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Herbrand’s Theorem (1930)

"Herbrand’s proof is hard to follow" (Bernays)

What is Herbrand’s theorem about? Why is it of interest?
I A “reduction” of first-order logic to propositional logic.
I A “reduction” of undecidable first-order logic to decidable

propositional logic.
I Proof theory: we can obtain a separation of a first-order

proof into first-order and propositional parts, joined by a
Herbrand disjunction.
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An example
There exist two irrational numbers a and b such that ab is
rational.

FO: ∃a, b ∈ R(Q(a) ∧ Q(b) ∧ Q(ab))

↙ ↘
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Herbrand Proof (Buss 1991)

Theorem (Herbrand’s theorem)
A first-order formula A is valid if and only if A has a Herbrand
proof. A Herbrand proof of A consists of a prenexification A? of a
strong ∨-expansion of A plus a witnessing substitution σ for A?.

A Herbrand Proof consists of:

1. Expansion of existential subformulae.

2. Prenexification

3. Term assignment.

4. Propositional tautology check.
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Expansion Proofs (Miller 1987)

Expansion trees are recursive structures produced from literal
leaves and the following nodes:

I ∧ and ∨ nodes: ∧

E1 E2

∨

E1 E2

I ∀ nodes: ∀xA

E′

x

I ∃ nodes: ∃xA

E1

t1 · · ·
En

tn

An expansion tree is correct if the Deep formula is a tautology
and the dependency relation on the edges is acyclic.
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Incorrect Expansion Tree
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∨

P̄a ∀yPy

Pb
b

a

∨

P̄b ∀yPy

Pa
a

b



Proof Systems

What would a proof system designed around Herbrand’s
Theorem look like?

1. Herbrand Proofs are proofs in the formalism.

Prop
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construction of expansion proofs.

E1 ≈
φ1

A1
& E2 ≈

φ2

A2
=⇒

?

E1
e1

E2
e2 ≈

φ1

A1
?
φ2

A2



Proof Systems

What would a proof system designed around Herbrand’s
Theorem look like?

1. Herbrand Proofs are proofs in the formalism.

Prop

H(A)

FO

A

2. Construction of proofs in the formalism reflects
construction of expansion proofs.

E1 ≈
φ1

A1
& E2 ≈

φ2

A2
=⇒

?

E1
e1

E2
e2 ≈

φ1

A1
?
φ2

A2



Proof Systems

What would a proof system designed around Herbrand’s
Theorem look like?

1. Herbrand Proofs are proofs in the formalism.

Prop

H(A)

FO

A

2. Construction of proofs in the formalism reflects
construction of expansion proofs.

E1 ≈
φ1

A1
& E2 ≈

φ2

A2
=⇒

?

E1
e1

E2
e2 ≈

φ1

A1
?
φ2

A2



Problems

Both of these are not natural features of sequent calculus proof
systems.

1. Herbrand proofs are proofs in the formalism.

Problem: In (Brünnler (2003) it is shown that the following
property is impossible to obtain in a sequent calculus system
with multiplicative rules.

“Proofs can be separated into two phases (seen bottom-up): The
lower phase only contains instances of contraction. The upper
phase contains instances of the other rules, but no contraction. No
formulae are duplicated in the upper phase.”
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Example

t
i↑

∀y1

[
Py1

w↓
P̄a ∨ Py1

]
n↓
∃x1∀y1

[
P̄x1 ∨ Py1

] ∨ ∃x2

 P̄x2
w↓

P̄x2 ∨ ∀y2Py2
r3↑
∀y2
[
P̄x2 ∨ Py2

]


c↓
∃x∀y

[
P̄x ∨ Py

]



Herbrand Proof

1. Expansion of existential subformulae.

2. Prenexification

3. Term assignment.

4. Propositional tautology check.



Inference Rules

1. For expansion of existential subformulae we have the
existential contraction rule:

∃xA ∨ ∃xA
qc↓

∃xA

2. For prenexification we have four rules:

∀x[A ∨ B]
r1↓
∀xA ∨ B

∀x(A ∧ B)
r2↓

(∀xA ∧ B)

∃x[A ∨ B]
r3↓
∃xA ∨ B

∃x(A ∧ B)
r4↓
∃xA ∧ B

(where B is free for x)

3. For term assignment we have the rule:

A[t/x]
n↓
∃xA
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KS

For propositional tautology check we have the propositional
open deduction proof system KS.

Structural rules

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a
identity contraction weakening

Logical rules

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

switch medial
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KSh1

KSh1 =

KS

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

+

∀x[A ∨ B]
r1↓

[∀xA ∨ B]

∀x(A ∧ B)
r2↓

(∀xA ∧ B)

A[t/x]
n↓
∃xA

∃x[A ∨ B]
r3↓

[∃xA ∨ B]

∃x(A ∧ B)
r4↓

(∃xA ∧ B)

∃xA ∨ ∃xA
qc↓

∃xA



Herbrand Proof in KSh1

A KSh1 proof is a Herbrand proof if it is in the following form:

KS

∀~xB[~t/~y]
{n↓}

Q{B}
{r1↓,r2↓,r3↓,r4↓}

A′

{qc↓}
A

Theorem (Brünnler, 2006)
Every proof in KSh1 can be converted to a Herbrand proof.

