
A Natural Cut-elimination Procedure for
Classical First-order Logic

Efficient and Natural Proof Systems Workshop

Benjamin Ralph

University of Bath

December 15, 2015



Motivation
We want to better understand cut elimination.

Technique Idea
Propositional

Splitting −→ ??
(pace Alessio & Andrea)

Experiments −→ Truth Tables

First-Order

?? ←− Herbrand’s Theorem



Motivation
We want to better understand cut elimination.

Technique Idea
Propositional

Splitting −→ ??

(pace Alessio & Andrea)

Experiments −→ Truth Tables

First-Order

?? ←− Herbrand’s Theorem



Motivation
We want to better understand cut elimination.

Technique Idea
Propositional

Splitting −→ ??
(pace Alessio & Andrea)

Experiments −→ Truth Tables

First-Order

?? ←− Herbrand’s Theorem



Motivation
We want to better understand cut elimination.

Technique Idea
Propositional

Splitting −→ ??
(pace Alessio & Andrea)

Experiments −→ Truth Tables

First-Order

?? ←− Herbrand’s Theorem



Motivation
We want to better understand cut elimination.

Technique Idea
Propositional

Splitting −→ ??
(pace Alessio & Andrea)

Experiments −→ Truth Tables

First-Order

?? ←− Herbrand’s Theorem



Open Deduction

Open deduction is a deep inference proof system that gives us
more ways of composing derivations.

Given derivations
A

Φ

B
and

C
Ψ

D
we can compose them with:

1. An inference rule σ : B/C:

A
Φ

B
σ

C
Ψ

D

2. A binary (or n-ary) logical relation ?:
A

Φ

B
?

C
Ψ

D



Open Deduction

Open deduction is a deep inference proof system that gives us
more ways of composing derivations.

Given derivations
A

Φ

B
and

C
Ψ

D
we can compose them with:

1. An inference rule σ : B/C:

A
Φ

B
σ

C
Ψ

D

2. A binary (or n-ary) logical relation ?:
A

Φ

B
?

C
Ψ

D



Open Deduction

Open deduction is a deep inference proof system that gives us
more ways of composing derivations.

Given derivations
A

Φ

B
and

C
Ψ

D
we can compose them with:

1. An inference rule σ : B/C:

A
Φ

B
σ

C
Ψ

D

2. A binary (or n-ary) logical relation ?:
A

Φ

B
?

C
Ψ

D



SKS
I The structural rules (all atomic):

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

I The logical rules (all linear):

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial

I The unit rules:

A ∧ t = A A ∨ f = A



SKS
I The structural rules (all atomic):

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

I The logical rules (all linear):

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial

I The unit rules:

A ∧ t = A A ∨ f = A



SKS
I The structural rules (all atomic):

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

I The logical rules (all linear):

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial

I The unit rules:

A ∧ t = A A ∨ f = A



KS
I The structural rules (all atomic):

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

I The logical rules (all linear):

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial

I The unit rules:

A ∧ t = A A ∨ f = A



Cut Elimination in Deep Inference
I Whether cut elimination in deep inference should be

understood as elimination of all the ↑-rules, or just of the
“cut”-rule itself is a matter of ideological contention.

I Due to the following construction, proving admissibility of
the i↑-rule is sufficient for ↑-rule elimination in general.

A
ρ↑

B
−→

A

A ∧
t

i↓
B̄

ρ↓
Ā
∨ B

s
A ∧ Ā

i↑
f
∨ B

B

↑
−→

↓

I In propositional logic admissibility of atomic cut, ai↑,
suffices.



Cut Elimination in Deep Inference
I Whether cut elimination in deep inference should be

understood as elimination of all the ↑-rules, or just of the
“cut”-rule itself is a matter of ideological contention.

I Due to the following construction, proving admissibility of
the i↑-rule is sufficient for ↑-rule elimination in general.

A
ρ↑

B
−→

A

A ∧
t

i↓
B̄

ρ↓
Ā
∨ B

s
A ∧ Ā

i↑
f
∨ B

B

↑
−→

↓

I In propositional logic admissibility of atomic cut, ai↑,
suffices.



Cut Elimination in Deep Inference
I Whether cut elimination in deep inference should be

understood as elimination of all the ↑-rules, or just of the
“cut”-rule itself is a matter of ideological contention.

