Answers
Exercise 1

1) The main differences are:

a) Financial data is usually high frequency, i.e. daily or hourly data, whereas economics data is more likely to be monthly or annual.

b) Financial data tends to be of better quality than economic data, i.e. asset prices tend to be market determined.

c) Financial data tends to include a certain amount of risk, which needs to be modelled (risk is usually measured by volatility).

d) Financial data is usually noisy and difficult to pick up any pattern. This simply means it is variable and doesn’t follow a time path as most economic data.

2) Time series data is taken over a specific period of time i.e. 10 years, cross sectional data is at a point of time, but includes data from people, countries or firms. Panel data is a mix of time series and cross sectional data.

3) The affect of economic growth and interest rates on stock prices. The CAPM model etc

4) i) 
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would increase (positive sign) by 0.4 of a unit. (Note if the variables were in logarithmic form, the coefficients would be elasticities and it would be a 0.4% rise in 
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would be equal to the constant or in this case 0.6.

5) The error term or 
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picks up all the effects on yt that are not explained by the constant or explanatory variable. It occurs because of measurement error in the data or an omitted variable from the model.

Exercise 2

1) The difference between the actual and the fitted value is termed the error or residual term. The fitted value of a variable is its value on the regression line. The actual value is the observed value from the data. Each observation has an actual value, a fitted value and a residual value or error.

2) To determine the values, we need to use the following formulae:
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This suggests the explanatory power is very good with all of the observations lying on the regression line. The regression equation is: 
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3)
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 The critical value with 62-2 degrees of freedom are 2.00. 3>2 so we reject the null hypothesis (H0) and say that xt is significantly different to 0.

4) There are 4 Gauss-Markov assumptions, the expected value of the error term is 0, there is no covariance between error terms (no autocorrelation), the variance of the error term is constant (no heteroskedasticity) and there is no covariance between the error term and explanatory variable. Additional assumptions include: normally distributed error term, correct functional form, n>k etc.

5) In the presence of autocorrelation the estimator is no longer BLUE, although it is still unbiased it is no longer best or most efficient. In this case the t-statistics are not valid).
Exercise 3

1) The R2 statistic suggests that 40% of the variance of the dependent variable is explained. Xt is significantly different to 0, as 0.56-0/0.14= 4. The critical value for the t-statistic is 2.021 (5% level, 43 degrees of freedom, in this case 40 is the nearest value). As 4> 2.021 we reject the null that xt equals 0 and say that it is significant.

ii) With 45 observations and 1 explanatory variable (excluding the constant), the DL is 1.48 and the DU is 1.57. Our DW statistic lies between these 2 values and so is in the zone of indecision (see framework for decision in notes), we don’t know if we have autocorrelation or not.

2) The LM test for autocorrelation involves running an OLS regression of a model such as 
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 Then save the residual ut and use it as the dependent variable in a secondary regression:
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 Collect the R2 statistic and multiply by T(number of observations) to form the LM statistic. It follows a chi-squared distribution, with degrees of freedom equal to the number of lags (2 in the above example). The null hypothesis is no autocorrelation. If the LM statistic is 27.8, the critical value for chi-squared (4) is 9.488 (5%), 27.8 > 9.488, so we reject the null hypothesis of no 4th order autocorrelation and we have a problem with autocorrelation.
3) Common Factor test = 
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 = T*loge0.79/0.56 = 31*0.344 = 10.664. (we lose one observation when making the lags)

 The critical value follows the chi-squared (1) distribution and has a value of 3.84, as 10.664 > 3.84 we reject the null hypothesis that the restricted version (Cochrane-Orcutt) is the best method to overcome the autocorrelation and therefore the unrestricted version is best.

4) Heteroskedasticity means a non-constant variance of the error term and therefore a failure of one of the Gauss-Markov assumptions. Our estimator is no longer BLUE, as it is not the best or minimum variance, therefore our t and F statistics are not valid.
5) Whites test follows the chi-squared distribution, in the above example it has 2 degrees of freedom (critical value 5.99). As 8.7> 5.99 we reject the null hypothesis of no heteroskedasticity.
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Running the above regression removes the heteroskedasticity as the error term now has a constant variance:
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This is now a constant variance (no subscript t).

