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My PhD in one slide

Ideology: Normalisation = Decomposition + Cut Elimination

I look at this paradigm in the context of classical logic.
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Open Deduction

The presentation of open deduction is slightly different to any
before, trying to balance the clarity of, for example [Gun09]
with the generality of [GGP10].
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Proof Systems

The basic proof systems for propositional classical logic are then
introduced: the two most important being SKS (the system with
cut) and KS (the cut-free system).
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The experiments method

To end the first chapter, we show the experiments method for
propositional logic.
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Decomposition and Cycles
The second chapter opens with a presentation of the contraction
rewriting system, that will decompose a proof, if it terminates.

A
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The obstacles to termination are identified as cycles.
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More on Cycles

Some important lemmas to do with breaking down more
complicated cycles into simpler ones are stated and proved.
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Merge Contractions

Definition
The ∨-merge set M∨(A,B) of two formulae A and B is the
minimum set that satisfies the following conditions:

M1 For any A and B, A ∨ B ∈ M∨(A,B).

M2 For any atom or unit a, a ∈ M∨(a, a).

M3 For any A, A ∈ M∨(A, f),A ∈ M∨(f,A),A ∈ M∧(A, t)
and A ∈ M∧(t,A).

M4 For α∈ {∨,∧}, if C1 ∈ M∨(A1,B1) and
C2 ∈ M∨(A2,B2), then
C1 α C2 ∈ M∨(A1 α A2,B1 α B2).

Definition
A ∨ B

mc↓
C

is a merge contraction if C ∈ M∨(A,B).



Context Contractions

Another way to think about merges (pointed out by Willem) is
as context contractions:

Definition
If K{ } is a context with n-holes, and A1, . . . ,An,B1, . . . ,Bn are
formulas, then

K{A1} . . . {An} ∨ K{B1} . . . {Bn}
cc↓

K{A1 ∨ B1} . . . {An ∨ Bn}

is an instance of context contraction.

Theorem
A ∨ B

mc↓
C

is a valid instance of a merge contraction iff
A ∨ B

cc↓
C

is

a valid instance of a context contraction (ish).
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Translations between SKS and SKSm

We can define translations between SKS and SKSm:

(a ∧ b) ∨ (a ∧ c)
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a ∧ (b ∨ c)

(a ∧ b) ∨ (a ∧ c)
m
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a
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a
∧ (b ∨ c)
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Cycle Removal with Merge Contractions

With the material about merge contractions in place, we are
able to prove cycle removal. The strategy is based around
permuting critical medials as merge contractions down through
the proof.

(A{a} ∧ B) ∨ (C ∧ D{ā})
m

(A{a} ∨ C) ∧ (B ∨ D{ā})

The proof of termination is lengthy, but a lot of it is just checking
various fairly straightforward cases. This method was developed
over the last two years in collaboration with Alessio and Andrea.



Open Deduction and First-Order Logic

Chapter 3 introduces the open deduction proof theory of
first-order logic. A lot of it is material formerly introduced by
Kai Brünnler, in the Calculus of Structures formalism, but
organised in a new way.



Quantifier Cuts

An old result of Kai shows that we can separate ‘quantifier cuts’
from atomic cuts:

φ SKSq

A −→

KSq∪{ai↑}
A′
{qi↑}

A

∀xA ∧ ∃xĀ
qi↑

f



Herbrand Proofs
Chapter 4 develops the theory that links deep inference proof
theory to two strains of proof theory deriving from Herbrand’s
Theorem.

First, the more classical approach is developed, defining a class
of proofs, Herbrand Proofs, in a proof system called KSh1 and
proving a form of Herbrand’s Theorem by showing they are
complete for FOL.

φ KSq

A −→

KS

∀~x[~t⇒ ~y]B
{n↓}

Q{B}
RP↓

A′
{qc↓}

A



Expansion Proofs

The second approach is based on expansion proofs.

∃x∀y[P̄x ∨ Py]
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KSh2

A proof system, KSh2 is defined, such that a class of proofs
within it, in Herbrand Normal Form (HNF), intended to
correspond to expansion proofs.

Up(φ) KS

∀~xHφ(A)
{∃w↓}

∀~xH+
φ (A)

Lo(φ) {r1↓,r2↓,h↓}
A

It is shown that there are translations between Herbrand Proofs
and proofs in HNF.
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It is shown that there are translations between Herbrand Proofs
and proofs in HNF.



Translations between Expansion Proofs and HNF proofs

Next, it is shown that there are translations back and forward
between expansion proofs and proofs in HNF. This material
contains but also expands upon the material in [Ral18]. The
two improvements are:

1. The translation from expansion proofs to proofs in HNF in
[Ral18] requires an arbitrary total order on the nodes of
the expansion proofs. In the thesis, this is improved to just
requiring an order on the universal nodes.

2. The translation is extended to expansion proofs with cut
and, respectively, HNF proofs with cut. This is essential if
we are to use these translations as part of a cut elimination
theorem.



Cut Elimination for SKSq

Finally, we state and prove a cut elimination theorem for SKSq:

φ SKSq

A
1−−→

φ1 KSq∪{ai↑}
A ∧ B
{qi↑}

A

2−−→

φ2 KSh1∪{ai↑}
A ∧ B
{qi↑}

A

3−−→

φ3 KSh1

A ∧ B
{qi↑}

A

4−−→

φ4 KSh2

A ∧ B
{qi↑}

A

5−−→
ECφ4 EPC

A
6−−→

Eφ5 EP

A

7−−→ φ5 KSh2

A
8−−→ φ6 KSh1

A
9−−→ ψ KSq

A
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