I Due to the following construction, proving admissibility of
the i↑-rule is sufficient for ↑-rule elimination in general.

A
ρ↑

B
−→

A

A ∧
t

i↓
B̄

ρ↓
Ā
∨ B

s
A ∧ Ā

i↑
f
∨ B

B

↑
−→

↓

I In propositional logic admissibility of atomic cut, ai↑,
suffices.



Cut Elimination in Deep Inference
I Whether cut elimination in deep inference should be

understood as elimination of all the ↑-rules, or just of the
“cut”-rule itself is a matter of ideological contention.

I Due to the following construction, proving admissibility of
the i↑-rule is sufficient for ↑-rule elimination in general.

A
ρ↑

B
−→

A

A ∧
t

i↓
B̄

ρ↓
Ā
∨ B

s
A ∧ Ā

i↑
f
∨ B

B

↑
−→

↓

I In propositional logic admissibility of atomic cut, ai↑,
suffices.



Proof of Cut Elimination

Theorem
If A is true, then there is an KS proof

Ψ

A. A fortiori, if there is a

SKS proof of a formula A, then there is a proof without ai↑ (a
cut-free proof), i.e. ai↑ is admissible for SKS.

Proof.
Numerous:

1. Splitting: First in a predecessor formalism to open
deduction, a technique similar to Gentzen’s. [2]

2. As a quasipolynomial-time procedure using atomic flows
and threshold formulae. [1]

3. The experiments method: a confluent and natural
procedure for ai↑ elimination, also using atomic flows.



Proof of Cut Elimination

Theorem
If A is true, then there is an KS proof

Ψ

A. A fortiori, if there is a

SKS proof of a formula A, then there is a proof without ai↑ (a
cut-free proof), i.e. ai↑ is admissible for SKS.

Proof.
Numerous:

1. Splitting: First in a predecessor formalism to open
deduction, a technique similar to Gentzen’s. [2]

2. As a quasipolynomial-time procedure using atomic flows
and threshold formulae. [1]

3. The experiments method: a confluent and natural
procedure for ai↑ elimination, also using atomic flows.



Proof of Cut Elimination

Theorem
If A is true, then there is an KS proof

Ψ

A. A fortiori, if there is a

SKS proof of a formula A, then there is a proof without ai↑ (a
cut-free proof), i.e. ai↑ is admissible for SKS.

Proof.
Numerous:

1. Splitting: First in a predecessor formalism to open
deduction, a technique similar to Gentzen’s. [2]

2. As a quasipolynomial-time procedure using atomic flows
and threshold formulae. [1]

3. The experiments method: a confluent and natural
procedure for ai↑ elimination, also using atomic flows.



Proof of Cut Elimination

Theorem
If A is true, then there is an KS proof

Ψ

A. A fortiori, if there is a

SKS proof of a formula A, then there is a proof without ai↑ (a
cut-free proof), i.e. ai↑ is admissible for SKS.

Proof.
Numerous:

1. Splitting: First in a predecessor formalism to open
deduction, a technique similar to Gentzen’s. [2]

2. As a quasipolynomial-time procedure using atomic flows
and threshold formulae. [1]

3. The experiments method: a confluent and natural
procedure for ai↑ elimination, also using atomic flows.



Proof of Cut Elimination

Theorem
If A is true, then there is an KS proof

Ψ

A. A fortiori, if there is a

SKS proof of a formula A, then there is a proof without ai↑ (a
cut-free proof), i.e. ai↑ is admissible for SKS.

Proof.
Numerous:

1. Splitting: First in a predecessor formalism to open
deduction, a technique similar to Gentzen’s. [2]

2. As a quasipolynomial-time procedure using atomic flows
and threshold formulae. [1]

3. The experiments method: a confluent and natural
procedure for ai↑ elimination, also using atomic flows.



Atomic Flows

Atomic flows [5] are a geometric invariant of proofs in open
deduction. Only structural information about the proof is
conserved.

t
ai↓

a ∨ ā a ā

a ∨ a
ac↓

a

a a f
aw↓

a a

identity contraction weakening

a ∧ ā
ai↑

f

a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening

Composition of proofs naturally corresponds to composition of
flows.



