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1 Supplementary methods

1.1 GASP

All simulations were carried out using the program GASP [1, 2, 3, 4], which models the
rigid-unit motion of tetrahedral frameworks. The GASP algorithm models the structure
simultaneously with a collection of atoms (Si, O) and a set ofgeometric templates with
ideal tetrahedral angles and a center – vertex (Si–O) bond length appropriate to the system
(1.61Å for silica). The offset between an atom and a template vertex is decomposed into
components representing stretching of the bond and bendingof the tetrahedral angles, as
illustrated in Supplementary figure 1, and harmonic springsare applied to constrain each
of these components. In an iterative process of relaxation,the atoms and templates move
together so as to minimise the distortion in the structure. The algorithm includes hard-
sphere interactions between atoms, so as to forbid two atomsfrom approaching each other
more closely than the sum of their radii. However no other long-range interaction, attractive
or repulsive, was included, as the objective was to determine whether or not the atoms can
be made to match the templates exactly; the bridging (Si–O–Si) angle was unconstrained.

Simulations at different densities were carried out by taking an initial set of fractional
coordinates for the atoms (e.g. from a crystal structure), setting the cell parameter to pro-
duce a given density, then geometrically relaxing the system. We found that there was a
sharp distinction between cases where the atoms could be made to match the templates
exactly, and those where some distortion remained. We defined a perfect match using the
very strict criteria that bond lengths should differ from the ideal by no more than 0.001̊A,
and that the internal angles of the tetrahedron should vary by no more than 0.001◦, which
is close to the numerical limit of accuracy of the algorithm.A small random perturbation
of about 0.01Å was applied to the atomic positions before relaxation. Therelaxed atomic
coordinates therefore correspond to an instantaneous snapshot of the system rather than to
the crystallographic average positions.

1.2 Free boundary conditions simulations

The only real cubic zeolite structure that did not display a window when simulated with
periodic boundary conditions was the clathrasilMTN . This dodecasil consists of cages
(i.e. it is a foam in that every point in space can be assigned to a single polyhedra or
cage) and has multiple interlocking 5-rings. Simulations with periodic boundary conditions
always displayed a small degree of tetrahedral distortion.Simulations of supercells of
increasing size of 136, 1088, 3672 and 8704 polyhedra with periodic boundary conditions
still displayed the distortion. We then simulated free boundary conditions by severing those
bonds that crossed the boundaries of the simulation cell andplacing the resulting truncated
structure in a larger simulation box. The density of the truncated structure was controlled
by fixing the coordinates of selected polyhedra at the corners. The density was calculated
by systematically sampling points, using a Voronoi type construction, in the simulation
cell, so as to obtain a density for the central bulk-like region while ignoring the surface
region. This was tested against results forFAU where it was not necessary, and shown
to be a reliable procedure as we obtained very similar results with either periodic or free
boundary conditions.

These supercells were all perfect with free boundary conditions; simulations at differ-
ent densities showed a window as found for the other real cubic zeolites. On inspection of
the periodic and non-periodic relaxed structures, it was clear that in the non-periodic struc-
tures, each 5-ring relaxed with a different pattern of tetrahedral tilts, whereas the regularity
introduced by periodic boundary conditions required each 5-ring to have the same pattern
of tilts.

This implies that periodic simulations of this clathrasil using any method — not only
our geometric approach — would tend to introduce an extra degree of strain in the structure.
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This is in line with the recent observation by O’Keefe (private communication) that the
crystallographically symmetric positions for the atoms inMTN are not consistent with
perfectly tetrahedral SiO4 geometry. Similar to this cubic framework, we found that several
non-cubic structures were nearly perfectible with periodic boundary condition, but fully
perfectible with free boundary conditions. Those wereMEI , *BEA , IST, MWW and
DOH.

We have also investigated models of silica glass generated by the WWW bond-swapping
algorithm [5] and described as ‘large well-relaxed [silicastructures]’, as a means to study
very large unit cells. We used structures containing 1000 and 4062 tetrahedra, both of
which gave similar results; those for the 1000-tetrahedronmodel are discussed here. The
structure as provided contained a great deal of tetrahedraldistortion, with bond lengths of
1.61 ± 0.04 Å and O–Si–O angles of109.46 ± 5.79◦. Given the method of generating
these structures, by relaxation with a potential, this could represent intrinsic strain of the
tetrahedra (i.e. the bonding in the structure is not compatible with geometrically perfect
tetrahedra); or it could represent distortion of an otherwise ideal tetrahedral network by the
long-range interaction terms in the potential. Geometric simulation with periodic bound-
ary conditions reduced the degree of distortion but still left the tetrahedra imperfect (bond
lengths of1.61 ± 0.01 Å, bond angles of109.47 ± 1.92◦). Geometric simulation with
free boundary conditions, however, as for the case ofMTN , did indeed produce a perfect
structure, albeit over an extremely narrow window. The narrowness of the window is un-
derstandable since the distribution of bridging angles covers a full range from near 180◦ at
some parts of the solid (so that further extension creates tension in a bond) to around120◦,
so that further compression leads to a steric collision in some parts of the solid, while at
other parts the framework is expected to be jammed. This occurs because all possible kinds
of allowed local conformations are present at some locationin the glass when the system
is large enough, using a Lifshitz type argument [6].

