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Cut elimination in classical logic is widely regarded as
intrinsically non-confluent because of the ‘Lafont coun-
terexample’ [3]: eliminating the cut in
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requires choosing between Π1 and Π2. Since there is
no natural choice between the two, the only way to
obtain canonical cut-free proofs in classical logic is by
imposing a strategy on the normalisation procedure. The
underlying assumption, of course, is that cut elimination
has to be performed in a Gentzen system. However,
Gentzen systems were not designed for proof semantics
and computational interpretations of proofs, so it should
not be surprising that they do not possess the desired
computational properties.

Deep inference is being developed as a modern alter-
native to Gentzen systems [4], and it does offer a solution
to the canonicity problem, as we show in this work. Deep
inference stipulates that proofs can be composed by the
same connectives used to compose formulae [5]. For

example, if φ =
A∥∥∥∥
B

and ψ =
C∥∥∥∥
D

are two proofs whose

premisses are A and C and conclusions are B and D,

then φ ∧ ψ =
A ∧ C∥∥∥∥
B ∧D

and φ ∨ ψ =
A ∨ C∥∥∥∥
B ∨D

are valid

proofs with premisses A ∧ C and A ∨ C , and conclu-
sions B ∧D and B ∨D. It turns out that, as a nontrivial
but direct result of this stipulation, every cut instance
can be transformed into several atomic cut instances by
a local procedure of polynomial-size complexity [1]. Sig-
nificantly for this work, while φ ∧ ψ can be represented
in Gentzen, φ ∨ ψ cannot. This is very unfortunate and
it is the reason behind Lafont’s counterexample.

One way to achieve cut elimination in deep inference
uses structures called atomic flows, which are obtained by
tracing all the atom occurrences in a proof [6]. Atomic
flows yield a more general normal form than the cut
free one, but so far, as in Gentzen theory, we obtained
neither a canonical form nor a semantically natural one.

In this work, which is heavily inspired by atomic flows,
we show that there is indeed a confluent cut elimination
procedure with a natural semantic justification. We pro-
ceed in two phases: we first tackle the propositional case
with a construction called the experiments method, and
then we lift it to the predicate calculus, using the notion
of a Herbrand proof [2].

The experiments method. Take a proof φ of the propo-
sitional formula A. Trace all the atom occurrences in
the proof (atomic flows are convenient for this). For
every atom a1 (connected component in the atomic
flow) replace its occurrences with truth values, so pro-
ducing two ‘experiment’ derivations: one that proves A
from a1 and one that proves A from ā1. By fixing the
truth value of a all the cuts on a become (t ∧ f)/f and
vanish. Proceed recursively on a2, . . . , an, producing
the derivations φ1, . . . , φ2n . Build the cut free deriva-

tion ψ =
B1

φ1

∥∥∥∥
A
∨ · · · ∨

B2n

φ2n
∥∥∥∥
A

, where the Bis are conjunc-

tions of atoms, each representing one assignment. Since
B1 ∨ · · · ∨ B2n is valid, complete ψ into a proof of A,
which is unique modulo associativity and commutativity.

Lifting to the predicate calculus. Given a first order proof
of A, permute down certain inference steps, including,

crucially, existential contractions:
∃xB ∨ ∃xB
∃xB

. This process

of stratification is naturally confluent and separates the
propositional aspect of the proof from that which is in-

trinsically first-order. I.e., it performs
−∥∥∥∥
A →

−
φ
∥∥∥∥prop. rules

H (A)∥∥∥∥quant. rules

A

,

where H (A) is a Herbrand proof of A. As φ is proposi-
tional, the experiments method can be used on it to give
a cut-free proof of H (A) and thus also of A.

This procedure naturally respects the semantic, dis-
junctive nature of the existential quantifier—precisely
what is not possible with Gentzen methods.
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