Atomic Flows

Atomic flows [5] are a geometric invariant of proofs in open
deduction. Only structural information about the proof is
conserved.

t
ai↓

a ∨ ā a ā

a ∨ a
ac↓

a

a a f
aw↓

a a

identity contraction weakening

a ∧ ā
ai↑

f

a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening

Composition of proofs naturally corresponds to composition of
flows.



Atomic Flows

Atomic flows [5] are a geometric invariant of proofs in open
deduction. Only structural information about the proof is
conserved.

t
ai↓

a ∨ ā a ā

a ∨ a
ac↓

a

a a f
aw↓

a a

identity contraction weakening

a ∧ ā
ai↑

f

a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening

Composition of proofs naturally corresponds to composition of
flows.



Atomic Flow Example

t

ā ∨ a
∨

f

a

ā ∨
a ∨ a

a

∧

t

ā

ā ∧
ā

t

∨ a

[ā ∨ a] ∧ [a ∨ ā]
s2

ā ∨
a ∧ ā

ai↑
f

∨ a

ā a a
a a

a ā ā

ā a



Experiments Method - One Cut

Theorem
Atomic cut is admissible from SKS

Proof.
(The Experiments method) Given a proof Φ of A:

1. Create
a

Φi+

A
and

ā
Φi−

A
from Φ. These are essentially

projections, informed by the atomic flow.

2. Combine Φi+ and Φi− :

t

a
Φi+

A
∨

ā
Φi−

A

A



Experiments Method - One Cut

Theorem
Atomic cut is admissible from SKS

Proof.
(The Experiments method) Given a proof Φ of A:

1. Create
a

Φi+

A
and

ā
Φi−

A
from Φ. These are essentially

projections, informed by the atomic flow.

2. Combine Φi+ and Φi− :

t

a
Φi+

A
∨

ā
Φi−

A

A



Experiments Method - One Cut

Theorem
Atomic cut is admissible from SKS

Proof.
(The Experiments method) Given a proof Φ of A:

1. Create
a

Φi+

A
and

ā
Φi−

A
from Φ. These are essentially

projections, informed by the atomic flow.

2. Combine Φi+ and Φi− :

t

a
Φi+

A
∨

ā
Φi−

A

A



Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

Φ

A

→
a1 ∧ . . . ∧ an

Φ1

A
, . . . ,

ā1 ∧ . . . ∧ ān
Φ2n

A

a1 ∧ . . . ∧ an
Φ1

A
∨ . . . ∨

ā1 ∧ . . . ∧ ān
Φ2n

A

A

Thus we have, to a certain extent, a straight-forward, high-level
understanding of why this procedure works.



Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

Φ

A →
a1 ∧ . . . ∧ an

Φ1

A
, . . . ,

ā1 ∧ . . . ∧ ān
Φ2n

A

a1 ∧ . . . ∧ an
Φ1

A
∨ . . . ∨

ā1 ∧ . . . ∧ ān
Φ2n

A

A

Thus we have, to a certain extent, a straight-forward, high-level
understanding of why this procedure works.



Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

Φ

A →
a1 ∧ . . . ∧ an

Φ1

A
, . . . ,

ā1 ∧ . . . ∧ ān
Φ2n

A

a1 ∧ . . . ∧ an
Φ1

A
∨ . . . ∨

ā1 ∧ . . . ∧ ān
Φ2n

A

A

Thus we have, to a certain extent, a straight-forward, high-level
understanding of why this procedure works.



Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

Φ

A →
a1 ∧ . . . ∧ an

Φ1

A
, . . . ,

ā1 ∧ . . . ∧ ān
Φ2n

A

a1 ∧ . . . ∧ an
Φ1

A
∨ . . . ∨

ā1 ∧ . . . ∧ ān
Φ2n

A

A

Thus we have, to a certain extent, a straight-forward, high-level
understanding of why this procedure works.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?

I There is a direct proof of cut-elimination for a deep
inference system using splitting [3]

I Splitting for propositional logic is mysterious. The situation
does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]

I Splitting for propositional logic is mysterious. The situation
does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]
I Splitting for propositional logic is mysterious. The situation

does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]
I Splitting for propositional logic is mysterious. The situation

does not improve with the move to predicate logic.

Why is this?

I We have new compression mechanisms:
Pa

n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]
I Splitting for propositional logic is mysterious. The situation

does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]
I Splitting for propositional logic is mysterious. The situation

does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]
I Splitting for propositional logic is mysterious. The situation

does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
I There is a direct proof of cut-elimination for a deep

inference system using splitting [3]
I Splitting for propositional logic is mysterious. The situation

does not improve with the move to predicate logic.