Proof.
Via cut elimination.
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Herbrand Proof Example

t
=

∀y1∀y2

 t
ai↓

Py1 ∨ P̄y1
∨

[
f

aw↓
P̄c

∨
f

aw↓
Py2

]
= [

P̄c ∨ Py1
]
∨
[
P̄y1 ∨ Py2

]


n↓

∃x1


∀y1


[
P̄x1 ∨ Py1

]
∨
[
P̄y1 ∨ Py2

]
n↓

∃x2

[
∀y2
[[

P̄x1 ∨ Py1
]
∨
[
P̄x2 ∨ Py2

]]
r1↓ [

P̄x1 ∨ Py1
]
∨ ∀y2

[
P̄x2 ∨ Py2

] ]
r3↓ [

P̄x1 ∨ Py1
]
∨ ∃x2∀y2

[
P̄x2 ∨ Py2

]


r1↓

∀y1
[
P̄x1 ∨ Py1

]
∨ ∃x2∀y2

[
P̄x2 ∨ Py2

]


r3↓

∃x1∀y1
[
P̄x1 ∨ Py1

]
∨ ∃x2∀y2

[
P̄x2 ∨ Py2

]
qc↓

∃x∀y
[
P̄x ∨ Py

]



More Inference Rules
I ? nodes are simulated by horizontal composition of

derivations:

?

E1 E2
≈

A
Φ

B
?

C
Ψ

D

I ∀ nodes are simulated by the rules r1↓ and r2↓:

∀xA

E′

x ≈
∀x[A ∨ B]

r1↓
∀xA ∨ B

∀x(A ∧ B)
r2↓
∀xA ∧ B

I ∃ nodes are simulated by h↓, the Herbrand expander:

∃xA

E′

t ≈
∃xA ∨ A[t/x]

h↓
∃xA
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B
?

C
Ψ

D

I ∀ nodes are simulated by the rules r1↓ and r2↓:

∀xA

E′

x ≈
∀x[A ∨ B]

r1↓
∀xA ∨ B

∀x(A ∧ B)
r2↓
∀xA ∧ B

I ∃ nodes are simulated by h↓, the Herbrand expander:

∃xA

E′

t ≈
∃xA ∨ A[t/x]

h↓
∃xA



KSh2

KSh2 =

KS

t
ai↓

a ∨ ā

a ∨ a
ac↓

a

f
aw↓

a

A ∧ [B ∨ C]
s
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

+

∀x[A ∨ B]
r1↓

[∀xA ∨ B]

∀x(A ∧ B)
r2↓

(∀xA ∧ B)

∃xA ∨ A[t/x]
h↓

∃xA

f
∃w↓
∃xA



Herbrand Normal Form

A KSh2 proof of the form below is said to be in Herbrand Normal
Form:

KS

∀~xHφ(A)

{∃w↓}

∀~xH+
φ (A)

{r1↓,r2↓,h↓}

A



HNF Proof Example

t
=

∀y1∀y2

[
t

ai↓
Py1 ∨ P̄y1

∨

[
f

aw↓
P̄c

∨
f

aw↓
Py2

]]
=

∀y1


∀y2

[[
f

∃w↓
∃x∀y

[
P̄x ∨ Py

] ∨
[
P̄y1 ∨ Py2

]]
∨
[
P̄c ∨ Py1

]]
r1↓

∀y2
[
∃x∀y

[
P̄x ∨ Py

]
∨
[
P̄y1 ∨ Py2

]]
r1↓
∃x∀y

[
P̄x ∨ Py

]
∨ ∀y2

[
P̄y1 ∨ Py2

]
h↓

∃x∀y
[
P̄x ∨ Py

] ∨
[
P̄c ∨ Py1

]


r1↓

∃x∀y
[
P̄x ∨ Py

]
∨ ∀y1

[
P̄c ∨ Py1

]
h↓

∃x∀y
[
P̄x ∨ Py

]



Theorems

Theorem
A formula has a proof in HNF iff it has a Herbrand proof.

Theorem
If φ is a proof in HNF, then we can construct an expansion proof
Eφ of A.

Theorem
If E is an expansion proof of A, then we can construct a proof φE of
A in HNF.

HP

A ←→ HNF

A ←→ EP

A

A Natural Proof System for Herbrand’s Theorem (2018)
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Further Work

I Herbrand’s Theorem as decomposition:
SKSq

A −→ HNF

A

I Comparing with the cut elimination procedures for
expansion proofs in Heijltjes (2010), Alcolei et al. (2017).

I Situating this work in the context of recent work by Aler
Tubella and Guglielmi on a general theory of normalisation
for open deduction.
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It’s coming home!

Football’s coming home.
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