Exercise 4

1) In general it is better to have a parsimonious model (model with only the most relevant variables), rather than a large model. This is because a small model with just a few relevant variables is easier to interpret and usually give better forecasts. Also it reduces the chances of multicollinearity (two explanatory variables being correlated). However the disadvantage of a small model is that you may have left out an important explanatory variable. This can be serious and produces omitted variable bias. So in general we try to include all significant variables (5% level of significance) but leave out all others.

2) The R2 statistic, which measures the explanatory power of a regression, is not always appropriate in a multiple regression because it will always rise in value when an additional variable is added to the regression, regardless of whether the variable is significant. So if we sought to maximise the R2 statistic as a means of selecting the best model, we would always chose the one with the largest number of explanatory variables, even though most are insignificant.

The adjusted R2 statistic takes into account the extra variables when deciding on the explanatory power of the regression. So it can fall when extra variables are added. In general if the t-statistic exceeds 1, adding an extra variable increases the adjusted R2 statistic, so it may rise even though the extra variable is not significant ( i.e. above 2 at the 5% level of significance).
3) To calculate this statistic, with 50 observations and 2 explanatory variables (plus the constant),we need to use the F-test for the goodness of fit of a regression. The null hypothesis (H0) is that all the explanatory variables are jointly equal to 0, the alternative (HI) is that they are not all jointly equal to 0.
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 As 13.24> 3.23 we reject the null hypothesis that the explanatory variables are all equal to 0, so the goodness of fit is significant or in other words all the explanatory variables are jointly significant.

4) In this model relating to the demand for computers, we are testing the following restriction:
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 This is an F-test on the restriction that the coefficients on the computer price and marketing jointly equal 0. We need to use the following formula:
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(m are the number of restrictions, in this case 2, as we are testing the hypothesis that 2 coefficients are jointly equal to 0. Also don’t forget the k in this test refers to the number of variables in the unrestricted model, i.e. 3 as well as the constant)
   As 1.208<3.07 we accept the null hypothesis, in which case as the coefficients on the computer price and marketing jointly equal 0, we can remove these variables from the model.
5) The R2 statistic measures the goodness of fit of the regression or its explanatory power. Thus it measures how much of the total variance of the dependent variable, is measured by the variance of the fitted regression line.

i.e. 
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TSS is the total sum of squares, in other words the variance of the dependent variable, ESS is the explained sum of squares, or variance of the fitted values on the regression line and RSS is the residual sum of squares or the variance of the error term. Given the above relationship, we could write the R2 statistic as:
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 This is why we can write the F-tests in terms of the RSS or the R2 statistic, although it is usually written in terms of the RSS.

Exercise 5

1) The steps involved in estimating a model are as follows:

a) State the theory, usually also other previous studies in the same area.

b) Formulate the econometric model that is to be tested and what you expect the signs of the variables to be.

c) Collect the data, trying to obtain as much as possible.

d) Estimate the model using an appropriate technique.

e) Assess the coefficients and the t-statistics, are the diagnostic tests passed? i.e. autocorrelation etc.

f) If the results satisfy the theory, use for policy analysis or forecasting.

g) If the results are not what was expected or the diagnostic tests are failed, reformulate the model and try again.

2) The model is in logarithms, which means that a 1% rise in m, produces a 0.5% rise in e. Also a 1% rise in y, gives a 0.9% fall in e, etc. The t-statistics are m: 0.5-0/0.2= 2.5. y: 0.9-0/0.3= 3. i: 0.1-0/0.4=0.25. Pe 0.4-0/0.8= 0.5. The critical value at 5% level of significance is 2.00, with 60-5 or 55 degrees of freedom (60 observations (i.e. 15 years x 4 quarters). As the t-statistics on m and y are greater than 2.00, we reject the null hypothesis that they are equal to 0 and say that they are significant. i and Pe are both insignificant as there statistics are below the critical value.

ii) The goodness of fit as measured by the adjusted R2 statistic is high at 0.78.

iii) The DW statistic is 1.98, the critical values are: dl=1.44 and du=1.73 (60 observations and k=4), 1.98 lies between du (1.73) and 4-du (2.27) so we say that there is no evidence of 1st order autocorrelation. N.B. this is at the 5% level of significance.
iv) Although we conclude that the regression is good and passes the diagnostic test given, we would say the model fails to fit the data as the interest rate variables is insignificant, although the signs on the m and y variables are as expected and the Pe variable is equal to 0 (i.e. insignificant t –statistic).