Why is this?
I We have new compression mechanisms:

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f

I We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.



SKSq
For SKSq, we add to SKS:

I An introduction and elimination rule for quantifiers:

A[τ/x]
n↓
∃xA

∀xA
n↑

A[τ/x]

I Rules for identity and cut reduction:

∀x[A ∨ B]
u↓
∀xA ∨ ∃xB

∀xA ∧ ∃xB
u↑
∃x(A ∧ B)

I Rules for contraction and cocontraction reduction.

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∀xA ∨ ∀xB
m2↓
∀x[A ∨ B]

∀x(A ∧ B)
m1↑

(∀xA ∧ ∀xB)

∃x(A ∧ B)
m2↑
∃xA ∧ ∃xB

I Equality rules for vacuous quantification and change of
variables.



SKSq
For SKSq, we add to SKS:

I An introduction and elimination rule for quantifiers:

A[τ/x]
n↓
∃xA

∀xA
n↑

A[τ/x]

I Rules for identity and cut reduction:

∀x[A ∨ B]
u↓
∀xA ∨ ∃xB

∀xA ∧ ∃xB
u↑
∃x(A ∧ B)

I Rules for contraction and cocontraction reduction.

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∀xA ∨ ∀xB
m2↓
∀x[A ∨ B]

∀x(A ∧ B)
m1↑

(∀xA ∧ ∀xB)

∃x(A ∧ B)
m2↑
∃xA ∧ ∃xB

I Equality rules for vacuous quantification and change of
variables.



SKSq
For SKSq, we add to SKS:

I An introduction and elimination rule for quantifiers:

A[τ/x]
n↓
∃xA

∀xA
n↑

A[τ/x]

I Rules for identity and cut reduction:

∀x[A ∨ B]
u↓
∀xA ∨ ∃xB

∀xA ∧ ∃xB
u↑
∃x(A ∧ B)

I Rules for contraction and cocontraction reduction.

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∀xA ∨ ∀xB
m2↓
∀x[A ∨ B]

∀x(A ∧ B)
m1↑

(∀xA ∧ ∀xB)

∃x(A ∧ B)
m2↑
∃xA ∧ ∃xB

I Equality rules for vacuous quantification and change of
variables.



SKSq
For SKSq, we add to SKS:

I An introduction and elimination rule for quantifiers:

A[τ/x]
n↓
∃xA

∀xA
n↑

A[τ/x]

I Rules for identity and cut reduction:

∀x[A ∨ B]
u↓
∀xA ∨ ∃xB

∀xA ∧ ∃xB
u↑
∃x(A ∧ B)

I Rules for contraction and cocontraction reduction.

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∀xA ∨ ∀xB
m2↓
∀x[A ∨ B]

∀x(A ∧ B)
m1↑

(∀xA ∧ ∀xB)

∃x(A ∧ B)
m2↑
∃xA ∧ ∃xB

I Equality rules for vacuous quantification and change of
variables.



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



Herbrand’s Theorem

We use the term ‘Herbrand’s Theorem’ as a synecdoche for a
web of ideas that reduce first-order provability to propositional
provability:

FO: ∃a, b ∈ R(Q(a) ∧Q(b) ∧Q(ab))

↙ ↘

Prop: Q(
√

2) ∧Q(
√

2) ∧Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧Q(

√
2) ∧Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)

These ideas have a natural affinity with deep inference: deep
contraction of existential formulae is an important (and often
overlooked) tool for proving Herbrand’s Theorem. [4, 7]



Herbrand’s Theorem

We use the term ‘Herbrand’s Theorem’ as a synecdoche for a
web of ideas that reduce first-order provability to propositional
provability:

FO: ∃a, b ∈ R(Q(a) ∧Q(b) ∧Q(ab))

↙ ↘

Prop: Q(
√

2) ∧Q(
√

2) ∧Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧Q(

√
2) ∧Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)

These ideas have a natural affinity with deep inference: deep
contraction of existential formulae is an important (and often
overlooked) tool for proving Herbrand’s Theorem. [4, 7]



Herbrand’s Theorem

We use the term ‘Herbrand’s Theorem’ as a synecdoche for a
web of ideas that reduce first-order provability to propositional
provability:

