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Aims

1. (Modest) Cut elimination for predicate logic in a deep
inference system:
1.1 Experiments Method;
1.2 Herbrand’s Theorem.

2. (Speculative) Finding a more natural syntax for predicate
logic:
2.1 “Skeletal” approach to open deduction;
2.2 æ-calculus.



Overview

−
Φ

∥∥∥∥∥∥SKSæ

A
Her.−−→

−
H(Φ,p)

∥∥∥∥∥∥SKS

H(A, p)

Exp.−−→
−

H(Φ,p)′
∥∥∥∥∥∥KS

H(A, p)

æ↓,ac↓−−−−→
−

Φ′
∥∥∥∥∥∥KSæ

A

H(Φ, p) ≈
∨

τi∈D(πα(Φ),p)

πα(Φ)[τ1/x1, ..., τn/xn]



Propositional Logic

The signature of classical propositional logic, Σ0, that we will
use consists of:
I Two distinct units: t (true) and f (false), as well as an

inexhaustible supply of atoms, a, b, c..., and their duals,
ā, b̄, c̄...;

I One unary connective Ā (negation);
I Two binary connectives ∧ (conjunction) and ∨ (disjunction).

We consider propositional prederivations equivalent modulo
double negation elimination, associativity and commutativity of
each of the binary connectives, and the propositional De
Morgan laws.



SKS
I The structural rules:

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

I The logical rules:

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial

I The unit rules:

A ∧ t = A A ∨ f = A



Coweakening elimination

Theorem
Atomic coweakening is admissible from SKS\{aw↑}

f
aw↓

a
aw↑

t

−→
f

s
t

a ∨ a
ac↓

a
aw↑

t

−→
a

t
∨

a

t
=

t

a
ac↑

a

t
∧ a

−→
a

=
t ∧ a

t
ai↓

a

t
∨ ā

−→
t

=

t ∨
f

aw↓
ā

Mw(Φ) = (mc,mw), mc = #ac↑, mw = #aw↑



Theorem
Atomic cocontraction is admissible from SKS\{ac↑}

f
aw↓

a
ac↑

a ∧ a

−→
f

f

a
∧

f

a

a ∨ a
ac↓

a
ac↑

a ∧ a

−→

a

a ∧ a
∨

a

a ∧ a
m

a ∨ a

a
∧

a ∨ a

a

t
ai↓

a
ac↑

a ∧ a
∨ ā

−→

t

a

a ∧
t

a ∨ ā
s
(a ∧ a) ∨ ā

∨ ā

(a ∧ a) ∨
ā ∨ ā

ā

Mc(Φ) = (m0,m1, ...),mi = #ac↑ of height i.



Cut Elimination
Theorem
Atomic cut is admissible from SKS\{ai↑}

Proof.
(The Experiments method)

1. For each cut, we create two derivations from the proof:
a

Φi+
∥∥∥
A

and
ā

Φi−
∥∥∥
A

.

2. Intuition: each cut
a ∧ ā

ai↑
f

, either a or ā is ‘true’ (in the

Tarskian sense), and each version corresponds to one of
these possibilities.

3. We then use an identity (at the top) and a contraction (at
the bottom) to disjunct the two proofs, creating a proof
with one fewer cut instance.



More detail from old presentation



Standard Predicate Logic

Terms of standard predicate logic (SPL), TS:
I Variables, written: xi, yi, zi;
I Functions, written fn

i , of arity n, with n terms as arguments,
e.g. fn

i (τ1, τ2, ..., τn). Often the arity indicator is omitted.
Constants are functions of arity 0, written ci.

SPL-Atoms, ASPL: predicate symbols, written pn
i , and their duals

p̄n
i , of arity n, with n terms as arguments, e.g. pn

i (τ1, τ2, ..., τn).
The signature of SPL, ΣSPL consists of:
I Two distinct units: t (true) and f (false), as well ASPL;
I One distinct unary connective Ā (negation), as well ∀x and
∃x for all variables;

I Two binary connectives ∧ (conjunction) and ∨ (disjunction).