3) This is a F-test on a joint test for significance of two variables.
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Putting the values into the formula gives: 
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 The critical value for F(2,55)= 3.15. 2.174<3.15 so we accept the null that they are jointly equal to 0 and can then be omitted from the model.

4) 
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.

0

3

.

0

1

9

.

0

)

(

1

-

=

-

=

-

-

b

b

SE

t


 The critical value at 5% level of significance is 2.00 (60-2 degrees of freedom). 2 > 0.33 (ignore the sign), so we accept the null hypothesis H0. So p does equal 1.

5) To determine if constant returns to scale applies we need to use the F-test.
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As 52.43 > 4.08 we reject the null hypothesis, so constant returns to scale does not apply. (To turn the unrestricted into the restricted version of the model, substitute into the equation
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, then rearrange to produce the restricted version).

Exercise 6

1) Structural breaks are a problem for financial data and other data in general, because the estimates of the coefficients may not be a good fit of the data, using the whole data span. By estimating the coefficients separately using two separate sub-samples, it is possible to obtain a better fit to the data. Examples of structural breaks could include:

· sudden movement in asset markets i.e. 1987

· international crisis i.e. 1997 East Asian financial crisis

· Change in policy, i.e. the Euro being set up in 1999

· Movement from fixed to flexible exchange rates

2) The Chow test formula is:
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 The first formula is the Chow Test formula, the second is the standard F-test formula, the main difference is that instead of RSSu in the standard formula, there is now (RSS1+RSS2), this latter expression can be viewed as a form of unrestricted regression, in which we run two separate regressions on two sub-samples instead of the one restricted regression using the whole data sample. In addition due to the two regressions we use 2k degrees of freedom in the denominator and the numerator has k instead of m.
3) In this question we need to estimate the Chow test statistic using the following formula:


[image: image31.wmf]%)

5

(

07

.

3

)

116

,

2

(

5

.

4

00776

.

0

035

.

0

2

*

2

120

/

)

32

.

0

58

.

0

(

2

/

)

32

.

0

58

.

0

(

97

.

0

2

/

/

)

(

:

2

1

2

1

=

=

=

-

+

+

-

-

-

+

+

-

-

F

k

n

RSS

RSS

k

RSS

RSS

RSS

F

Chow

c


 As 4.5>3.07 (critical value) we reject the null hypothesis of structural stability, therefore we have a structural break in our data and need to regress two models.

4)Multicollinearity is when there is correlation between two explanatory variables.
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 Multicollinearity occurs to an extent in all regressions, as there is always some relationship between the explanatory variables. However it is difficult to determine when the problem is serious enough to require remedying the problem. As the estimator is still BLUE, when multicollinearity is present, some argue it can be ignored, however others argue that if the correlation between the variables suffering multicollinearity, has a correlation coefficient greater than 0.5 it should be remedied. 
5)Possible remedies for multicollinearity could include:

· removing one of the affected explanatory variables, however this may not be possible if it is an important variable for the model being estimated.

· Using an alternative technique to OLS to estimate the model. (We will come across this in semester 2)
· Changing the functional form of the regression, i.e. taking logarithms of the variables or using first-differenced variables instead of levels (we will cover this in a few weeks time).

Exercise 7

1) The non-normality can be solved using dummy variables, although this approach is controversial as it involves using an impulse dummy to in effect remove the influence of an observation on the regression. An impulse dummy variable is a variable which takes the value of 0 except in the one observation for the outlier. E.g. if the outlier is 1987 m11, we would have 0s before and after 1987m11, but a 1 for the 1987m11 observation.

2) The usual qualitative dummy variables apply to finance as much as economics, for instance if we were testing a model of granting bank loans to customers, we would want to include dummy variables to measure the effects of:

· Education

· Male/female

· Age (working/retired)

· Religion/ racial characteristics

· Geographical area (north/south)

· Health (smoker/non-smoker)

· Home-owner etc
 There are numerous potential effects you could include, depending on the dependent variable, if you were testing country effects, you could introduce dummy variables for democracy etc.

3) A time or seasonal dummy variable picks up any seasonal effects, for instance asset prices often have specific effects such as the ‘January effect’. You need to use as many dummy variables as there are seasonal divisions minus 1, so for monthly data it would be 12 -1 = 11 dummy variables, for weekly data it would be 52-1 or 51 dummy variables (in reality we tend not to test for a weekly effect).
 Dummy variables take the following form, given a model with quarterly data and using Q1 as the base time period from which the others are measured:
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 In the above example, in Q2 the stock price (s) is equal to 5.10 units above that in Q1 plus the effect from the explanatory variable (y).