FO: ∃a, b ∈ R(Q(a) ∧Q(b) ∧Q(ab))

↙ ↘

Prop: Q(
√

2) ∧Q(
√

2) ∧Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧Q(

√
2) ∧Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)

These ideas have a natural affinity with deep inference: deep
contraction of existential formulae is an important (and often
overlooked) tool for proving Herbrand’s Theorem. [4, 7]



Herbrand’s Theorem

We use the term ‘Herbrand’s Theorem’ as a synecdoche for a
web of ideas that reduce first-order provability to propositional
provability:

FO: ∃a, b ∈ R(Q(a) ∧Q(b) ∧Q(ab))

↙ ↘

Prop: Q(
√

2) ∧Q(
√

2) ∧Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧Q(

√
2) ∧Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)

These ideas have a natural affinity with deep inference: deep
contraction of existential formulae is an important (and often
overlooked) tool for proving Herbrand’s Theorem. [4, 7]



Herbrand’s Theorem

We use the term ‘Herbrand’s Theorem’ as a synecdoche for a
web of ideas that reduce first-order provability to propositional
provability:

FO: ∃a, b ∈ R(Q(a) ∧Q(b) ∧Q(ab))

↙ ↘

Prop: Q(
√

2) ∧Q(
√

2) ∧Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧Q(

√
2) ∧Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)

These ideas have a natural affinity with deep inference: deep
contraction of existential formulae is an important (and often
overlooked) tool for proving Herbrand’s Theorem. [4, 7]



Herbrand’s Theorem in Deep Inference

In deep inference, we can manifest these ideas in the form of a
decomposition theorem, Herbrand Stratification:

KSq

A −→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

I Previously this stratification has been seen as a way to
prove Herbrand’s Theorem as a corollary to cut elimination.

I We now use it as a tool to help us understand cut
elimination for first-order logic.



Herbrand’s Theorem in Deep Inference

In deep inference, we can manifest these ideas in the form of a
decomposition theorem, Herbrand Stratification:

KSq

A −→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

I Previously this stratification has been seen as a way to
prove Herbrand’s Theorem as a corollary to cut elimination.

I We now use it as a tool to help us understand cut
elimination for first-order logic.



Herbrand’s Theorem in Deep Inference

In deep inference, we can manifest these ideas in the form of a
decomposition theorem, Herbrand Stratification:

KSq

A −→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

I Previously this stratification has been seen as a way to
prove Herbrand’s Theorem as a corollary to cut elimination.

I We now use it as a tool to help us understand cut
elimination for first-order logic.



Herbrand’s Theorem in Deep Inference

In deep inference, we can manifest these ideas in the form of a
decomposition theorem, Herbrand Stratification:

KSq

A −→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

I Previously this stratification has been seen as a way to
prove Herbrand’s Theorem as a corollary to cut elimination.

I We now use it as a tool to help us understand cut
elimination for first-order logic.



Links to other work

I The study of the relationship between cut elimination and
Herbrand’s Theorem is not novel.

I Miller [9] extended Herbrand’s proof system to
higher-order logics with expansion tree proofs.

I Heijltjes [6] and McKinley [8] both use graphical methods
to expand Miller’s approach to include an eliminable cut.

I The compositional properties of open deduction mean that
little innovation is needed: we can use these other
techniques to design attractive cut-elimination procedures
that require no additional syntax.



Links to other work

I The study of the relationship between cut elimination and
Herbrand’s Theorem is not novel.

I Miller [9] extended Herbrand’s proof system to
higher-order logics with expansion tree proofs.

I Heijltjes [6] and McKinley [8] both use graphical methods
to expand Miller’s approach to include an eliminable cut.

I The compositional properties of open deduction mean that
little innovation is needed: we can use these other
techniques to design attractive cut-elimination procedures
that require no additional syntax.



Links to other work

I The study of the relationship between cut elimination and
Herbrand’s Theorem is not novel.

I Miller [9] extended Herbrand’s proof system to
higher-order logics with expansion tree proofs.

I Heijltjes [6] and McKinley [8] both use graphical methods
to expand Miller’s approach to include an eliminable cut.

I The compositional properties of open deduction mean that
little innovation is needed: we can use these other
techniques to design attractive cut-elimination procedures
that require no additional syntax.



Links to other work

I The study of the relationship between cut elimination and
Herbrand’s Theorem is not novel.

