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Open deduction is a deep inference proof system that gives us

more ways of composing derivations.
A C
Given derivations ¢| and v| we can compose them with:
B D
A
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1. An inference rule o : B/C: "
v
D
A C
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2. A binary (or n-ary) logical relation x:
B D
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Cut Elimination in Deep Inference

» Whether cut elimination in deep inference should be
understood as elimination of all the {-rules, or just of the
“cut”-rule itself is a matter of ideological contention.

» Due to the following construction, proving admissibility of
the if-rule is sufficient for 1-rule elimination in general.

» In propositional logic admissibility of atomic cut, aif,
suffices.
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Proof of Cut Elimination

Theorem
If A is true, then there is an KS proof ‘IJIL[ A fortiori, if there is a

SKS proof of a formula A, then there is a proof without ait (a
cut-free proof), i.e. ail is admissible for SKS.

Proof.
Numerous:

1. Splitting: First in a predecessor formalism to open
deduction, a technique similar to Gentzen’s. [2]

2. As a quasipolynomial-time procedure using atomic flows
and threshold formulae. [1]

3. The experiments method: a confluent and natural
procedure for aif elimination, also using atomic flows.
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Atomic Flows

Atomic flows [5] are a geometric invariant of proofs in open
deduction. Only structural information about the proof is

conserved.
t ava a\ Ja f
ail acl aw] —
ava a a a a (;T
identity contraction weakening
anda a a a a a
ait u act A awT — L
f ana a \a t
cut cocontraction coweakening

Composition of proofs naturally corresponds to composition of
flows.
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Theorem
Atomic cut is admissible from SKS

Proof.
(The Experiments method) Given a proof ® of A:
a a
1. Create o, || and @;_ || from ®. These are essentially
A A

projections, informed by the atomic flow.
t

2. Combine ®;; and ®; : |®u ||V o |




Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

of
A



Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

o apN...Ndp aiyN...Nay
A ol yeeney  Donll
A A



Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

o apN...Ndp aiyN...Nay
A ol yeeney  Donll
A A

al/\./\an
Do ||




Experiments Method - Many Cuts
When there are multiple cuts in a proof, a “truth-table”
approach is used.

o apN...Ndap ai AN...Nan
A Dy || yeeney  Donll
A A

al/\./\an
Do ||

Thus we have, to a certain extent, a straight-forward, high-level
understanding of why this procedure works.
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First-Order Predicate Logic

What does the picture look like in first-order predicate logic?
» There is a direct proof of cut-elimination for a deep
inference system using splitting [3]
» Splitting for propositional logic is mysterious. The situation
does not improve with the move to predicate logic.
Why is this?
» We have new compression mechanisms:
Pa Pb _
nl Vnl —— VxA A IxA
IxPx IxPx it —

1 f
9 IxPx

» We can use Herbrand’s Theorem to help understand the
first mechanism. We can use cut reduction to deal with the
second.
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For SKSq, we add to SKS:
» An introduction and elimination rule for quantifiers:
AT /x] VXA

nl nt

A Alr/x]

» Rules for identity and cut reduction:

iVX[AvB] TVXAAﬂxB
“VXAvIB  (AAB)

» Rules for contraction and cocontraction reduction.

¢EIxAvEIxB iVxAviB ) Vx(A A B) TEIx(AAB)
“IAvB] | Vx[AVB] | (VXAAWXB) A A B

» Equality rules for vacuous quantification and change of
variables.
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First-Order Cut Elimination Overview

<I>OHSKSq 1) <I>1HKSqU{|T} <I>2HKSqU{a|T,uT} <I>3HKSqU{a|T}
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A A A

iT-elimination sufficient for elimination of up-rules

Cut reduction

u? elimination

Herbrand Stratification

Propositional cut-elimination procedure (e.g. experiments)
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Herbrand’s Theorem

We use the term ‘Herbrand’s Theorem’ as a synecdoche for a
web of ideas that reduce first-order provability to propositional
provability:

FO: Ja,b € R(Q(a) A Q(b) A Q(ab))
v N\

Prop: Q(v2) ~0(v2)AQ(2"%) v Q2" T(V2) Q)

A \:
Taut: Q(\@ﬂ) v @(ﬂﬂ)
These ideas have a natural affinity with deep inference: deep

contraction of existential formulae is an important (and often
overlooked) tool for proving Herbrand’s Theorem. [4, 7]
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Herbrand’s Theorem in Deep Inference

In deep inference, we can manifest these ideas in the form of a
decomposition theorem, Herbrand Stratification:

TKsu{ait}
VX W(B)
|| 3-intro
Tksq . Q{B}
A || Prenex
A/
|| 3-cont

A

» Previously this stratification has been seen as a way to
prove Herbrand’s Theorem as a corollary to cut elimination.

