Chow Test for Structural Stability
A series of data can often contain a structural break, due to a change in policy or sudden shock to the economy, i.e. 1987 stock market crash. In order to test for a structural break, we often use the Chow test, this is Chow’ first test (the second test relates to predictions). The model in effect uses an F-test to determine whether a single regression is more efficient than two separate regressions involving splitting the data into two sub-samples. This could occur as follows, where in the second case we have a structural break at t.:
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 In the first case we have just a single regression line to fit the data points (scatterplot), it can be expressed as:




[image: image2.wmf]t

t

t

u

x

y

+

+

=

1

0

a

a


In the second case, where there is a structural break, we have two separate models, expressed as:
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 This suggests that model 1 applies before the break at time t, then model 2 applies after the structural break. If the parameters in the above models are the same, i.e. 
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, then models 1 and 2 can be expressed as a single model as in case 1, where there is a single regression line. The Chow test basically tests whether the single regression line or the two separate regression lines fit the data best. The stages in running the Chow test are:

1) Firstly run the regression using all the data, before and after the structural break, collect RSSc.

2) Run two separate regressions on the data before and after the structural break, collecting the RSS in both cases, giving RSS1 and RSS2.

3) Using these three values, calculate the test statistic from the following formula:
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4) Find the critical values in the F-test tables, in this case it has F(k,n-2k) degrees of freedom.

5) Conclude, the null hypothesis is that there is no structural break.

Multicollinearity

 This occurs when there is an approximate linear relationship between the explanatory variables, which could lead to unreliable regression estimates, although the OLS estimates are still BLUE. In general it leads to the standard errors of the parameters being too large, therefore the t-statistics tend to be insignificant. The explanatory variables are always related to an extent and in most cases it is not a problem, only when the relationship becomes too big. One problem is that it is difficult to detect and decide that it is a problem. The main ways of detecting it are:

· The regression has a high R2 statistic, but few if any of the t-statistics on the explanatory variables are significant.

· Use of the simple correlation coefficient between the two explanatory variables in question can be used, although the cut-off between acceptable and unacceptable correlation can be a problem.

 If multicollinearity does appear to be a problem, then there are a number of ways of remedying it. The obvious solution is to drop one of the variables suffering from multicollinearity, however if this is an important variable for the model being tested, this might not be an option. Other ways of overcoming this problem could be:

· Finding additional data, an alternative sample of data might not produce any evidence of multicollinearity. Also by increasing the sample size, this can reduce the standard errors of the explanatory variables, also helping to overcome the problem.

· Use an alternative technique to the standard OLS technique. (We will come across some of these later).

· Transform the variables, for instance taking logarithms of the variables or differencing them (i.e. dy=y-y(-1)).
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