I Miller [9] extended Herbrand’s proof system to
higher-order logics with expansion tree proofs.

I Heijltjes [6] and McKinley [8] both use graphical methods
to expand Miller’s approach to include an eliminable cut.

I The compositional properties of open deduction mean that
little innovation is needed: we can use these other
techniques to design attractive cut-elimination procedures
that require no additional syntax.



u↑-elimination

I Our predicate logic cut elimination procedure contains
three significant steps.

I The first of these is u↑-elimination: the intuition is that we
are converting cuts on quantified formulae to cuts on
propositional formulae:

Φ2 KSq∪{ai↑,u↑}

A
u↑-elim−−−−→ Φ3 KSq∪{ai↑}

A

I The procedure has much in common with certain steps of
the cut elimination procedure for Heijltjes’s Proof Forests.
[6]

I We shall show two key steps of our elimination procedure.



u↑-elimination

I Our predicate logic cut elimination procedure contains
three significant steps.

I The first of these is u↑-elimination: the intuition is that we
are converting cuts on quantified formulae to cuts on
propositional formulae:

Φ2 KSq∪{ai↑,u↑}

A
u↑-elim−−−−→ Φ3 KSq∪{ai↑}

A

I The procedure has much in common with certain steps of
the cut elimination procedure for Heijltjes’s Proof Forests.
[6]

I We shall show two key steps of our elimination procedure.



u↑-elimination

I Our predicate logic cut elimination procedure contains
three significant steps.

I The first of these is u↑-elimination: the intuition is that we
are converting cuts on quantified formulae to cuts on
propositional formulae:

Φ2 KSq∪{ai↑,u↑}

A
u↑-elim−−−−→ Φ3 KSq∪{ai↑}

A

I The procedure has much in common with certain steps of
the cut elimination procedure for Heijltjes’s Proof Forests.
[6]

I We shall show two key steps of our elimination procedure.



u↑-elimination: ∃-contraction

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∧ ∀xC

u↑
∃x([A ∨ B] ∧ C)

−→

[∃xA ∨ ∃xB] ∧
∀xC

c↑
(∀xC ∧ ∀xC)[

∃xA ∧ ∀xC
u↑
∃x(A ∧ C)

∨
∃xB ∧ ∀xC

u↑
∃x(B ∧ C)

]
m1↓

∃x

(A ∧ C) ∨ (B ∧ C)

[A ∨ B] ∧
C ∨ C

C



∃x ∃x ∀x

∃x

∃x

−→

∃x ∃x ∀x

∃x ∃x

∃x



u↑-elimination: ∃-contraction

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∧ ∀xC

u↑
∃x([A ∨ B] ∧ C)

−→

[∃xA ∨ ∃xB] ∧
∀xC

c↑
(∀xC ∧ ∀xC)[

∃xA ∧ ∀xC
u↑
∃x(A ∧ C)

∨
∃xB ∧ ∀xC

u↑
∃x(B ∧ C)

]
m1↓

∃x

(A ∧ C) ∨ (B ∧ C)

[A ∨ B] ∧
C ∨ C

C



∃x ∃x ∀x

∃x

∃x

−→

∃x ∃x ∀x

∃x ∃x

∃x



u↑-elimination: ∃-contraction

∃xA ∨ ∃xB
m1↓
∃x[A ∨ B]

∧ ∀xC

u↑
∃x([A ∨ B] ∧ C)

−→

[∃xA ∨ ∃xB] ∧
∀xC

c↑
(∀xC ∧ ∀xC)[

∃xA ∧ ∀xC
u↑
∃x(A ∧ C)

∨
∃xB ∧ ∀xC

u↑
∃x(B ∧ C)

]
m1↓

∃x

(A ∧ C) ∨ (B ∧ C)

[A ∨ B] ∧
C ∨ C

C



∃x ∃x ∀x

∃x

∃x

−→

∃x ∃x ∀x

∃x ∃x

∃x



u↑-elimination: Final Step

Once we have duplicated the universal quantifier, we can
permute the u↑ rules up to the introduction rules for the
quantifiers, and thus eliminate them.[

A[τ/x]
n↓
∃xA

∨
B

vq=
∃xB

]
∧

(
C

vq=
∀xC

∧
C

vq=
∀xC

)
s2 [

∃xA ∧ ∀xC
u↑
∃x(A ∧ C)

