Decomposing First-Order Proofs ALCOP 2016

Benjamin Ralph

University of Bath

April 9, 2016

 $egin{array}{cccc} A & & C \ \Phi \parallel & & \Psi \parallel \ B & & D \ \end{array}$

1. Inference Rule σ :

```
A \oplus \|
\sigma \frac{B}{C}
\Psi \|
D
```

1. Inference Rule σ :

$$A \\ \Phi \parallel \\ \sigma \frac{B}{C} \\ \Psi \parallel \\ D$$

2. Binary Connective ★:

$$\begin{array}{ccc}
A & C & A \star C \\
\Phi \| \star \| \Psi = \Phi \star \Psi \| \\
B & D & B \star D
\end{array}$$

1. Inference Rule σ :

$$A \\ \Phi \parallel \\ \sigma \frac{B}{C} \\ \Psi \parallel \\ D$$

2. Binary Connective ★:

$$\begin{array}{ccc}
A & C & A \star C \\
\Phi \| \star \| \Psi = \Phi \star \Psi \| \\
B & D & B \star D
\end{array}$$

3. Quantifier Qx:

$$Qx \begin{bmatrix} A \\ \phi \parallel \\ B \end{bmatrix} = Qx\phi \parallel \\ QxB$$

SKS

Structural rules:

SKS

Structural rules:

Logical rules:

$$\begin{array}{ll} \operatorname{s} \frac{A \wedge [B \vee C]}{(A \wedge B) \vee C} & \operatorname{m} \frac{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]} \\ switch & medial \end{array}$$

KS

Structural rules

$$\begin{array}{ll} \text{ai} \downarrow \frac{\mathsf{t}}{a \vee \bar{a}} & \text{ac} \downarrow \frac{a \vee a}{a} & \text{aw} \downarrow \frac{\mathsf{f}}{a} \\ \text{identity} & \text{contraction} & \text{weakening} \end{array}$$

Logical rules

$$\begin{array}{ll} \operatorname{s} \frac{A \wedge [B \vee C]}{(A \wedge B) \vee C} & \operatorname{m} \frac{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]} \\ switch & medial \end{array}$$

SKS

Structural rules:

Logical rules:

$$\begin{array}{ll} \operatorname{s} \frac{A \wedge [B \vee C]}{(A \wedge B) \vee C} & \operatorname{m} \frac{(A \wedge B) \vee (C \wedge D)}{[A \vee C] \wedge [B \vee D]} \\ switch & medial \end{array}$$

Atomic Flows

Atomic Flows

Atomic Flow Example

SKSh

Structural Rules:

SKSh

Structural Rules:

Retract rules (B is free for x):

$$r1\downarrow \frac{\forall xA \lor B}{\forall x[A \lor B]} \qquad r2\downarrow \frac{\forall xA \land B}{\forall x(A \land B)} \qquad r3\downarrow \frac{\exists xA \lor B}{\exists x[A \lor B]} \qquad r4\downarrow \frac{\exists xA \land B}{\exists x(A \land B)}$$

$$r1\uparrow \frac{\exists x(A \land B)}{\exists xA \land B} \qquad r2\uparrow \frac{\exists x[A \lor B]}{\exists xA \lor B} \qquad r3\downarrow \frac{\forall x(A \land B)}{\forall xA \land B} \qquad r4\uparrow \frac{\forall x[A \lor B]}{\forall xA \lor B}$$

Example

Drinker's Formula $(\exists x \forall y [\bar{P}x \vee Py])$:

Theorem

If there is an SKS proof ${}^{\Psi \parallel}_A$, then there is an KS proof ${}^{\Psi \parallel}_A$. a fortiori: $ai\uparrow$ is admissible for SKS.

Theorem

If there is an SKS proof ${}^{\Psi \parallel}_A$, then there is an KS proof ${}^{\Psi \parallel}_A$. a fortiori: $\operatorname{ai} \uparrow$ is admissible for SKS.

Proof.

Theorem

If there is an SKS proof ${}^{\Psi \parallel}_A$, then there is an KS proof ${}^{\Psi \parallel}_A$. a fortiori: $ai\uparrow$ is admissible for SKS.

Proof.

1. Splitting (Sequent Calculus style) [Brünnler 2003]

Theorem

If there is an SKS proof ${}^{\Psi \parallel}_A$, then there is an KS proof ${}^{\Psi \parallel}_A$. a fortiori: $ai\uparrow$ is admissible for SKS.

Proof.

- 1. Splitting (Sequent Calculus style) [Brünnler 2003]
- 2. Quasipolynomial-time procedure [Bruscoli et al. 2010]

Theorem

If there is an SKS proof ${}^{\Psi \parallel}_A$, then there is an KS proof ${}^{\Psi \parallel}_A$. a fortiori: $ai\uparrow$ is admissible for SKS.

Proof.

- 1. Splitting (Sequent Calculus style) [Brünnler 2003]
- 2. Quasipolynomial-time procedure [Bruscoli et al. 2010]
- 3. Decomposition + Splitting

Where does complexity come from?

Where does complexity come from?

Where does complexity come from?

Normalisation separates into:

Where does complexity come from?

Normalisation separates into:

1. A decomposition phase.

Where does complexity come from?

Normalisation separates into:

- 1. A decomposition phase.
- 2. An *elimination* phase.

First-Order Logic

What new technology do we have in FOL?

