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Classical Ciesielski-Taylor Identity

m (X, Q(”)) is a Bessel process X starting from 0 with dimension v > 0.

m i.e. the [0, 00)-valued diffusion whose infinitesimal generator is given by

v—1

Lof(@) = 21" (5) + L1 f (2)

2

on (0,00) for f € C?(0,00) with instantaneous reflection at 0 when
v € (0,2) (i.e. £/(07) =0) and when v > 2 the origin is an
entrance-non-exit boundary point.

m Ciesielski and Taylor (1962) and later Getoor and Sharp (1979) show: For
a>0and any v > 0,

) @ ([ v
(TMQ( >> = (/ Iix,<a} ds, Q" +2>> (1)
0

where
T, =inf{s > 0; X, = a}.
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Subsequent work on Ciesielski-Taylor Identities

m Biane (1985) Gives a generalisation to one dimensional diffusions.
m Yor (1991) gives a probabilistic explanation of the original C-T identity
through occupation time formula and Ray-Knight theorems.
m Carmona, Petit and Yor (1998) establish a similar identity for positive
self-similar ‘saw-tooth’ process.
m Bertoin (1992) remarks that a C-T-type identity can be observed in the
setting of a reflected spectrally negative stable Lévy process.
One begins to get the whiff of the possibility of a general result for positive
self-similar Markov processes.
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Positive self-similar Markov process

m a-pssMp: A [0, co)-valued Feller process which enjoys the following
a-self-similarity property, where o > 0. For any z > 0, and ¢ > 0,

(X0)i20,Per) @ ((cXumar)is0, Pa) -

m Lamperti (1972) showed that, for any z € IR, there exists a one to one
mapping between P, the law of a generic Lévy process (possibly killed at
an independent and exponentially distributed time), say £ = (&; : ¢ > 0),
starting from z, and the law P.: via the relation

Xt:esAﬁ70§t<<7

where ¢ = inf{¢t > 0: X; =0} and

A = inf{s > 0; / e du > t}.
0
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Spectrally negative, entrance law, recurrent extension

m In this talk we are interested in the case that X (and hence &) has only
negative jumps.

m When E(&1) > 0 and £ is not killed, one may extend the definition of X to
include the case that it is issued from the origin by establishing its
entrance law Pg as the weak limit with respect to the Skorohod topology
of P, as z | 0. Bertoin and Yor (2002).

m When E(&;) < 0 (resp. ¢ is killed) then the boundary state 0 is reached
continuously (resp. by a jump). In these two cases, one cannot construct
an entrance law, however, Rivero (2005) and Fitzsimmons (2006), show
that it is possible instead to construct a unique recurrent extension on
[0, 00) such that paths leave 0 continuously, thereby giving a meaning to
Py, if and only if there exists a 6 € (0, a) such that E(e1) = 1.

m Objective of this talk: Fix v > 0 and show that for a given spectrally
negative Lévy process fitting the previous two categories, and hence given
the associated law Py,

d o *
(Ta,Po) & (/ H{xvggll}ds,«P()) )
Jo

where T, = inf{¢t > 0: X; = a} and Pj is to be identified.
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A new transformation for spectrally negative Lévy processes: 73

m For any spectrally negative Lévy process, henceforth denoted by
& = (&,t > 0), we define simultaneously the Laplace exponent and its law
P¥ by
¥(u) = log E¥ (exp{ué1}), u > 0.
Warning: included in the definition of ¢ is the possibility of
exponential killing!

m For each fixed § > 0, define the linear transformation

Tah(u) = (u+5), u=0.

U
u+pB
m Theorem: 7 is the Laplace exponent of another spectrally negative Lévy
process with no exponential killing.
m Easy proof when % has no killing and %’(0+) > 0:
Algebra: Taip(u) = Egip(u) — BEs(u)
Esf(u) = f(u+ B) — f(B) (Esscher transform)

¢(u) = ¥(u)/u (Laplace exponent of descending ladder height
subordinator).
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Ciesielski-Taylor identity for spectrally negative pssMp

Theorem

Fix o > 0. Suppose that 1 is the Laplace exponent of a spectrally negative
Lévy process. Assume that 6, the largest root in [0,00) of the equation

¥(0) = 0, satisfies § < cv. Let Py be the law of the pssMp associated with P¥
and issued from 0. Then for any a > 0, the following Ciesielski- Taylor type

identity in law
P (i) o Ta
(Ta,PO) & I{x,<a}ds, P}
0

holds.
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A fluctuation identity of Patie

m Assume that 0 < 0 < « where ¥(6) = 0.
m Let

an (i)t = [ w(ak), a0 =1,
k=1

m Define the positive and entire function Zy o (z) which admits the series

representation
oo

I"Z’;a(z) = Z an(d};a)zn, z € C.

n=0

m Theorem (Patie): For 0 < z < a and ¢ > 0, we have

’ Zy,a(qa®)

In particular
1

E( [ef(l'l‘(,} _ )
0 Ty,a(qa®)
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How the proof works: |
m Define
Og’aw(x; a) _ E;raw [G*Q.fooo H{xsga}ds]

and try to show that 0¥ (0;a) = E§ [e™ "] = 1/Zy a(qa®) for all
q=>0.

m Self-similarlty of X means that

072" (0;a) = 0 (0;1),

qa™

so enough to establish the suggested equality when a = 1.

m Next, note using spectral negativity,
OJ*¥(0;1) = EJ*¥(e™"™)07>¥(1;1)
so it is enough to show that

Iry,0(q)

