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Classical Ciesielski-Taylor Identity

(X ,Q(ν)) is a Bessel process X starting from 0 with dimension ν > 0.

i.e. the [0,∞)-valued diffusion whose infinitesimal generator is given by

Lν f (x) =
1

2
f ′′(x) +

ν − 1

2x
f ′(x)

on (0,∞) for f ∈ C 2(0,∞) with instantaneous reflection at 0 when
ν ∈ (0, 2) (i.e. f ′(0+) = 0) and when ν ≥ 2 the origin is an
entrance-non-exit boundary point.

Ciesielski and Taylor (1962) and later Getoor and Sharp (1979) show: For
a > 0 and any ν > 0,(

Ta ,Q
(ν)
)

(d)
=

(∫ ∞
0

I{Xs≤a}ds,Q
(ν+2)

)
(1)

where
Ta = inf{s ≥ 0; Xs = a}.
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Subsequent work on Ciesielski-Taylor Identities

Biane (1985) Gives a generalisation to one dimensional diffusions.

Yor (1991) gives a probabilistic explanation of the original C-T identity
through occupation time formula and Ray-Knight theorems.

Carmona, Petit and Yor (1998) establish a similar identity for positive
self-similar ‘saw-tooth’ process.

Bertoin (1992) remarks that a C-T-type identity can be observed in the
setting of a reflected spectrally negative stable Lévy process.
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Subsequent work on Ciesielski-Taylor Identities

Biane (1985) Gives a generalisation to one dimensional diffusions.

Yor (1991) gives a probabilistic explanation of the original C-T identity
through occupation time formula and Ray-Knight theorems.

Carmona, Petit and Yor (1998) establish a similar identity for positive
self-similar ‘saw-tooth’ process.

Bertoin (1992) remarks that a C-T-type identity can be observed in the
setting of a reflected spectrally negative stable Lévy process.

One begins to get the whiff of the possibility of a general result for positive
self-similar Markov processes.
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Positive self-similar Markov process

α-pssMp: A [0,∞)-valued Feller process which enjoys the following
α-self-similarity property, where α > 0. For any x > 0, and c > 0,

((Xt)t≥0,Pcx )
(d)
= ((cXc−αt)t≥0,Px ) .

Lamperti (1972) showed that, for any x ∈ IR, there exists a one to one
mapping between Px , the law of a generic Lévy process (possibly killed at
an independent and exponentially distributed time), say ξ = (ξt : t ≥ 0),
starting from x , and the law Pex via the relation

Xt = eξAt , 0 ≤ t < ζ,

where ζ = inf{t > 0 : Xt = 0} and

At = inf{s ≥ 0;

∫ s

0

eαξu du > t}.
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Spectrally negative, entrance law, recurrent extension

In this talk we are interested in the case that X (and hence ξ) has only
negative jumps.

When E(ξ1) ≥ 0 and ξ is not killed, one may extend the definition of X to
include the case that it is issued from the origin by establishing its
entrance law P0 as the weak limit with respect to the Skorohod topology
of Px as x ↓ 0. Bertoin and Yor (2002).

When E(ξ1) < 0 (resp. ξ is killed) then the boundary state 0 is reached
continuously (resp. by a jump). In these two cases, one cannot construct
an entrance law, however, Rivero (2005) and Fitzsimmons (2006), show
that it is possible instead to construct a unique recurrent extension on
[0,∞) such that paths leave 0 continuously, thereby giving a meaning to
P0, if and only if there exists a θ ∈ (0, α) such that E(eθξ1) = 1.

Objective of this talk: Fix α > 0 and show that for a given spectrally
negative Lévy process fitting the previous two categories, and hence given
the associated law P0,

(Ta ,P0)
(d)
=

(∫ ∞
0

I{Xs≤a}ds,P
∗
0

)
,

where Ta = inf{t > 0 : Xt = a} and P∗0 is to be identified.
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negative Lévy process fitting the previous two categories, and hence given
the associated law P0,

(Ta ,P0)
(d)
=

(∫ ∞
0

I{Xs≤a}ds,P
∗
0

)
,

where Ta = inf{t > 0 : Xt = a} and P∗0 is to be identified.



6/ 15

A Ciesielski-Taylor type identity for positive self-similar Markov processes

Spectrally negative, entrance law, recurrent extension

In this talk we are interested in the case that X (and hence ξ) has only
negative jumps.