æ-Predicate Logic

The terms of æ-predicate logic, (æPL) Tæ are either:
I Variables, xi, yi, zi;
I Functions, fn

i , including constants, ci.
I Alpha terms, written αx(y1, ...yn), with n ≥ 0.
I Epsilon terms, written εx(y1, ...yn), with n ≥ 0.

Atoms of æPL, Aæ defined as in AS, except predicates range
over Tæ. The prederivations of æPL, F ′æ, are just propositional
prederivations with Aæ as atoms.



From SPL to æPL

Only the semantically important information about
quantification is preserved:
I A[x αx] = A[αx/x][εy(~z, x)/εy(~z)] for all ε-terms εy(~z).

I A[x εx] = A[εx/x][αy(~z, x)/αy(~z)] for all α-terms αy(~z).

θ : FS → F ′æ:
I θ(t) = t, θ(f) = f;
I θ(∀xA) = θ(A)[x αx];
I θ(∃xA) = θ(A)[x εx];
I θ(A ∧ B) = θ(A) ∧ θ(B)

I θ(A ∨ B) = θ(A) ∨ θ(B)

θ∗(A) := θ(A∗) (where ∗ is scope-reduction) and the set of
formulas of αPL, Fæ, is the image of θ∗.



Examples

∀x∀y∀z(Pxy ∧ Qxz ∧ Ryz) −→ Pαxαy ∧ Qαxαz ∧ Rαyαz

∀x∃y[Pxy ∨ Qy] ∧ ∃zRz −→ [Pαxεy(x) ∨ Qεy(x)] ∧ Rεz

∀x∃y[Px ∨ Qy] ∧ ∃zRz −→ [Pαxεy ∨ Qεy] ∧ Rεz

∀x∃y∀z∃w[(Pw ∧ Qwz) ∨ (Rzy ∧ Ryx)]

↓
[(Pεw(z, x) ∧ Qεw(z, x)αz(y)) ∨ (Rαz(y)εy(x) ∧ Rεy(x)αx)]



SKSæ

SKS +

A[a/x]
æ↓

A[x εx(~y)]

A[x αx(~y)]
æ↑

A[a/x]

generalization instantiation



æ-squeezing (– cut)

p[x αx]
ac↑

p[x αx]
æ↑

p[a/x]
∧

p[x αx]
æ↑

p[a/x]

→
p[x αx]

æ↑
p[a/x]

ac↑
p[a/x] ∧ p[a/x]

p[x αx] ∨ p[x αx]
ac↓

p[x αx]
æ↑

p[a/x]

→
p[x αx] ∨ p[x αx]

æ↑
p[a/x] ∨ p[a/x]

ac↓
p[a/x]

f
aw↓

p[x αx]
æ↑

p[a/x]

→
f

aw↓
p[a/x]

t
ai↑

p[x αx]
æ↑

p[a/x]
∨ p̄[x εx]

→
t

ai↑

p[a/x] ∨
p̄[a/x]

æ↓
p̄[x εx]



æ-squeezing example (1)

Pa
æ↓

Pεx

Pεx
ac↑

Pεx ∧ Pεx
∧

t
ai↓

P̄αz ∨ Pεy

Pεx ∧
(
Pεx ∧

[
P̄αz ∨ Pεy

])
s

Pεx
aw↑

t
∧

Pεx ∧ P̄αz
ai↑

f
∨ Pεy

Pεy

Pεy



æ-squeezing example (2)

Pa

Pa
ac↑

Pa ∧ Pa
æ↓

Pεx ∧ Pεx

∧
t

ai↓
P̄αz ∨ Pεy

Pεx ∧
(
Pεx ∧

[
P̄αz ∨ Pεy

])
s

Pεx
aw↑

t
∧

Pεx ∧ P̄αz
ai↑

f
∨ Pεy

Pεy

Pεy



æ-squeezing example (3)

