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Structural rules:
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ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

Logical rules:

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial



Atomic Flows

t
ai↓

a ∨ ā a ā
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a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening



Atomic Flows

t
ai↓

a ∨ ā a ā

a ∨ a
ac↓

a

a a f
aw↓

a a

identity contraction weakening

a ∧ ā
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a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening



Atomic Flow Example
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ā a



SKSh

Structural Rules:

A[τ/x]
n↓
∃xA

t
qi↓
∀xA ∨ ∃xĀ
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Example

Drinker’s Formula (∃x∀y
[
P̄x ∨ Py

]
):

t
qi↑

∀x

[
Px

w↓
P̄a ∨ Px

]
n↓
∃x∀x

[
P̄x ∨ Py

] ∨ ∃x

 P̄x
w↓

P̄x ∨ ∀yPy
r1↓
∀y
[
P̄x ∨ Py

]


qc↓
∃x∀y

[
P̄x ∨ Py

]



Cut Elimination in Propositional Logic

Theorem
If there is an SKS proof

Ψ

A, then there is an KS proof
Ψ

A.

a fortiori: ai↑ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

3. Decomposition + Splitting
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Where does complexity come from?
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Normalisation separates into:

1. A decomposition phase.

2. An elimination phase.
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Herbrand’s Theorem

There exist two irrational numbers a and b such that ab is
rational.
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Herbrand Expanders

∃xA ∨
A[a/x]

n↓
∃xA

qc↓
∃xA

−→
∃xA ∨ A[a/x]

h↓
∃xA

∀xA
qc↑

∀xA ∧
∀xA

n↑
A[a/x]

−→
∀xA

h↑
∀xA ∧ A[a/x]



Herbrand Stratification

t
qi↓

∃xA ∨
∀xĀ

h↑
∀xĀ ∧ Ā[a/x]

∃xA ∀xĀ

∀xĀ Ā[a/x]

↓ ↓

t
qi↓
∃xA ∨ ∀xĀ

∧
t

i↓
A[a/x] ∨ Ā[a/x]

qi↓
∃xA ∨ A[a/x]

h↓
∃xA

∨
(
∀xĀ ∧ Ā[a/x]

)
∃xA

∃xA

∀xĀ Ā[a/x]



Decomposition Theorem

Theorem
Every proof in SKSh can be transformed into a proof of the
following form:

Φ SKSh

A −→

Φ′ SKSh\{n↓,n↑}
B
{h↓}

A



Loops

Loops threaten the possibility that the decomposition procedure
will not terminate.

L1↓ L1↑ L2
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Escaping the loops

The h↓ and h↑ rules cannot occur inside the loop.

L1↓ : −→

L2 :

∃xA

∃xA A[a/x]

−→

∃xA A[a/x]

∃xA
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Proving Decomposition

Theorem
Every proof in SKSh can be transformed into a proof of the
following form:

A −→

SKSh\{n↓,n↑}
B
{h↓}

A

Proof.
We first eliminate any L1↓ or L1↑ loops in the proof. We then
convert all n↓ (n↑) rules to h↓ (h↑) rules, and then push them
down (up) the proof. Taking care to pass through any L2 loops,
the procedure terminates with the proof in the appropriate
form.
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Old Picture

Proof CE−→ Cut-free Proof HT−−→ Herbrand-Expanded Proof

New Picture

Herbrand Expanded Proof
↗ ↘

Proof Normalised Proof
↘ ↗

Cut-free Proof
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Further Work

I Decide what the best deep inference proof system for FOL
should be.

I Study further the complexity of the Herbrand Stratification
procedure.

I Compare with results proved using ε-calculus [7].
I Compare with other similar systems, for example Heijltjes’

Expansion Trees with cut. [6]
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