4) i) The dummy variables are an intercept and slope dummy variable.

ii) They have been included to account for changes in the regression line after a specific date, where the change is to the intercept and the slope of the coefficient.

iii) When the dummy variable takes the value of 0, the model is:
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When the dummy variable takes the value of 1:
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Therefore we have different values for the regression line before and after the change to the model.

5) The dummy variable approach to testing for a structural break involves running two regressions. The first is the basic model without the dummy variables, then the second model is the unrestricted version of the model including both the intercept and slope dummy variables. It is then a matter of conducting the usual F-test testing for the difference between the two models:
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   In the above case there are 2 restrictions (m). The RSSu is the RSS from the model including the dummy variables. The null hypothesis is that the restricted version is best and that therefore the dummy variables are jointly equal to 0. In this case there is no structural break.

 It has a number of advantages over the more common Chow test for a structural break.

· It involves 2 regressions, the Chow test has 3

· We can tell if the structural break involves the intercept or slope or both.

· It suggests a way of overcoming the break, by the use of dummy variables.

· We estimate the models using all the data, unlike the Chow test which involves sub-samples, which can cause problems with limited data.
Exercise 8

1) We would use the discrete variable approach, with a dependent variable consisting of a dummy variable taking the value of 0 or 1 when the dependent variable comprises a choice between 2 outcomes. These might include:

· To offer a bank loan or not

· Someone owns a house or not

· A country has a fixed exchange rate of flexible exchange rate

· A firm is quoted on the stock market or is privately owned.

There are numerous similar examples in the literature.

2)  i) A 1% rise in democracy gives a 0.5% fall in the probability of defaulting on the bank loan. A 1% rise in the degree of fixing the exchange rate causes a 0.9% rise in the probability of defaulting and a 1% rise in income produces a 0.7% rise in the probability of defaulting. 
ii) All 3 variables are significant, producing t-statistics of: 5, 3 and 3.5, where the critical value is 1.98 (5%). 
iii) The R2 is low because of the way the LPM is set up:
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Clearly the regression line does not fit the scatterplot well, as the dependent variable is either 0 or 1, but the fitted values lye between 0 and 1 (or even below and above these values).

iv) For the country with income of 0.7 billion ($), which is a democracy and has a flexible exchange rate, the probability of default is: 0.7 -0.5*1 +0.9*0 +0.7*0.9 =  0.83 (83% chance of a default)
3) In the Logit model the probability of the dependent variable taking the value of 1, for a given value of the explanatory variable can be expressed as:
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 The model is then expressed as the odds ratio, which is simply the probability of an event occurring relative to the probability that it will not occur. Then by taking the natural log of the odds ratio we produce the Logit (Li), as follows:
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 The above relationship shows that L is linear in x, the probabilities (p) are not linear. In general the Logit model is estimated using the Maximum Likelihood approach. This is an improvement on the LPM as this was a linear model. This implies that if we have the decision to award a bank loan or not as the dependent variable and income as the explanatory variable, the decision to award a bank loan will be the same between $20,000 and $30,000 as it is between $80,000 and $90,000. Clearly this is not the case, which is why the non-linear Logit model is better.

4) The coefficient of 0.06 suggests a 1 unit rise in x gives a 0.06 of a unit rise in the estimated Logit or log of the odds ratio. Antilogging 0.9 gives 1.06. That is it is 1.06 times as likely for a success to occur as a failure. We could also include a specific value for x and use it to determine the probability of a success. If x is 20units, we get a value for the Logit of 0.9+0.06*20= 2.1.
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If we use 0.5 as the benchmark for a success or failure, such that anything above 0.5 is a 1 or a success, 0.816 is above 1 so at x = 20 units we would expect a success.