When E(ξ1) ≥ 0 and ξ is not killed, one may extend the definition of X to
include the case that it is issued from the origin by establishing its
entrance law P0 as the weak limit with respect to the Skorohod topology
of Px as x ↓ 0. Bertoin and Yor (2002).

When E(ξ1) < 0 (resp. ξ is killed) then the boundary state 0 is reached
continuously (resp. by a jump). In these two cases, one cannot construct
an entrance law, however, Rivero (2005) and Fitzsimmons (2006), show
that it is possible instead to construct a unique recurrent extension on
[0,∞) such that paths leave 0 continuously, thereby giving a meaning to
P0, if and only if there exists a θ ∈ (0, α) such that E(eθξ1) = 1.

Objective of this talk: Fix α > 0 and show that for a given spectrally
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A new transformation for spectrally negative Lévy processes: Tβ

For any spectrally negative Lévy process, henceforth denoted by
ξ = (ξt , t ≥ 0), we define simultaneously the Laplace exponent and its law
Pψ by

ψ(u) = logEψ(exp{uξ1}), u ≥ 0.

Warning: included in the definition of ξ is the possibility of
exponential killing!

For each fixed β > 0, define the linear transformation

Tβψ(u) =
u

u + β
ψ(u + β), u ≥ 0.

Theorem: Tβψ is the Laplace exponent of another spectrally negative Lévy
process with no exponential killing.

Easy proof when ψ has no killing and ψ′(0+) ≥ 0:
Algebra: Tβψ(u) = Eβψ(u)− βEβφ(u)

Eβf (u) = f (u + β)− f (β) (Esscher transform)

φ(u) = ψ(u)/u (Laplace exponent of descending ladder height
subordinator).
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Ciesielski-Taylor identity for spectrally negative pssMp

Theorem
Fix α > 0. Suppose that ψ is the Laplace exponent of a spectrally negative
Lévy process. Assume that θ, the largest root in [0,∞) of the equation
ψ(θ) = 0, satisfies θ < α. Let Pψ0 be the law of the pssMp associated with Pψ
and issued from 0. Then for any a > 0, the following Ciesielski-Taylor type
identity in law (

Ta ,P
ψ
0

)
(d)
=

(∫ ∞
0

I{Xs≤a}ds,P
Tαψ
0

)
holds.
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A fluctuation identity of Patie

Assume that 0 ≤ θ < α where ψ(θ) = 0.

Let

an(ψ;α)
−1 =

n∏
k=1

ψ(αk), a0 = 1,

Define the positive and entire function Iψ,α(z ) which admits the series
representation

Iψ,α(z ) =
∞∑

n=0

an(ψ;α)z
n , z ∈ C.

Theorem (Patie): For 0 ≤ x ≤ a and q ≥ 0, we have

Eψx

[
e−qTa

]
=
Iψ,α(qxα)
Iψ,α(qaα)

.

In particular

Eψ0

[
e−qTa

]
=

1

Iψ,α(qaα)
.
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How the proof works: I

Define

OTαψq (x ; a) = ETαψx

[
e−q

∫∞
0 I{Xs≤a}ds

]
and try to show that OTαψq (0; a) = Eψ0

[
e−qTa

]
= 1/Iψ,α(qaα) for all

q ≥ 0.

Self-similarlty of X means that

OTαψq (0; a) = OTαψqaα (0; 1),

so enough to establish the suggested equality when a = 1.

Next, note using spectral negativity,

OTαψq (0; 1) = ETαψ0 (e−qT1)OTαψq (1; 1)

so it is enough to show that

OTαψq (1; 1) =
ITαψ,α(q)
Iψ,α(q)

.
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A Ciesielski-Taylor type identity for positive self-similar Markov processes

How the proof works: II

Let τ1 = inf{s > 0; Xs < 1} and T1 = inf{s > 0 : Xs = 1}.
Fix y > 1.

Use Strong Markov Property, (Tαψ)′(0+) = ψ(α)/α > 0 and spectral
negativity:

OTαψq (1; 1)

= ETαψ1

[
e−q

∫ Ty
0 I{Xs≤1}ds

](
ETαψy

[
I{τ1<∞}E

Tαψ
Xτ1

[
e−qT1

]]
OTαψq (1; 1) + ETαψy

[
I{τ1=∞}

])
.