Pa

Pa
ac↑

Pa ∧ Pa
∧

t
ai↓

P̄αz ∨ Pεy

Pa ∧
(
Pa ∧

[
P̄αz ∨ Pεy

])
s
Pa ∧

[(
Pa ∧ P̄αz

)
∨ Pεy

]
æ↓

Pεx
aw↑

t
∧

Pεx ∧ Pαx
ai↑

f
∨ Pεy

Pεy

Pεy



æ-squeezing example (4)

Pa

Pa
ac↑

Pa ∧ Pa
∧

t
ai↓

P̄αz ∨ Pεy

Pa ∧
(
Pa ∧

[
P̄αz ∨ Pεy

])
s

Pa
æ↓

Pεx
aw↑

t

∧

Pa ∧
P̄αz

æ↑
P̄a

ai↑
f

∨ Pεy

Pεy

Pεy



æ-squeezing example (5)

Pa

Pa
ac↑

Pa ∧ Pa
∧

t
ai↓

P̄αz
æ↑

P̄a
∨ Pεy

Pa ∧
(
Pa ∧

[
P̄a ∨ Pεy

])
s

Pa
aw↑

t
∧

Pa ∧ P̄a
ai↑

f
∨ Pεy

Pεy

Pεy



æ-squeezing example (6)

Pa

Pa
ac↑

Pa ∧ Pa
∧

t
ai↓

P̄a ∨
Pa

æ↓
Pεy

Pa ∧
(
Pa ∧

[
P̄a ∨ Pεy

])
s

Pa
aw↑

t
∧

Pa ∧ P̄a
ai↑

f
∨ Pεy

Pεy

Pεy



æ-squeezing example (7)

Pa

Pa
ac↑

Pa ∧ Pa
∧

t
ai↓

P̄a ∨ Pa

Pa ∧
(
Pa ∧

[
P̄a ∨ Pa

])
s

Pa
aw↑

t
∧

Pa ∧ P̄a
ai↑

f
∨ Pa

Pa
æ↓

Pεy



First æ-theorem
Theorem
If Φ is a æ-derivation from A to B, both containing no α or ε
symbols, then we can transform Φ into Φ′, an SKS derivation.

Proof.

1. Perform æ-squeezing.

2. Deal with the following case by moving contraction up:

p[x αx]
ac↑

p[x αx]
æ↑

p[a/x]
∧ p[x αx]

3. æ ↑ rules and æ ↓ pass through each other when they meet.

4. The æ ↑ and æ ↓ rules must disappear.

5. Streamline the derivation, such that no æ-terms are created
and then destroyed.



Herbrand Expansion

Definition
The Herbrand Base of a prederivation Φ is the set of constants
that appear in Φ (with c0). The set of Φ-terms, TΦ ⊂ Tæ, is all
æ-terms that contain only constants in the Herbrand Base of Φ
and function symbols that occur in Φ, including α and ε
symbols.

Definition
Herbrand domain of degree p: D(A, p) = {τ ∈ T (A) | h(τ) ≤ p}.

Definition
Herbrand expansion of degree p:

H(A, p) =
∨

τi∈D(πα(Φ),p)

πα(A)[τ1/x1, ..., τn/xn]

This concept is to be extended to proofs: H(Φ, p).



Statement of the Theorems

Theorem
(Herbrand’s Theorem on formulas of æPL) There is some p such
that H(A, p) is a propositional tautology if and only if A is
SKSæ-provable.

Theorem
(Herbrand’s Theoreom on proofs of SKSæ) If Φ is an SKSæ-proof
of A, then there is some p (probably the same p as for A) such that
H(Φ, p) is an SKS proof of H(A, p).



The End of the Road (hopefully)

Theorem
Every proof in SKSæ is reducible to a (unique? modulo what?)
proof in KSæ.

−
Φ

∥∥∥∥∥∥SKSæ

A
Her.−−→

−
H(Φ,p)

∥∥∥∥∥∥SKS

H(A, p)

Exp.−−→
−

H(Φ,p)′
∥∥∥∥∥∥KS

H(A, p)

æ↓,ac↓−−−−→
−

Φ′
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