5) The difference between the Logit and Probit models mostly refers to the cumulative distribution function (CDF) that is assumed to hold. For the Logit model we assume the Logistic CDF and for the Probit we assume the normal CDF. However apart from this the 2 are almost identical, although the interpretation of the results differs slightly. As Amemiya suggests the Logit estimates need to be multiplied by 0.625 to make them equivalent to the Probit estimates. There is also a difference in the way the two are modelled, for instance with the Probit model we assume our dependent variable is a ‘latent’ variable, where our actual variable proxies this ‘latent’ outcome. In this case we tend to interpret the Probit model as consisting of desired or planned outcomes.
Exercise 9

1) One of the additional assumptions, in addition to the Gauss-Markov assumption, is that the model has the correct functional form. This means that there are the correct variables in the model in their most appropriate form, i.e. in logs etc. If the model does not have the correct functional form, for instance it omits an important variable, then the estimator is not BLUE, making interpretation of the results difficult. Also including irrelevant variables can cause difficulties, although not as problematic as the omitted variable bias, it can cause a loss of efficiency in the regression.
2) Lagged variables are important in financial econometrics, as they are used to model the short-run dynamics of the model. Lags can be used to model a number of effects, the main effect is the inertia or slow adjustment of the model. For instance for a given change in stock prices, dividends will not change immediately to reflect the rise in stock prices. In stead they change gradually over time until they reflect the new equilibrium in the stock market. In addition they can be used to represent any over-reaction or over-shooting in financial markets, again the asset price does not immediately move to a new equilibrium, but overshoots and then gradually moves towards the new equilibrium. As forecasting is so important in econometrics, lags are important for dynamic forecasts, so lagged models are the most common ones for forecasting.
3) In the long-run steady state, we can omit all differenced variables and the error term, the lagged variables are all termed long-run variables so the time subscript is removed. This gives:
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4)The Koyck transformation is based on changing the Koyck distribution into a model which is easier to estimate and interpret. Given the following model:
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 The Koyck transformation involves lagging all the above values and multiplying through by δ.
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 Subtracting the second equation from the first produces:
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The final equation is the Koyck transformed model, however it still has a problem because the lagged y variable is correlated with the lagged u error term, which means we fail the 4th Gauss-Markov assumption that cov(x,u)=0.

 5)Given these results:
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The coefficient on the lagged y variable is equal to δ  in the Koyck transformation, so δ  = 0.3. In addition the β = 0.5. The constant is equal to α(1-δ)= 0.7, so α =0.7/0.7=1.
 In the long-run, the long-run relationship between x and y is given by:
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 In addition all the variables are significant (the t-statistic is above the critical value of 1.98(5%)), there is no 1st order autocorrelation according to the DW statistic and the explanatory power is good.
Exercise 10

1) The Lintner dividend-adjustment model is an example of a partial adjustment model, because dividends do not adjust immediately to changes in current profits. This is because:

· The firm wants to ensure the profit increase is permanent, if it is temporary, then the firm may have to cut its dividend later which would send a negative signal to the markets.

· The rise in profit may provide an opportunity to increase investment rather than the dividend.
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 This suggests that the firm has a desired level of dividends (D*), it intends to pay with respect to its profit levels (π), where the change in the dividend level is equal to the difference between desired dividends and actual dividends in the previous time period.

2) Given the following model: 
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 By a process of rearrangement we would produce the following estimating equation, where the dependent variable is an actual value rather than a desired value.
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This estimating equation can be modelled as an ARDL model, where we test the restriction that the coefficient on the lagged explanatory variable (pt-1) is equal to 0.
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Where the coefficients have the following values:
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 We can use the above to find values of the speed of adjustment (λ) as well as the original coefficient: α1.

3) 
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 To turn the above ARDL model into an Error Correction Model (ECM), requires the following steps:

· Subtract yt-1 from both sides of the equation.

· Add and subtract α2xt-1 from the right hand side of the above equation.

· Rearrange so that the y and x variables are in difference form and the lagged variables are collected together to form:
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 The final step involves applying the restriction that the coefficients on yt-1 are equal to the negative of the coefficients on xt-1. This gives:
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4)The ECM involves the short-run as it includes differenced variables (Δ) and lagged variables. It can also be used to produce long-run estimates of the parameters. In addition it is often combined with cointegration (covered next term), where cointegration models the long-run and the ECM models the short-run.

5) 
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 Where the long-run equilibrium relationship is: 
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, where k is the average propensity to consume from stock market wealth, which expressed in logs is 
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. In the long-run we assume that the steady state growth rates of consumption and stock prices are 
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 To find the value of k we need to antilog the above expression to give:
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 This suggests the average propensity to consume from stock market wealth is about 3 in the long run.
� EMBED Equation.3  ���





Regression line (linear)
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