2 Supplementary notes

2.1 Effective framework density

The effective framework density is defined as the number of tetrahedrally coordinated
atoms (T-atoms) per 1000̊A3. For non-zeolitic framework structures, values of at least
19 to 21 T/1000̊A3 are generally obtained, while for zeolites with fully crosslinked frame-
works the observed values range from about 10 for structureswith the largest pore volume
to around 20.6. The framework density is obviously related to the pore volume but does
not reflect the size of the pore openings. For some more flexible zeolite structure types, the
framework density values can vary appreciably.

A framework type is independent of chemical composition. Therefore, idealized frame-
work data (cell parameters, coordinates of atoms at the center of the tetrahedra etc. ) were
obtained from a distance-least-squares refinement [7] in the given (highest possible) sym-
metry for the framework type and we call it an effective density. The refinement was carried
out assuming a (sometimes hypothetical)SiO2 composition and with the prescribed inter-
atomic distance for Si–O = 1.61̊A. In each case, the coordinates were first optimized within
an approximate unit cell, and then the unit cell was refined.

The space group, the cell dimensions and the atomic coordinates of a real material will
depend upon its chemical composition, but they will be related to the crystallographic data
listed for the framework type. If the symmetry is different,it will be a subgroup of this
space group, and the unit cell parameters will be related by relatively simple geometric
considerations.
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2.2 Classification by Baur

Baur in 1992 [8] classified zeolites ascollapsibleif all the bridging angles co-rotate, ornon-
collapsibleif some angles anti-rotate. By this criterion we would classify FAU, LTA , TSC,
KFI , PAU, LTN and-CLO as non-collapsible. We note that the frameworks classified as
‘non-collapsible’ due to their antirotating angles do nonetheless collapse on compression,
as shown by the example ofFAU.

2.3 Hypothetical zeolites

We have looked at several hypothetical zeolite structures.Supplementary figure 2 shows
one of the hypothetical zeolites 2294 60312. This structure was generated by Treacy et
al [9] as a hypothetical zeolite. To the eye, the structure looks acceptable though there
are slight distortions of some of the tetrahedra. However, geometric simulation does not
show any window in which the tetrahedra can be made perfect, with either periodic or
free boundary conditions. Since the structure has no flexibility window and cannot support
geometrically perfect tetrahedra, we would predict that itcannot be synthesised and would
reject it as a candidate pure-silica zeolite structure.

3 Supplementary figures
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Figure Supplementary figure 1: GASP overlays a bonded group of atoms with a template
representing the ideal local tetrahedral geometry. The template is fitted to the atoms by
a least-squares procedure. The mismatch between an atom andits template vertex is de-
composed into components of bond stretching and tetrahedral angle bending, which are
constrained by harmonic springs. Over multiple iterationsof fitting templates and atoms,
the structure is brought to perfect tetrahedral geometry; if not, some residual distortion re-
mains. Red atoms represent oxygens, blue – silicon. Templates are represented by gray
lines. Gay circles represent positions of template vertices. Tetrahedra have ideal shape
when actual atom positions match the atom positions of templates, i.e. red atoms overlay
gray circles.
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Figure Supplementary figure 2: Structure of 2294 60312 hypothetical zeolite in
tetrahedral view. This structure is from the hypothetical zeolite database at
http://www.hypotheticalzeolites.net [9]

[3] Gatta, G. & Wells, S. Rigid unit modes at high pressure: anexplorative study of a
fibrous zeolite-like framework with edi topology.Phys. Chem. Min.31, 1–10 (2004).

[4] Gatta, G. & Wells, S. Structural evolution of zeolite levyne under hydrostatic and non-
hydrostatic pressure: geometric modelling.Phys. Chem. Min.33, 243–255 (2006).

[5] Vink, R. & Barkema, G. Large well-relaxed models of vitreous silica,coordination
numbers, and entropy.Phys. Rev. B67, 245201 (2003).

[6] Lifshitz, I. The energy spectrum of disordered systems.Adv. Phys.13, 483–536 (1964).

[7] Baerlocher, C., Hepp, A. & Meier, W. DLS-76, a FORTRAN program for the simu-
lation of crystal structures by geometric refinement.Institut für Kristallographie and
Petrographie, ETH, Z̈urich (1978).

[8] Baur, W. Self-limiting distortion by antirotating hinges is the principle of flexible but
noncollapsible frameworks.J. Solid State Chem.97, 243–247 (1992).

[9] Treacy, M., Rivin, I., Balkovsky, E., Randall, K. & Foster, M. Enumeration of periodic
tetrahedral frameworks. ii. polynodal graphs.Microporous and Mesoporous Mat.74,
121–132 (2004).

4


