
Decomposing First-Order Proofs
ALCOP 2016

Benjamin Ralph

University of Bath

April 9, 2016



Open Deduction

A
Φ

B

C
Ψ

D



Open Deduction
1. Inference Rule σ:

A
Φ

B
σ

C
Ψ

D

2. Binary Connective ?:

A
Φ

B
?

C
Ψ

D
=

A?C
Φ?Ψ

B?D

3. Quantifier Qx:

Qx

 A
φ

B

 =
QxA

Qxφ

QxB



Open Deduction
1. Inference Rule σ:

A
Φ

B
σ

C
Ψ

D

2. Binary Connective ?:

A
Φ

B
?

C
Ψ

D
=

A?C
Φ?Ψ

B?D

3. Quantifier Qx:

Qx

 A
φ

B

 =
QxA

Qxφ

QxB



Open Deduction
1. Inference Rule σ:

A
Φ

B
σ

C
Ψ

D

2. Binary Connective ?:

A
Φ

B
?

C
Ψ

D
=

A?C
Φ?Ψ

B?D

3. Quantifier Qx:

Qx

 A
φ

B

 =
QxA

Qxφ

QxB



SKS

Structural rules:

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

Logical rules:

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial



SKS

Structural rules:

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

Logical rules:

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial



KS

Structural rules

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

Logical rules

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial



SKS

Structural rules:

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

f

a
ac↑

a ∧ a

a
aw↑

t
cut cocontraction coweakening

Logical rules:

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial



Atomic Flows

t
ai↓

a ∨ ā a ā

a ∨ a
ac↓

a

a a f
aw↓

a a

identity contraction weakening

a ∧ ā
ai↑

f

a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening



Atomic Flows

t
ai↓

a ∨ ā a ā

a ∨ a
ac↓

a

a a f
aw↓

a a

identity contraction weakening

a ∧ ā
ai↑

f

a ā a
ac↑

a ∧ a a a

a
aw↑

t

a

cut cocontraction coweakening



Atomic Flow Example

t

ā ∨ a
∨

f

a

ā ∨
a ∨ a

a

∧

t

ā

ā ∧
ā

t

∨ a

[ā ∨ a] ∧ [a ∨ ā]
s2

ā ∨
a ∧ ā

ai↑
f

∨ a

ā a a
a a

a ā ā

ā a



SKSh

Structural Rules:

A[τ/x]
n↓
∃xA

t
qi↓
∀xA ∨ ∃xĀ

∃xA ∨ ∃xA
qc↓

∃xA

∀xA ∨ ∀xB
m2↓
∀x[A ∨ B]

∀xA
n↑

A[τ/x]

∃xA ∧ ∀xĀ
qi↑

f

∀xA
qc↑
∀xA ∧ ∀xA

∃x(A ∧ B)
m2↑
∃xA ∧ ∃xB

Retract rules (B is free for x):

∀xA ∨ B
r1↓
∀x[A ∨ B]

∀xA ∧ B
r2↓
∀x(A ∧ B)

∃xA ∨ B
r3↓
∃x[A ∨ B]

∃xA ∧ B
r4↓
∃x(A ∧ B)

∃x(A ∧ B)
r1↑
∃xA ∧ B

∃x[A ∨ B]
r2↑
∃xA ∨ B

∀x(A ∧ B)
r3↓
∀xA ∧ B

∀x[A ∨ B]
r4↑
∀xA ∨ B



SKSh

Structural Rules:

A[τ/x]
n↓
∃xA

t
qi↓
∀xA ∨ ∃xĀ

∃xA ∨ ∃xA
qc↓

∃xA

∀xA ∨ ∀xB
m2↓
∀x[A ∨ B]

∀xA
n↑

A[τ/x]

∃xA ∧ ∀xĀ
qi↑

f

∀xA
qc↑
∀xA ∧ ∀xA

∃x(A ∧ B)
m2↑
∃xA ∧ ∃xB

Retract rules (B is free for x):

∀xA ∨ B
r1↓
∀x[A ∨ B]

∀xA ∧ B
r2↓
∀x(A ∧ B)

∃xA ∨ B
r3↓
∃x[A ∨ B]

∃xA ∧ B
r4↓
∃x(A ∧ B)

∃x(A ∧ B)
r1↑
∃xA ∧ B

∃x[A ∨ B]
r2↑
∃xA ∨ B

∀x(A ∧ B)
r3↓
∀xA ∧ B

∀x[A ∨ B]
r4↑
∀xA ∨ B



Example

Drinker’s Formula (∃x∀y
[
P̄x ∨ Py

]
):

t
qi↑

∀x

[
Px

w↓
P̄a ∨ Px

]
n↓
∃x∀x

[
P̄x ∨ Py

] ∨ ∃x

 P̄x
w↓

P̄x ∨ ∀yPy
r1↓
∀y
[
P̄x ∨ Py

]


qc↓
∃x∀y

[
P̄x ∨ Py

]