∨
∃xB ∧ ∀xC

u↑
∃x(B ∧ C)

] ∃x ∃x ∀x ∀x

∃x ∃x

↓

[A[τ/x] ∨ B] ∧ (C ∧ C)
s2 [

A[τ/x] ∧ C
n↓
∃x(A ∧ C)

∨
B ∧ C

vq=
∃x(B ∧ C)

]
∃x ∃x



u↑-elimination: Final Step

Once we have duplicated the universal quantifier, we can
permute the u↑ rules up to the introduction rules for the
quantifiers, and thus eliminate them.[

A[τ/x]
n↓
∃xA

∨
B

vq=
∃xB

]
∧

(
C

vq=
∀xC

∧
C

vq=
∀xC

)
s2 [

∃xA ∧ ∀xC
u↑
∃x(A ∧ C)

∨
∃xB ∧ ∀xC

u↑
∃x(B ∧ C)

] ∃x ∃x ∀x ∀x

∃x ∃x

↓

[A[τ/x] ∨ B] ∧ (C ∧ C)
s2 [

A[τ/x] ∧ C
n↓
∃x(A ∧ C)

∨
B ∧ C

vq=
∃x(B ∧ C)

]
∃x ∃x



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A

1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSgr

As noted by Brünnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove
Herbrand’s Theorem as a corollary to cut elimination.

KSgr

A
1−→

KS∪{n↓,gr↓,m2↓,ai↑}
A′

qc↓
A

2−→

KS∪{n↓,ai↑}
Q{B}

gr↓
A′

qc↓
A

3−→

KS∪{ai↑}
∀~x W(B)

n↓
Q{B}

gr↓
A′

qc↓
A

∀~x W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
∨-expansion of A (A′) plus a witnessing substitution W for Q{B}



Herbrand Stratification for KSq
The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

KSq

A
1−→ A′

∃-cont

A

2−→

Q{B}
Prenex

A′
∃-cont

A

3−→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

1. ∃-contractions to the end of the proof: qc↓ =
∃xA ∨ ∃xA

qc↓
∃xA

2. m2↓-elimination, using gr↓ =
QxK{A}

gr↓
K{QxA}

3. Trivial.



Herbrand Stratification for KSq
The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

KSq

A

1−→ A′
∃-cont

A

2−→

Q{B}
Prenex

A′
∃-cont

A

3−→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

1. ∃-contractions to the end of the proof: qc↓ =
∃xA ∨ ∃xA

qc↓
∃xA

2. m2↓-elimination, using gr↓ =
QxK{A}

gr↓
K{QxA}

3. Trivial.



Herbrand Stratification for KSq
The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

KSq

A
1−→ A′

∃-cont

A

2−→

Q{B}
Prenex

A′
∃-cont

A

3−→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

1. ∃-contractions to the end of the proof: qc↓ =
∃xA ∨ ∃xA

qc↓
∃xA

2. m2↓-elimination, using gr↓ =
QxK{A}

gr↓
K{QxA}

3. Trivial.



Herbrand Stratification for KSq
The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

KSq

A
1−→ A′

∃-cont

A

2−→

Q{B}
Prenex

A′
∃-cont

A

3−→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

1. ∃-contractions to the end of the proof: qc↓ =
∃xA ∨ ∃xA

qc↓
∃xA

2. m2↓-elimination, using gr↓ =
QxK{A}

gr↓
K{QxA}

3. Trivial.



Herbrand Stratification for KSq
The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

KSq

A
1−→ A′

∃-cont

A

2−→

Q{B}
Prenex

A′
∃-cont

A

3−→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

1. ∃-contractions to the end of the proof: qc↓ =
∃xA ∨ ∃xA

qc↓
∃xA

2. m2↓-elimination, using gr↓ =
QxK{A}

gr↓
K{QxA}

3. Trivial.



Herbrand Stratification for KSq
The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

KSq

A
1−→ A′

∃-cont

A

2−→

Q{B}
Prenex

A′
∃-cont

A

3−→

KS∪{ai↑}
∀~x W(B)

