)(§)



2 Current conditioning

Introduce time-integrated local directed current (fluctuating)

¥m
J;7(T) = number of particle jumps from site k to k41 up to time T
kM 4
| ° ®
= Define: 1 @ @
k k+1

e Time-integrated local current Ji(T) = J7(T) — J_ (T)

e Time-integrated total current J(T) = Zi:o Ju(T)

e Time-averaged currents ji(T) = Ji(T)/T and j(T)=J(T)/T
e Law of large numbers: limits jx = lim7_, o jk(T) and j exist

Current is a fluctuating quantity, in which way can non-average current j # j* arise?

More precisely, what is the optimal (most likely) realization of the ZRP that
generates an atypical current j # j*7 (Average density profile, correlations, ...)



> Macroscopic (MFT, Bertini et al. '02/'15, Derrida '07) <= Microscopic (Exact solutions)

Answer from MFT: Consider macroscopic space and time scales (Law of large numbers and
local equilibrium)

e Many microscopic realizations of the ZRP have the same j = J(T)/T from the current
distribution Prob[J(T) = J]

o Large deviation form P,(T) oc e~ TfU) with j = J/T

li—(vo(p)—D(p)$2)1?
20(p)

e Large deviation function f(j) = n}lr; fol dx
p(x
- Optimal profile p(x) with boundary conditions p(0) = p—, p(1) = p™
- Static compressibility o(p)
- Collective diffusion coefficient D(p)

e No information about correlations on microscopic scale

» Pursue microscopic approach



2.1 Canonical conditioning (current ensemble)

Fix J(T) = J = Define two-time joint probability distribution
Pa,s(t, T) = Prob[n(t) = n, J(T) = J] = (S, J|e""T=n)(n|eH*| P(0),0)

e Normalization P;(T) = 3, Pas(T, T) = (S, J|e""T| P(0),0)

= current distribution Prob[J(T) = J] x e~ 70

e Expected instantaneous current (j'(t)) = d/dt(J(t)) at time t:

<j'(t)>
i
R —
e
T

stationary regime



2.2 Grandcanonical conditioning (thrust ensemble)

o Generating function Qn,s(t, T) =3 e P, 4(t, T)
= (ST n) (n|e=HE)| P(0))

e Thrust s canonically conjugate to current J

o Weighted generator H(s): hopping rates W,,/meis, A@©)=A

e Current generating function Qs(T) =", Qn,s(T,T) =3, e P,(T)
= (Se=HIT| P(0))

e Asymptotic moment generating function g(s) := limy_, lT InQs(T) = —eo(s)
with lowest eigenvalue eo(s) of H(s) (Legrende transform of £(j))

= Jj(s) = — §seo(s)
e Stationary conditional expectations t = aT, T — oc:

(FY* = (A(s) |F|T(s)) with lowest right and left eigenvectors of H(s)



2.3 Effective dynamics

Can one construct a process for which the large deviation of the current is typical?
= Consider two-time conditional expectation

—AENT—t=7) ) o= AT £, o=
(Falt +7)a(e) ) = LS oA T PO))

e Study stationary regime far from 0 and T: e~ ()t — e=<0(9)t| [(s) )( A(s) |
= (R(1)F1(0))" = (A(s) | Foe ()=o) £y | F(s) )

o Generalized Doob h-transform G(s) := A(s)H(s)A~1(s) — eo(s)
= (F(7)F(0))" = (S |F2e_é(5)fff_1| P*(s)) (stationary effective process G(s))

e Stationary distribution P;(s) = An(s)n(s)

n



2.4 Mini review of conditioned ASEP |

Periodic boundary conditions:

MFT for weak asymmetry p — g = O(1/L), any J:

Jj < j*: Dynamical phase transition at jc: Flat profile — travelling wave [Bodineau, Derrida

(2005)]
Jj > j*: Not accessible [Lazarescu (2013)]

Exact microscopic results for any asymmetry, but specific J:

Jj < J*: Random walk of travelling wave, no correlations (t = T) [Belitsky, GMS (2013),

GMS (2015)]
Jj > j*: [Simon, Popkov, GMS (2010) ; Popkov, GMS (2011)]

- Flat with algebraically decaying correlations
- Change from KPZ to ballistic dynamical universality class

- Effective dynamics with long-range interactions



Open boundary conditions: Similar phenomena
Jj < j*: [Bodineau, Derrida (2006), Simon (2009), Belitsky, GMS (2013), Lazarescu (2013)
Jj > j*: Karevski, Dubail, GMS (work in progress)]

Study ZRP in the regime of an atypical current j # j*:

MFT predicts optimal density profile to realize this rare event for weak asymmetry
= Dynamical phase transition? Unclear! Questions beyond scope of MFT:

e Which process makes this large deviation typical?

o Which is the optimal profile for strong asymmetry?

e Microscopic structure of optimal profile?

e Role of condensation?