Cut Elimination in Propositional Logic

Theorem
If there is an SKS proof

Ψ

A, then there is an KS proof
Ψ

A.

a fortiori: ai↑ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

3. Decomposition + Splitting



Cut Elimination in Propositional Logic

Theorem
If there is an SKS proof

Ψ

A, then there is an KS proof
Ψ

A.

a fortiori: ai↑ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

3. Decomposition + Splitting



Cut Elimination in Propositional Logic

Theorem
If there is an SKS proof

Ψ

A, then there is an KS proof
Ψ

A.

a fortiori: ai↑ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

3. Decomposition + Splitting



Cut Elimination in Propositional Logic

Theorem
If there is an SKS proof

Ψ

A, then there is an KS proof
Ψ

A.

a fortiori: ai↑ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

3. Decomposition + Splitting



Cut Elimination in Propositional Logic

Theorem
If there is an SKS proof

Ψ

A, then there is an KS proof
Ψ

A.

a fortiori: ai↑ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

3. Decomposition + Splitting



Decomposition

Where does complexity come from?

−→

Normalisation separates into:

1. A decomposition phase.

2. An elimination phase.



Decomposition

Where does complexity come from?

−→

Normalisation separates into:

1. A decomposition phase.

2. An elimination phase.



Decomposition

Where does complexity come from?

−→

Normalisation separates into:

1. A decomposition phase.

2. An elimination phase.



Decomposition

Where does complexity come from?

−→

Normalisation separates into:

1. A decomposition phase.

2. An elimination phase.



Decomposition

Where does complexity come from?

−→

Normalisation separates into:

1. A decomposition phase.

2. An elimination phase.



First-Order Logic

What new technology do we have in FOL?

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f



First-Order Logic

What new technology do we have in FOL?

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f



First-Order Logic

What new technology do we have in FOL?

Pa
n↓
∃xPx

∨
Pb

n↓
∃xPx

qc↓
∃xPx

∀xA ∧ ∃xĀ
i↑

f



Herbrand’s Theorem

There exist two irrational numbers a and b such that ab is
rational.

FO: ∃a, b ∈ R(Q(a) ∧ Q(b) ∧ Q(ab))

↙ ↘

Prop: Q(
√

2) ∧ Q(
√

2) ∧ Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧ Q(

√
2) ∧ Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)



Herbrand’s Theorem

There exist two irrational numbers a and b such that ab is
rational.

FO: ∃a, b ∈ R(Q(a) ∧ Q(b) ∧ Q(ab))

↙ ↘

Prop: Q(
√

2) ∧ Q(
√

2) ∧ Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧ Q(

√
2) ∧ Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)



Herbrand’s Theorem

There exist two irrational numbers a and b such that ab is
rational.

FO: ∃a, b ∈ R(Q(a) ∧ Q(b) ∧ Q(ab))

↙ ↘

Prop: Q(
√

2) ∧ Q(
√

2) ∧ Q(
√

2
√

2
) ∨ Q(

√
2
√

2
) ∧ Q(

√
2) ∧ Q(2)

↓ ↓
Taut: Q(

√
2
√

2
) ∨ Q(

√
2
√

2
)



Herbrand Expanders

∃xA ∨
A[a/x]

n↓
∃xA

qc↓
∃xA

−→
∃xA ∨ A[a/x]

h↓
∃xA

∀xA
qc↑

∀xA ∧
∀xA

n↑
A[a/x]

−→
∀xA

h↑
∀xA ∧ A[a/x]



Herbrand Stratification

t
qi↓

∃xA ∨
∀xĀ

h↑
∀xĀ ∧ Ā[a/x]

∃xA ∀xĀ

∀xĀ Ā[a/x]

↓ ↓

t
qi↓
∃xA ∨ ∀xĀ

∧
t

i↓
A[a/x] ∨ Ā[a/x]

qi↓
∃xA ∨ A[a/x]

h↓
∃xA

∨
(
∀xĀ ∧ Ā[a/x]

)
∃xA

∃xA

∀xĀ Ā[a/x]



Decomposition Theorem

Theorem
Every proof in SKSh can be transformed into a proof of the
following form:

Φ SKSh

A −→

Φ′ SKSh\{n↓,n↑}
B
{h↓}

A



Loops

Loops threaten the possibility that the decomposition procedure
will not terminate.

L1↓ L1↑ L2



Loops

Loops threaten the possibility that the decomposition procedure
will not terminate.

L1↓ L1↑ L2



Escaping the loops

The h↓ and h↑ rules cannot occur inside the loop.

L1↓ : −→

L2 :

∃xA

∃xA A[a/x]

−→

∃xA A[a/x]

∃xA



Escaping the loops

The h↓ and h↑ rules cannot occur inside the loop.

