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Abstract. The reduction of undecidable first-order logic to decidable proposi-
tional logic via Herbrand’s theorem has long been of interest to theoretical com-
puter science, with the notion of a Herbrand proof motivating the definition of
expansion proofs, a compositional formalism that expresses the strictly first-order
content of a proof. Recently, a simple deep inference system for first-order logic,
KSh2, has been constructed based around the notion of expansion proofs, as a
starting point to developing a rich proof theory around this foundation. This ab-
stract summarises the author’s recent paper [9], with a slight change of focus due
to the nature of the workshop.

A focus on the existential witnesses created in proofs has long been central to
first-order proof theory. If one ignores all other information about a first-order
proof except for the details of existential introduction rules, one still has an im-
portant kernel of the proof, in some sense the part of the proof that is inherently
first-order, as opposed to merely propositional. Herbrand, in [6], innovated an ap-
proach to first-order proof theory that isolates this first-order content of the proof,
and today the notion of a Herbrand proof is common, a proof-theoretic object that
shows the carrying out of the following four steps, usually but not always in this
order:

(1) Expansion of existential subformulae.
(2) Prenexification/elimination of universal quantifiers.
(3) Term assignment.
(4) Propositional tautology check.

An observation one can make is is that defining Herbrand proofs in a deep infer-
ence setting is easier and more natural than doing so in Gentzen-style systems (in
particular the Sequent Calculus and Natural Deduction). This is because the steps
(1), (2) and (3) as defined above are standard inference rules in first-order deep
inference proof systems, and, while it is obviously possible to include them as ad
hoc rules, they are not natural for Gentzen-style systems, especially carried out in
this order.

To put it another way: if we want to build a proof theory around Herbrand’s
theorem, in which the propositional and first-order content of a cut-free proof is
separated in a natural way, then deep inference is a superior setting to the sequent
calculus, in some concrete senses.

1. A Deep Inference proof system designed around Herbrand’s Theorem

In [8], Miller generalises the concept of the Herbrand expansion to higher order
logic, representing the witness information in a tree structure, and explicit trans-
formations between these ‘expansion proofs’ and cut-free sequent proofs are pro-
vided. Below is an expansion proof E, which proves the “shallow formula” Sh(E) =
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∃x∀y
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P̄ x∨ P y

)
by producing witnesses for the existential quantifiers and eliminat-

ing the universal quantifiers to produce the “deep formula” Dp(E) =
(
P̄ c∨ P y1

)
∨
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P̄ y1 ∨ P y2

)
,

read off from the top line of the expansion proof.
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What features would a proof system, P S, designed around Expansion Proofs,
EP , have? Say we have a translation π : EP → P S.

Firstly, we might want that composition of proofs in P S matches closely to com-
position of expansion proofs, that something close to functoriality of π holds:

π(E1 ?E E2) ≈ π(E1) ?F π(E2)

For Gentzen-style systems this will prove difficult, as there is no natural way to
compose two proofs by disjunction.

A second attractive feature would be that we could isolate a part of the proof
system that is relevant to Herbrand’s theorem, stating and proving it as a factori-
sation of proofs, where the first order content of the proof is isolated from the
propositional content:

π(E) =

πUp(E) P rop

Dp(E)

πLo(E) FO

Sh(E)

2. KSh2

We can show that the following deep inference proof system, KSh2, satisfies
both these features.

KSh2 = KS+

∀x[A∨B]
r1↓

[∀xA∨B]

∃xA∨A{x⇐ t}
h↓

∃xA
∀x(A∧B)

r2↓
(∀xA∧B)

f
∃w↓
∃xA

+

∀xA = ∀zA{x⇐ z} ∃zA = ∃zA{x⇐ z}
∀x∀yA = ∀y∀xA ∃x∃yA = ∃y∃xA
∀xt = t = ∃xt ∀xf = f = ∃xf

Where z does not occur in A for the top two equalities.
We define a special class of KSh2 proofs, those in Herbrand Normal Form (HNF):

Up(φ) KS

∀~xHφ(A)
Lo(φ) {r1↓,r2↓,h↓}

A
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where Hφ(A), the Herbrand disjunction of A according to φ, or just the Herbrand
disjunction of A, contains no quantifiers.

We can prove two theorems tightly linking KSh2 proofs and expansion proofs:

Theorem 2.1. If φ is an KSh2 proof of A in HNF, then we can construct an expansion
proof Eφ = π1(φ), with Sh(Eφ) = A, and Dp(Eφ) =Hφ(A).

Theorem 2.2. If E is an expansion proof with Sh(E) = A, then we can construct an
KSh2 proof φ of A in HNF, where Hφ(A) = Dp(E).

This tight correspondence between KSh2 proofs in HNF and expansion proofs
suggests KSh2 proof in HNF as a good candidate for canonical first-order proofs.
Therefore, the translation between the two classes enables us to see Herbrand
proofs as canonical first-order proofs.

3. Further Work

The translations between deep inference proofs and expansion proofs should
be seen as a springboard for further investigations. One obvious next step is to
extend KSh2 with cut, and prove cut elimination, so that completeness does not
depend on the translation into KSh1 and Brünnler’s result. Having done so, we
can then make a proper comparison with the cut elimination procedures for ex-
pansion proofs described in [1, 5, 7]. Additionally, it would be interesting to try
and situate this work in the context of recent work by Aler Tubella and Guglielmi
[2, 3], in which they provide a general theory of normalisation for various different
propositional logics. In their terminology, a Herbrand proof is close to the notion
of a decomposed proof, which has two phases: the first contraction-free and the
second consisting only of contractions. Extending the procedure, described in [4],
to remove identity-cut cycles from SKS proofs to first-order systems is likely to be
an important aspect of this research.
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