∃-intro

Q{B}
Prenex

A′
∃-cont

A

1. ∃-contractions to the end of the proof: qc↓ =
∃xA ∨ ∃xA

qc↓
∃xA

2. m2↓-elimination, using gr↓ =
QxK{A}

gr↓
K{QxA}

3. Trivial.



First-Order Cut Elimination Overview

Φ0 SKSq

A

(1)−−→ Φ1 KSq∪{i↑}

A

(2)−−→ Φ2 KSq∪{ai↑,u↑}

A

(3)−−→ Φ3 KSq∪{ai↑}

A

Φ3 KSq∪{ai↑}

A

(4)−−→ Φ4 strKSr∪{ai↑}

A

(5)−−→ Φ5 KSq

A

1. i↑-elimination sufficient for elimination of up-rules

2. Cut reduction

3. u↑ elimination

4. Herbrand Stratification

5. Propositional cut-elimination procedure (e.g. experiments)



Conclusions

I Open deduction, and furthermore atomic flows, gives us
access to semantically natural, almost trivial, cut
elimination procedures for classical logic.

I These are available because we can distinguish between
often conflated compression mechanisms (i.e. cut and
contraction) and we have free composition of proofs.

Further work
I Develop a natural extension of atomic flows for predicate

logic.
I An exploration of further ideas that can be used to design

attractive cut elimination procedures for many logics.



Conclusions

I Open deduction, and furthermore atomic flows, gives us
access to semantically natural, almost trivial, cut
elimination procedures for classical logic.

I These are available because we can distinguish between
often conflated compression mechanisms (i.e. cut and
contraction) and we have free composition of proofs.

Further work
I Develop a natural extension of atomic flows for predicate

logic.
I An exploration of further ideas that can be used to design

attractive cut elimination procedures for many logics.



Conclusions

I Open deduction, and furthermore atomic flows, gives us
access to semantically natural, almost trivial, cut
elimination procedures for classical logic.

I These are available because we can distinguish between
often conflated compression mechanisms (i.e. cut and
contraction) and we have free composition of proofs.

Further work

I Develop a natural extension of atomic flows for predicate
logic.

I An exploration of further ideas that can be used to design
attractive cut elimination procedures for many logics.



Conclusions

I Open deduction, and furthermore atomic flows, gives us
access to semantically natural, almost trivial, cut
elimination procedures for classical logic.

I These are available because we can distinguish between
often conflated compression mechanisms (i.e. cut and
contraction) and we have free composition of proofs.

Further work
I Develop a natural extension of atomic flows for predicate

logic.

I An exploration of further ideas that can be used to design
attractive cut elimination procedures for many logics.



Conclusions

I Open deduction, and furthermore atomic flows, gives us
access to semantically natural, almost trivial, cut
elimination procedures for classical logic.

I These are available because we can distinguish between
often conflated compression mechanisms (i.e. cut and
contraction) and we have free composition of proofs.

Further work
I Develop a natural extension of atomic flows for predicate

logic.
I An exploration of further ideas that can be used to design

attractive cut elimination procedures for many logics.



Bibliography I

[1] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot. A
quasipolynomial cut-elimination procedure in deep inference via atomic
flows and threshold formulae. In Logic for Programming, Artificial
Intelligence, and Reasoning, pages 136–153. Springer, 2010.

[2] K. Brünnler. Deep inference and symmetry in classical proofs. Logos Verlag,
2003.

[3] K. Brünnler. Cut elimination inside a deep inference system for classical
predicate logic. Studia Logica, 82(1):51–71, 2006.

[4] S. R. Buss. On herbrand’s theorem. In Logic and Computational
Complexity, pages 195–209. Springer, 1995.

[5] A. Guglielmi, T. Gundersen, and L. Straßburger. Breaking paths in atomic
flows for classical logic. In Logic in Computer Science (LICS), 2010 25th
Annual IEEE Symposium on, pages 284–293. IEEE, 2010.

[6] W. Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic,
161(11):1346–1366, 2010. Sp. Iss. SI 638jj Times Cited:2 Cited
References Count:19.

[7] R. McKinley. A sequent calculus demonstration of herbrand’s theorem.
arXiv preprint arXiv:1007.3414, 2010.



Bibliography II

[8] R. McKinley. Proof nets for herbrand’s theorem. ACM Transactions on
Computational Logic (TOCL), 14(1):5, 2013.

[9] D. A. Miller. A compact representation of proofs. Studia Logica,
46(4):347–370, 1987.


	Introduction
	Deep Inference
	Experiments
	Predicate Calculus