L1↓ : −→

L2 :

∃xA

∃xA A[a/x]

−→

∃xA A[a/x]

∃xA



Escaping the loops

The h↓ and h↑ rules cannot occur inside the loop.

L1↓ : −→

L2 :

∃xA

∃xA A[a/x]

−→

∃xA A[a/x]

∃xA



Proving Decomposition

Theorem
Every proof in SKSh can be transformed into a proof of the
following form:

A −→

SKSh\{n↓,n↑}
B
{h↓}

A

Proof.
We first eliminate any L1↓ or L1↑ loops in the proof. We then
convert all n↓ (n↑) rules to h↓ (h↑) rules, and then push them
down (up) the proof. Taking care to pass through any L2 loops,
the procedure terminates with the proof in the appropriate
form.



Proving Decomposition

Theorem
Every proof in SKSh can be transformed into a proof of the
following form:

A −→

SKSh\{n↓,n↑}
B
{h↓}

A

Proof.
We first eliminate any L1↓ or L1↑ loops in the proof. We then
convert all n↓ (n↑) rules to h↓ (h↑) rules, and then push them
down (up) the proof. Taking care to pass through any L2 loops,
the procedure terminates with the proof in the appropriate
form.



A different view of CE and Herbrand’s Theorem

Old Picture

Proof CE−→ Cut-free Proof HT−−→ Herbrand-Expanded Proof

New Picture

Herbrand Expanded Proof
↗ ↘

Proof Normalised Proof
↘ ↗

Cut-free Proof



A different view of CE and Herbrand’s Theorem

Old Picture

Proof CE−→ Cut-free Proof HT−−→ Herbrand-Expanded Proof

New Picture

Herbrand Expanded Proof
↗ ↘

Proof Normalised Proof
↘ ↗

Cut-free Proof



A different view of CE and Herbrand’s Theorem

Old Picture

Proof CE−→ Cut-free Proof HT−−→ Herbrand-Expanded Proof

New Picture

Herbrand Expanded Proof
↗ ↘

Proof Normalised Proof
↘ ↗

Cut-free Proof



Further Work

I Decide what the best deep inference proof system for FOL
should be.

I Study further the complexity of the Herbrand Stratification
procedure.

I Compare with results proved using ε-calculus [7].
I Compare with other similar systems, for example Heijltjes’

Expansion Trees with cut. [6]



Further Work

I Decide what the best deep inference proof system for FOL
should be.

I Study further the complexity of the Herbrand Stratification
procedure.

I Compare with results proved using ε-calculus [7].
I Compare with other similar systems, for example Heijltjes’

Expansion Trees with cut. [6]



Further Work

I Decide what the best deep inference proof system for FOL
should be.

I Study further the complexity of the Herbrand Stratification
procedure.

I Compare with results proved using ε-calculus [7].
I Compare with other similar systems, for example Heijltjes’

Expansion Trees with cut. [6]



Further Work

I Decide what the best deep inference proof system for FOL
should be.

I Study further the complexity of the Herbrand Stratification
procedure.

I Compare with results proved using ε-calculus [7].

I Compare with other similar systems, for example Heijltjes’
Expansion Trees with cut. [6]



Further Work

I Decide what the best deep inference proof system for FOL
should be.

I Study further the complexity of the Herbrand Stratification
procedure.

I Compare with results proved using ε-calculus [7].
I Compare with other similar systems, for example Heijltjes’

Expansion Trees with cut. [6]



Bibliography I

[1] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot. A
quasipolynomial cut-elimination procedure in deep inference via atomic
flows and threshold formulae. In Logic for Programming, Artificial
Intelligence, and Reasoning, pages 136–153. Springer, 2010.

[2] K. Brünnler. Deep inference and symmetry in classical proofs. Logos Verlag,
2003.

[3] K. Brünnler. Cut elimination inside a deep inference system for classical
predicate logic. Studia Logica, 82(1):51–71, 2006.

[4] S. R. Buss. On Herbrand’s theorem. In Logic and Computational
Complexity, pages 195–209. Springer, 1995.

[5] A. Guglielmi, T. Gundersen, and L. Straßburger. Breaking paths in atomic
flows for classical logic. In Logic in Computer Science (LICS), 2010 25th
Annual IEEE Symposium on, pages 284–293. IEEE, 2010.

[6] W. Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic,
161(11):1346–1366, 2010.

[7] G. Moser and R. Zach. The epsilon calculus and Herbrand complexity.
Studia Logica, 82(1):133–155, 2006.


	Introduction
	Deep Inference
	Cut Elimination
	Cut Elimination
	Cut Elimination
	Cut Elimination
	Cut Elimination
	Herbrand's Theorem