= Compute lowest eigenvalue and eigenvectors (right and left) of weighted generator I:I(s)



3 Effective dynamics

Weighted generator for local conditioning at bond (k, k + 1):

W(s) = Zh/+hk(5)+ Z hy.

flpad
with A; = A(0) and
ho(s) = — [a(essl+ — 1) + (e S5 — 81)]
hu(s) = = [p(e*8; 8y — dk) + ale™*8f 8, — dhrn)|
hu(s) = —[o(e=ay — 1)+ B(e"a; — du)]

Define the partial number operator Ny = Zf:l Aj

= AO)(s) = ek I:I(k)(s)e*SNk
= Lowest eigenvalue and effective dynamics independent of k!

= Choose k = 0 (without loss of generality) and drop superscript (0)

1<k<L-1

(1)



3.1 Lowest left eigenvector

e Product ansatz [Harris, Rdkos, GMS (2006)]: (A | = (y1| ® (y2| ®
® (yk| has components y] = (A | = (S|A with A = yi@...yf

e Action of bulk hopping matrices:

—(Ahi(s) = p(yis1 — vyt + a0k — Yir1)desryioh

Boundaries:
—(Alho(s) = a(yre® — 1) + (e~ — y1)duy; *

—(Alhy(s) =0(y. — 1)+ B — y)dry;

= Recursion for yj 0 = p(yist — )+ a(vk—1 — ¥&)
0 = (e ®—y1)+ply2—xn)
0 = qyi—1—y)+B(1—y1)

=yi(s) = A(s) + B(s)al*t=* with a = p/q

_ e *(p—a—B)+B(p—a+v)a" ! — By(e”*~1)a"?
Als) = v(p—a—B)+B(p—aq+v)at—1 B(s) = v(p—q—B)+B(p—gq+v)at—1

@l



3.2 Lowest right eigenvector

e Product ansatz |T) = [x1) ® [x) ® ... ® |x.)

® |xk) has components J]7_, %

o Action of weighted hupping matrices = recursion for x;, = x(s) = C(s) + D(s)a*

_ apetat=l 1§ _ _—1_ae’(p—q—B)+d(p—q+7)
C(s) = 6(p—q+7)aL—1+7(P—q—6)’D(s) =2 Blo—gta Tt (p—a—h)

e Lowest eigenvalue

afal=1les —~§
¥(p—q—B)+B(p—qg+~)at-t

co(s) = (p— q)(e™* 1)

e Current j(s) = —%eo(s)

afesat—1 — yde*
Blp—q+v)at=t+~(p—q—p)

i(s)=(p—q)



3.3 h-transform for effective dynamics with jiz = j(s)

(o}
Il
>

FIA‘l — €0

L—
YiH1 (a4 4 Yk (st 4
= 2 : [ Ykt (ak ENPE dk) +q— (ak*awrl dk“)}
Yk+1

k=
[Otyw (8 — 1)+ vy e S(5) — 31)]
— [ov(a =1+ By M - )]
e Driven ZRP with spatially varying driving field Ex(s) = loga + 2log yx+1(s)/yk(s)
e Space-dependence even for non-interacting particles with u(n) = wn.

e Stationary distribution has no spatial correlations

| P*(s)) = |P1(s)) ® [P5(s)) @ ... ® |P[(s))
Marginals

(P ())n = 71 T[T uh
i=1

with local fugacities z, = xyyj, local partition function Z, = >77°, J 1y



e Time-reversed process G* = .‘5"GAT(I3*)_1 with diagonal matrix P* of stationary weights
= G*(s) = T(s)AT(s)I ~1(s) — eo(s)

e Same stationary distribution, opposite stationary current

e Generator

L—1
G*(s) = ;{ Xk+1 (A*ékﬂ —dk) —l—pxj:i1 (ak"'a,ﬂ_1 3k+1)}
['yxle S(af —1)+axf1es(§f —31)]

= [Bxtar = 1) +ox7 5 - o)

e h-transform with right lowest eigenvector yields time-reversed effective dynamics
e Driven ZRP with spatially varying driving field Ex(s) = — log a + 2log xx+1(s)/xk(s)

o Detailed balance G*(s) = G(s) = jlz(s) =j(s) =0



4 Density profiles and supercritical chain segments

4.1 Barrier-free boundary conditions 8 =p, vy =¢q

Reservoir chemical potentials o = pet—, § = gel+
a

=t +p7)/2, 8 =@ —p7)/2 ™\
}’M%M(“)
Define 7 = % Ina, ry = L_j—l 8 qu%u@)
o o
e Lowest eigenvectors: o0 __o__
1 2 3 4 5

(=) sinh(Dr ) +e 5~ 7k sinh[(1—ry)]
Yk = Sinh(?) '

eSTHT HPr sinh[13(17r1<)]+e“4r —?0=1) sinh(9r.)
sinh(2)