Solving for OTαψq (1; 1) we get

OTαψq (1; 1) =
ETαψy

[
I{τ1=∞}

]{
ETαψ1

[
e−q

∫ Ty
0 I{Xs≤1}ds

]}−1

− ETαψy

[
I{τ1<∞}E

Tαψ
Xτ1

[e−qT1 ]
] .

Proof is formalised by taking limits as y ↓ 1.
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A Ciesielski-Taylor type identity for positive self-similar Markov processes

How the proof works III: special case, bounded variation paths

Let τ ξ0 = inf{t > 0 : ξt < 0}. Bounded variation paths for ξ implies that
PTαψ(τ ξ0 > 0) = 1.

Hence PTαψ1 (τ1 > 0) = 1. Hence can just set y = 0 in the formula for
OTαψq (1; 1).

In which case, ETαψ1

[
e−q

∫ T1
0 I{Xs≤1}ds

]
= 1.

On the one hand, recalling that (Tαψ)′(0+) = ψ(α)/α > 0, we observe
that

ETαψ1

[
I{τ1=∞}

]
= PTαψ0

(
τ ξ0 =∞

)
=

1

(Tαψ)′(0+)
WTαψ(0+) =

ψ(α)

α
WTαψ(0+) > 0

Here WTαψ is the scale function under PTαψ. In other words it is the
unique continuous function on [0,∞) whose Laplace transform satisfies∫ ∞

0

e−uxWTαψ(x)dx =
1

Tαψ(u)
.
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A Ciesielski-Taylor type identity for positive self-similar Markov processes

How the proof works IV: special case, bounded variation paths

For the remaining term, by Fubini’s theorem (recalling the positivity of
coefficients in the definition of ITαψ,α), we have with the help of Patie’s
identity,

ETαψ1

[
I{τ1<∞}E

Tαψ
Xτ1

[
e−qT1

]]
= ETαψ1

[
ITαψ,α(qXα

τ1)I{τ1<∞}
ITαψ,α(q)

]
=

1

ITαψ,α(q)
ETαψ1

[
∞∑

n=0

an(Tαψ;α)qnXαn
τ1 I{τ1<∞}

]

=
1

ITαψ,α(q)

∞∑
n=0

an(Tαψ;α)qnETαψ0

[
e
αnξ

τ
ξ
0 I{τξ0<∞}

]
.

Classical fluctuation theory for spectrally negative Lévy processes gives (in
the bounded variation case):

ETαψ0 (e
uξ
τ
ξ
0 I{τξ0<∞}) = 1− Tαψ(u)

u
WTαψ(0+).
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the bounded variation case):

ETαψ0 (e
uξ
τ
ξ
0 I{τξ0<∞}) = 1− Tαψ(u)

u
WTαψ(0+).



14/ 15

A Ciesielski-Taylor type identity for positive self-similar Markov processes

How the proof works V:

Putting the bits together

OTαψq (1; 1)

=
ψ(α)WTαψ(0+)/α

1−
∑∞

n=0 an (Tαψ;α)qn
{
1−Tαψ(αn)

αn
y−αnWTαψ(0+)

}
ITαψ,α(q)

=
ψ(α)ITαψ,α(q)

α
∑∞

n=0 an(Tαψ;α)qn Tαψ(αn)
αn

.

Next, observing that, for any n ≥ 1,

ψ(α)αn

αTαψ(αn)
an(Tαψ;α)−1 =

n∏
k=1

ψ(αk) (= 1 when n = 0).

we deduce, as required, the identity

OTαψq (1; 1) =
ITαψ,α(q)∑∞

n=0 an(ψ;α)q
n
=
ITαψ,α(q)
Iψ,α(q)

.
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A Ciesielski-Taylor type identity for positive self-similar Markov processes

Example: cross reference against the original CT identity

When ψ has no jump component it is possible to extract the original
Ciesielski-Taylor identity for Bessel processes.

Indeed, we may take α = 2 and

ψν(u) =
1

2
u2 +

(ν
2
− 1
)
u

where ν > 0. In that case it follows that Pψν· is the law of a Bessel
process of dimension ν as described in the introduction.

Note that the root θ is zero for ν ≥ 2 and when ν ∈ (0, 2) we have
θ = 2− ν < 2 = α thereby fulfilling the required condition of the main
result.

The transformation T2 gives us the new Laplace exponent

T2ψν(u) =
1

2
u2 +

ν

2
u = ψν+2(u).
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