070 (1) = Ty,a(q)
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m Let 7; =inf{s > 0; X, <1} and 71 =inf{s > 0: X, = 1}.
m Fix y > 1.
m Use Strong Markov Property, (Tat)' (07) = 4(a)/a > 0 and spectral
negativity:
ol**(1;1)

—a [0 s b o - o a¥
:EITW |:6 afo H{Xsél}d‘:| (Ez—oﬂ/ [H{Tl<oo}E§Tf) [6 qu]] OZ 1/1(1;1) +EZ— Y [H{leoo}])
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m Let 1y =inf{s > 0; X, <1} and 71 =inf{s > 0: X, = 1}.
m Fix y > 1.

m Use Strong Markov Property, (Tat)' (07) = 4(a)/a > 0 and spectral
negativity:

ol**(1;1)

T,
—ET¥ |:e_‘1f0 ”{xsguﬂ (BT [Lira<on BRY [ ]] OF¥(151) + BT [Ir =] )
= Solving for OJ>%(1;1) we get

[Tir=c0}]

: |
Ty
{B1* [emrs tensne | L~ B [l <y BT -]

ETaw
0¥ (1;1) = L
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How the proof works: Il

m Let 1y =inf{s > 0; X, <1} and 71 =inf{s > 0: X, = 1}.
m Fix y > 1.

m Use Strong Markov Property, (Tat)' (07) = 4(a)/a > 0 and spectral
negativity:

07" (1;1)
—ET¥ { —aly” H{xs<1}d§} (BT [Lira<on BRY [ ]] OF¥(151) + BT [Ir =] )
= Solving for OJ>%(1;1) we get
B [Iir1=oc)]

—1 -
{ETaw [ 7qfo Texs <1}ds:|} ETO‘ [H{T1<OO}E et [6 qu]]

m Proof is formalised by taking limits as y | 1.

0]°*(1;1) =
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How the proof works Ill: special case, bounded variation paths
m Let 75 = inf{t > 0: & < 0}. Bounded variation paths for ¢ implies that
P7o¥(7& > 0) = 1.
m Hence P7*¥(7; > 0) = 1. Hence can just set y = 0 in the formula for
0J=¥(1;1).
= In which case, E7* [e afy! H{X‘Uds] 1.

m On the one hand, recalling that (7o%) (0%) = ¥(a)/a > 0, we observe
that

E]* [[{ry=00}] = Pgo¥ (Tg = 00 W, (0+) = %Q)Wm,(oﬂ >0

) - L
(Taw)'(07)

Here Wr. 4 is the scale function under P7=¥_ In other words it is the
unique continuous function on [0, 00) whose Laplace transform satisfies

/0 e Wry(z)de = Too(a)’
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How the proof works IV: special case, bounded variation paths

m For the remaining term, by Fubini's theorem (recalling the positivity of
coefficients in the definition of Z7. 4, ), we have with the help of Patie's
identity,

Y [Liry<on} ERY [e7] ]

— ETaw {ITaw,a(qX% )]I{Tl <oo} :|
! ITQ¢,a(q)

1 Tat) = n an
=—— _F/o an (Ta; ) q" X7 e < oo
Trova(@) ! [Z e 2 W)

_ 1
I7ov,a(9)

oo

an ¢
> an(Tat;a)q"Eq [e E H{Tg@o}] :

n=0
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How the proof works IV: special case, bounded variation paths

m For the remaining term, by Fubini's theorem (recalling the positivity of
coefficients in the definition of Z7. 4, ), we have with the help of Patie's
identity,

Y [Liry<on} ERY [e7] ]

— ETaw {ITaw,a(qX% )]I{Tl <oo} :|
! ITQ¢,a(q)

1 7’1/) = n an
——— _F. @ E an(Tay; ) q" Xry Lir <00
Irowa(d) ! [ (Tati @) 0" X in< }}

n=0
— # i a (7’ ’l/J a)anTaw [eangﬂ_g]l P ]
Irav.ald) = ’ 0 {5 <o}

m Classical fluctuation theory for spectrally negative Lévy processes gives (in
the bounded variation case):

u€ ’7; u
EF (") =1 22w o).
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How the proof works V:
m Putting the bits together
Tat (.
07" (1;1)

Y(a) Wraw(04) /o
=0 %(Taw;a)q”{l_wy‘“" Wan(O+)}
1—
ZTudl,a(‘Z)
w(a)ITaw’a(q)

— « ZZO:O an(%'[/); a)qnnii(:n) .
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How the proof works V:

m Putting the bits together

ol*"(1;1)
_ Y(a) Wrw(0+) /o
220 an(Tawsa)qn {1-Tatlam) y—anw , (0+)}
1—
ZTuw,a(‘Z)

= w(a)ITaw’a(q)
(e ZZO:O an(?jy’(/}; a)qn 7:1127(’:!”)

m Next, observing that, for any n > 1,

P(a)an o n - B
Ww(’ﬁﬂ/):a) = kl:[llb(ock) (=1 when n = 0).

we deduce, as required, the identity

OZaw(l; 1) = Tryw,0(9) _ Try9,0(9)

oo

o (Y )q®  Tyalg)
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Example: cross reference against the original CT identity
® When 1 has no jump component it is possible to extract the original
Ciesielski-Taylor identity for Bessel processes.
m Indeed, we may take a = 2 and

o (u) = “u? 4 (g — 1) U

where v > 0. In that case it follows that P¥¥ is the law of a Bessel
process of dimension v as described in the introduction.

m Note that the root 6 is zero for v > 2 and when v € (0,2) we have
0 =2 — v < 2 = « thereby fulfilling the required condition of the main
result.

m The transformation 73 gives us the new Laplace exponent

Topu(u) = %uQ + %u = Yuya(u).



