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"Herbrand’s proof is hard to follow" (Bernays)

What is Herbrand’s theorem about? Why is it of interest?
» A “reduction” of first-order logic to propositional logic.
» A “reduction” of undecidable first-order logic to decidable
propositional logic.
» Proof theory: we can obtain a separation of a first-order

proof into first-order and propositional parts, joined by a
Herbrand disjunction.
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There exist two irrational numbers a and b such that a® is
rational.

FO: Sa,b € R(@(a)  Tb) A Q(a*))
v N
Sa,b(@(a) AQ(b) A Q@) v 3a,b@(a) A Tb) »Q(a))

Prop: 0Q(v2)20(v2) (2% v T(2"*)A0(v2) Q)

Taut: o(v2"? v ov2"?)
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Sleeper’s Formula: There is someone in this room such that, if they
are asleep, then everyone in the room is asleep.
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Expansion Proofs (Miller 1987)

Expansion trees are recursive structures produced from literal
leaves and the following nodes:

Eq E5 Eq E5
» A and v nodes: \A/ N/

» V nodes:

» Jnodes:

E; E,
XA

An expansion tree is correct if the Deep formula is a tautology
and the dependency relation on the edges is acyclic.



Incorrect Expansion Tree

Pb Pa
b al

Pa YyPy Pb VyPy
\/ %/

N

Tx[Px v VyPy]
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2. Construction of proofs in the formalism reflects
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Open Deduction

1. Inference Rule o € S:
A
o
B
-
C
vl
D
2. Binary Connective x € {1, V}:
A C AxC
D xv | = oxv||
B D BxD
3. Quantifier Qx, Q € {V,3}:
A QxA
Qx|sll | = @l
QxB

B



Example

t

it _
Py Pxy
Vyl wl = W) —
PavPy;| vix " Px3 v Vy2Pyo
1 _ 3 —
. " 1 Vy1 [Pxy v Py1] Vy2 [Pxa v Py,
C

ZxVy [Px v Py]



Herbrand Proof

1. Expansion of existential subformulae.
2. Prenexification
3. Term assignment.

4. Propositional tautology check.
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1. For expansion of existential subformulae we have the
existential contraction rule:

IXA v IxA

1
T3

2. For prenexification we have four rules:

Vx|A v B] Vx(A A B) Ix[A Vv B| Ix(A A B)

rll r2) r3) rd)
VxA v B (VXA A B) IxA v B IxA AB

(where B is free for x)

3. For term assignment we have the rule:

Alt/x]
e

nl
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KS

For propositional tautology check we have the propositional
open deduction proof system KS.

Structural rules

t ava f
— acl aw] —
ava a a

identity contraction weakening

ail

Logical rules

An[BVC(] (AnB)Vv(CAD)

(AnB)vC [AvC]ABVD]
switch medial




KSh1

KS
An[BvVC(] (AnB)Vv(CAD)

(AnB)vC [AvVC]A[BVD]
KShl = ¥

Vx[A v B] ’ Vx(A A B) niA[t/x]
M xavB " vxAnrB) A

W[AvB]  k(AAB)  IxAvIA
r3) rd] qcl
[3xA v B] (3xA A B) DA
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Herbrand Proof in KSh1

A KSh1 proof is a Herbrand proof if it is in the following form:

TKs
VxXB[t/¥]
I {ni}
Q{B}
(I {r1y,r24,r3),ral}
A/
I {acl}
A

Theorem (Briinnler, 2006)
Every proof in KSh1 can be converted to a Herbrand proof.

Proof.
Via cut elimination.



Herbrand Proof Example

n}

r3)

t f f
ail — V |aw) — V aw] —
WiVy2|  Py1vPn Pc Py

[Pc v Py1] v [Py1 v Pys]

" [Px1 vV Py1]| v [Py1 vV Py,]

Vya[[Px1 v Py1] v [Pxa v Pys]]
E|.X'2 rl] — =
[Px1 V Py1] v Vya [Pxa v Pys]

r3

|

[Px1 v Py1] v 3xaVya [Pxa v Pys)

Vy1[Px1 vV Py1] v 3xaWya [Pxa v Py,

w 3x1Vy1 [Px1 v Py1] v 3xoVyo [Pxa v Py,

SxVy [Px v Py]
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More Inference Rules

» * nodes are simulated by horizontal composition of
derivations:
Ei Es A C
\ / = o x|
* B D

» V nodes are simulated by the rules r1| and r2:

E/
|x " Vx[A v B] Vx(A A B)

~ _— 2]
YxA VXAV B VXA AB
» Jnodes are simulated by h|, the Herbrand expander:
E/
. o A vV A[t/x]
IxA IxA



KSh2

t ava f
ail — acl aw] —
ava a a
KS
An[BvVC(] (AnB)Vv(CAD)
s(AAB)vC m[AvC]A[BvD]
KSh2 = I
Vx[A Vv B] Vx(A A B)
rl) 2, —
[VxA Vv B] (VXA A B)
A v A[t/x] f
hy 3w ——
DA




Herbrand Normal Form

A KSh2 proof of the form below is said to be in Herbrand Normal
Form:
s

VXH,(A)
(IExS:!

VXH ) (A)

{r1},r2),hl}

A



HNF Proof Example

t

t f f
V_y v_y ail aw] — V aw| —
' 2[ Py1 v Py; [ Pc PJ’2”

Vyz[ 3W¢WV [Py1 VP)’Z]] v [PCVP.Yl]]
rl)

w1 " Vy2 [3xVy [Px v Py| v [Py1 v Py»] ]
o Yy [Px v Py] v ¥y2 [Py1 v Pya| v [Pcv Pyi]
TxVy [Px v Py|

rl]

o Xy [Px v Py| v Vy1[PcV Py]
ZxVy [Px v Py]
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Theorems

Theorem
A formula has a proof in HNF iff it has a Herbrand proof.

Theorem
If ¢ is a proof in HNF, then we can construct an expansion proof

E¢ OfA.

Theorem
If E is an expansion proof of A, then we can construct a proof ¢g of
A in HNF.

HP HNF]| EP]
A A A

A Natural Proof System for Herbrand’s Theorem (2018)
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Further Work

» Herbrand’s Theorem as decomposition: XSqu — HNFL[
» Comparing with the cut elimination procedures for
expansion proofs in Heijltjes (2010), Alcolei et al. (2017).

» Situating this work in the context of recent work by Aler
Tubella and Guglielmi on a general theory of normalisation
for open deduction.



It’s coming home!

Football’s coming home.
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