First-Order Logic

What new technology do we have in FOL?

$$\operatorname{qc}\downarrow \frac{\operatorname{n}\downarrow \frac{Pa}{\exists xPx} \vee \operatorname{n}\downarrow \frac{Pb}{\exists xPx}}{\exists xPx}$$

First-Order Logic

What new technology do we have in FOL?

$$\operatorname{qc}\downarrow \frac{\mathsf{n}\downarrow \frac{Pa}{\exists xPx}}{} \vee \operatorname{n}\downarrow \frac{Pb}{\exists xPx}$$

$$i\uparrow \frac{\forall xA \land \exists x\bar{A}}{\mathsf{f}}$$

Herbrand's Theorem

There exist two irrational numbers a and b such that a^b is rational.

FO:
$$\exists a,b \in \mathbb{R}(\overline{\mathbb{Q}}(a) \land \overline{\mathbb{Q}}(b) \land \mathbb{Q}(a^b))$$

Herbrand's Theorem

There exist two irrational numbers a and b such that a^b is rational.

Herbrand's Theorem

There exist two irrational numbers a and b such that a^b is rational.

Herbrand Expanders

$$\frac{\exists xA \vee \left[n \downarrow \frac{A[a/x]}{\exists xA} \right]}{\exists xA} \longrightarrow h \downarrow \frac{\exists xA \vee A[a/x]}{\exists xA}$$

$$qc \uparrow \frac{\forall xA}{\forall xA \wedge \left[n \downarrow A \right]} \longrightarrow h \uparrow \frac{\forall xA}{\forall xA \wedge A[a/x]}$$

Herbrand Stratification

Decomposition Theorem

Theorem

Every proof in SKSh can be transformed into a proof of the following form:

Loops

Loops threaten the possibility that the decomposition procedure will not terminate.

Loops

Loops threaten the possibility that the decomposition procedure will not terminate.

Escaping the loops

Escaping the loops

The $h\downarrow$ and $h\uparrow$ rules cannot occur *inside* the loop.

Escaping the loops

The $h\downarrow$ and $h\uparrow$ rules cannot occur *inside* the loop.

Proving Decomposition

Theorem

Every proof in SKSh can be transformed into a proof of the following form:

$$egin{array}{ccc} & & & \|\operatorname{SKSh}\setminus\{\operatorname{n}\downarrow,\operatorname{n}\uparrow\} \ & & & B \ & & \|\{\operatorname{h}\downarrow\} \ & & & A \end{array}$$

Proving Decomposition

Theorem

Every proof in SKSh can be transformed into a proof of the following form:

$$\begin{array}{ccc} \mathbb{I} & & & \mathbb{I} \operatorname{SKSh} \backslash \{\operatorname{n}\downarrow,\operatorname{n}\uparrow\} \\ A & & & B \\ & \mathbb{I} \{\operatorname{h}\downarrow\} \\ & A & \end{array}$$

Proof.

We first eliminate any $L_{1\downarrow}$ or $L_{1\uparrow}$ loops in the proof. We then convert all $n\downarrow$ ($n\uparrow$) rules to $h\downarrow$ ($h\uparrow$) rules, and then push them down (up) the proof. Taking care to pass through any L_2 loops, the procedure terminates with the proof in the appropriate form.

A different view of CE and Herbrand's Theorem

A different view of CE and Herbrand's Theorem

Old Picture

Proof $\stackrel{CE}{\longrightarrow}$ Cut-free Proof $\stackrel{HT}{\longrightarrow}$ Herbrand-Expanded Proof

A different view of CE and Herbrand's Theorem

Old Picture

Proof \xrightarrow{CE} Cut-free Proof \xrightarrow{HT} Herbrand-Expanded Proof New Picture

Proof

Cut-free Proof

Herbrand Expanded Proof

Normalised Proof

Decide what the best deep inference proof system for FOL should be.

- Decide what the best deep inference proof system for FOL should be.
- Study further the complexity of the Herbrand Stratification procedure.

- Decide what the best deep inference proof system for FOL should be.
- Study further the complexity of the Herbrand Stratification procedure.
- ▶ Compare with results proved using ϵ -calculus [7].

- Decide what the best deep inference proof system for FOL should be.
- Study further the complexity of the Herbrand Stratification procedure.
- ▶ Compare with results proved using ϵ -calculus [7].
- Compare with other similar systems, for example Heijltjes' Expansion Trees with cut. [6]

Bibliography I

- [1] P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot. A quasipolynomial cut-elimination procedure in deep inference via atomic flows and threshold formulae. In *Logic for Programming, Artificial Intelligence, and Reasoning*, pages 136–153. Springer, 2010.
- [2] K. Brünnler. Deep inference and symmetry in classical proofs. Logos Verlag, 2003.
- [3] K. Brünnler. Cut elimination inside a deep inference system for classical predicate logic. *Studia Logica*, 82(1):51–71, 2006.
- [4] S. R. Buss. On Herbrand's theorem. In *Logic and Computational Complexity*, pages 195–209. Springer, 1995.
- [5] A. Guglielmi, T. Gundersen, and L. Straßburger. Breaking paths in atomic flows for classical logic. In *Logic in Computer Science (LICS)*, 2010 25th Annual IEEE Symposium on, pages 284–293. IEEE, 2010.
- [6] W. Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic, 161(11):1346–1366, 2010.
- [7] G. Moser and R. Zach. The epsilon calculus and Herbrand complexity. *Studia Logica*, 82(1):133–155, 2006.