» We now use it as a tool to help us understand cut
elimination for first-order logic.
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Links to other work

» The study of the relationship between cut elimination and
Herbrand’s Theorem is not novel.

» Miller [9] extended Herbrand’s proof system to
higher-order logics with expansion tree proofs.

» Heijltjes [6] and McKinley [8] both use graphical methods
to expand Miller’s approach to include an eliminable cut.

3xVy. P(x)V—P(y)

Vy.P(@)V—P(y) Vy.P(b)v—P(y)

P(a)v—P(b) P(b)V—P(c)

» The compositional properties of open deduction mean that
little innovation is needed: we can use these other
techniques to design attractive cut-elimination procedures
that require no additional syntax.
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uT-elimination

» Our predicate logic cut elimination procedure contains
three significant steps.

» The first of these is ut-elimination: the intuition is that we
are converting cuts on quantified formulae to cuts on
propositional formulae:

ii28 H KSqu{ait,ut} ut-elim @3 H KSqu{ait}
A A

» The procedure has much in common with certain steps of
the cut elimination procedure for Heijltjes’s Proof Forests.
(6]

» We shall show two key steps of our elimination procedure.
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uT-elimination: 3-contraction
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uT-elimination: 3-contraction

VxC
[BAV IXB] A et —————
(VxC A VxC)
IxA v IxB IxA A VxC IxB A VxC
mi) —— A VxC ut VvV ou?t
dx[A Vv B] — (AnC) (BAC)
ut mil
(IAvB]~C) 1 (AnC) v (BAC)
cvcC
[A v B] A

I I |



uT-elimination: Final Step

Once we have duplicated the universal quantifier, we can
permute the u? rules up to the introduction rules for the
quantifiers, and thus eliminate them.
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uT-elimination: Final Step

Once we have duplicated the universal quantifier, we can
permute the u? rules up to the introduction rules for the
quantifiers, and thus eliminate them.

AL/ B C C
n V vq= AN vg= —— N\ vgq= ——
E R e ke | | v

AxA A VxC ) AxB A VxC
ut Vou
(AAC) (BAC)

52

!

[A[T/X]vB] (Cr Q)
Alr/x] A BAC ] v v
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Herbrand Stratification for KSgr

As noted by Briinnler, there is a simple stratification process for
KSgr, a similar system to KSq. For him, it was a way to prove

Herbrand’s Theorem as a corollary to cut elimination.

TKsu{ait}
TKSU{n],ait} 154 W(B)
TKSULnL grl.m21.ait} Q{B} lIni
Tksgr 1. A 2 lgrt 3 B
A 7 e oA - Q{ngi
A lact A
A lact
A

VX W(B) is a “Herbrand Proof” for A.

More technically: Q{B} is a prenexification of a strong
v-expansion of A (A’) plus a witnessing substitution W for Q{B}
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Herbrand Stratification for KSq

The Herbrand Stratification for KSq is largely the same, with a
few minor changes:

TKSsu{ait}
T VX W(B)
m Q{B} || 3-intro
Tksq 1 A’ 2 || Prenex 3 Q{B
A - || 3-cont — A’ - {ll Pienex
A || 3-cont Al
A || 3-cont
A

. A Vv A
1. J-contractions to the end of the proof: qc| = qc) ———

QxK{A}
K{QeA}

2. myl-elimination, using gr| = erl

3. Trivial.
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access to semantically natural, almost trivial, cut
elimination procedures for classical logic.

» These are available because we can distinguish between
often conflated compression mechanisms (i.e. cut and
contraction) and we have free composition of proofs.

Further work

» Develop a natural extension of atomic flows for predicate
logic.

» An exploration of further ideas that can be used to design
attractive cut elimination procedures for many logics.
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