Xk =

e Local driving field:

E, =2In e sinh(Frics1)+sinhl(1—ric,1)]
eST7 sinh(ry )+sinh[Z(1—ry)]

f_

qu(3) pu(3)
YN
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= independent of reservoir chemical potentials



4.2 Stationary fugacity profile

Define Q = cosh (s — § + 7))

3 sinhz[f/(lfrk)]Jre5 sinh?(2r.)+2Q sinh(&r, ) sinh[7(1—r,)]

— &
Zk=¢ SinhZ(2)
P
29 19 od
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05 crrorearararesen of sttt
osfe o i
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s e e o
Fugacity profile Driving field Fugacity profile Driving field
asymmetric weakly asymmetric
sinh( ) sinh(D4-s—4)
; T [+1
o Stationary current jXz = 2,/pq S (?)

= Same current could be generated by constant-field ZRP with reservoir chemical potentials

peff = +s, uj_ﬂ = p+ — s = Not same fugacity profiles



Special cases:
A) Symmetric ZRP (p = q =1):

.. . e/ 2rte”2(1—n,)
e Driving field E, = 21In o 2r o2 (1=r,)

o Quadratic fugacity profile z, = e#— (1 — r)? + e+ r,f + 2¢f cosh (s — &) r (1 — ry)

s _guy—s

o Stationary current j¥; = S

= Nontrivial conditioned process even for (unconditioned) equilibrium case p— = p4

G|

= s=-05

] 02 08 1

04 06 04 06
K/ (L+1) K (L+1)



B) General totally asymmetric ZRP (p=1,g=~v=4 =0):
e Driving field = oo

o Fugacity profile zx = ae® (k < L), zp = ae® /B

e Stationary current j¥; = ae®

= Conditioned process same as original process with o = ae®

e Lowest eigenvalue €p(s) = a(l — e°)

= Poissonian current distribution of original process Prob [J(T) = J] = ~=~e

e Valid up to critical value jc, temporary condensates beyond j. [Harris, Rékos, GMS (2006)]



4.3 Condensation patterns

Tacit assumption: Z(s) < oo for all k € A
However:

e Depending on interaction u(n) the normalization Zx(s) may have finite radius zc of
convergence which does not depend on k

® z. < oo for bounded u(n), but Zx(s) generally unbounded
= Construction valid only in finite interval s < s < st (jo <j(s) < jI)

e Nonstationary condensation phenomena for s ¢ [s., s}]

e Supercritical regions rather than single supercritical boundary site as in typical behaviour
of ZRP

e Equivalence of current and thrust ensemble?

e Condensation patterns?



4.4 Thermodynamic limit

Take introduce lattice constant A = 1/(L + 1) and take thermodynamic limit L — oo,
consider barrier-free boundaries

e Length of chain = 1, Lattice position ry, — r € [0, 1] (macroscopic position)

e Fixed asymmetry a > 1 (positive bias):

= Fugacity profile z(r) = z_e® =: z* for r # 0,1, Current j* = (p — q)z*
= Constant bulk profile with microscopic boundary layers of width £ = 1/In(a)

= Bulk: Conditioned process = Original process with effective injection rate o*ff = aes

e Symmetric hopping a = 1:

— Driving field E(r) = Mﬂ“—_‘j?ﬂ_)]

— Current ji = %(z,eS —zye™®)

- Fugacity profile z(r) = e#~ (1 — r)? 4+ 2 cosh (s — §)e”r(1 — r) + e+ r?



e Weakly asymmetric hopping p = (1 +v/L)/2, g = (1 —v/L)/2:

.. . _ 2 e cosh(vr)—cosh[v(1—r)]
~ Driving field E(r) = TV X o sinh(vr)+sinh[v(1—r)]

Current Jei = T X sinh v/
— Fugacity profile

2(r) = of e? sinh2[u(1 -]+ e’ Sinh2(l/r) + 2Qsinh(vr) sinh[v(1 — r)]
a sinh?(v)

= Agreement with MFT for weak asymmetry
=> Microscopic result for finite asymmetry: MFT with infinite asymmetry parameter v = cL

= Microscopic result yields scale factor ¢ = 1/21In(p/q)



5 Conclusions

» Generalized h-transform in thrust ensemble yields effective ZRP that makes current large
deviation typical

» Space-dependent driving field

» Non-trivial optimal fugacity profile even for non-interacting particles and equilibrium ZRP
» No correlations

» Validity in current regime [jc , jZ]

» Otherwise supercritical non-stationary regions where condensates can grow

» Agreement of fugacity profile with prediction of MFT (limited to weakly asymmetric case)

» MFT with infinite asymmetry parameter cL and judiciously chosen scale factor c yields
conditioned ZRP with finite asymmetry

» Ensemble equivalence?

» Condensation patterns?



