

A Ciesielski-Taylor type identity for positive self-similar Markov processes

A. E. Kyprianou and P. Patie

Department of Mathematical Sciences, University of Bath

Classical Ciesielski-Taylor Identity

Classical Ciesielski-Taylor Identity

- $(X, Q^{(\nu)})$ is a Bessel process X starting from 0 with dimension $\nu > 0$.

Classical Ciesielski-Taylor Identity

- $(X, Q^{(\nu)})$ is a Bessel process X starting from 0 with dimension $\nu > 0$.
- i.e. the $[0, \infty)$ -valued diffusion whose infinitesimal generator is given by

$$L_\nu f(x) = \frac{1}{2}f''(x) + \frac{\nu - 1}{2x}f'(x)$$

on $(0, \infty)$ for $f \in C^2(0, \infty)$ with instantaneous reflection at 0 when $\nu \in (0, 2)$ (i.e. $f'(0^+) = 0$) and when $\nu \geq 2$ the origin is an entrance-non-exit boundary point.

Classical Ciesielski-Taylor Identity

- $(X, Q^{(\nu)})$ is a Bessel process X starting from 0 with dimension $\nu > 0$.
- i.e. the $[0, \infty)$ -valued diffusion whose infinitesimal generator is given by

$$L_\nu f(x) = \frac{1}{2}f''(x) + \frac{\nu - 1}{2x}f'(x)$$

on $(0, \infty)$ for $f \in C^2(0, \infty)$ with instantaneous reflection at 0 when $\nu \in (0, 2)$ (i.e. $f'(0^+) = 0$) and when $\nu \geq 2$ the origin is an entrance-non-exit boundary point.

- Ciesielski and Taylor (1962) and later Getoor and Sharp (1979) show: For $a > 0$ and any $\nu > 0$,

$$\left(T_a, Q^{(\nu)} \right) \stackrel{(d)}{=} \left(\int_0^\infty \mathbb{I}_{\{X_s \leq a\}} ds, Q^{(\nu+2)} \right) \quad (1)$$

where

$$T_a = \inf\{s \geq 0; X_s = a\}.$$

Subsequent work on Ciesielski-Taylor Identities

Subsequent work on Ciesielski-Taylor Identities

- Biane (1985) Gives a generalisation to one dimensional diffusions.

Subsequent work on Ciesielski-Taylor Identities

- Biane (1985) Gives a generalisation to one dimensional diffusions.
- Yor (1991) gives a probabilistic explanation of the original C-T identity through occupation time formula and Ray-Knight theorems.

Subsequent work on Ciesielski-Taylor Identities

- Biane (1985) Gives a generalisation to one dimensional diffusions.
- Yor (1991) gives a probabilistic explanation of the original C-T identity through occupation time formula and Ray-Knight theorems.
- Carmona, Petit and Yor (1998) establish a similar identity for positive self-similar 'saw-tooth' process.

Subsequent work on Ciesielski-Taylor Identities

- Biane (1985) Gives a generalisation to one dimensional diffusions.
- Yor (1991) gives a probabilistic explanation of the original C-T identity through occupation time formula and Ray-Knight theorems.
- Carmona, Petit and Yor (1998) establish a similar identity for positive self-similar 'saw-tooth' process.
- Bertoin (1992) remarks that a C-T-type identity can be observed in the setting of a reflected spectrally negative stable Lévy process.

Subsequent work on Ciesielski-Taylor Identities

- Biane (1985) Gives a generalisation to one dimensional diffusions.
- Yor (1991) gives a probabilistic explanation of the original C-T identity through occupation time formula and Ray-Knight theorems.
- Carmona, Petit and Yor (1998) establish a similar identity for positive self-similar 'saw-tooth' process.
- Bertoin (1992) remarks that a C-T-type identity can be observed in the setting of a reflected spectrally negative stable Lévy process.

One begins to get the whiff of the possibility of a general result for positive self-similar Markov processes.

Positive self-similar Markov process

Positive self-similar Markov process

- α -pssMp: A $[0, \infty)$ -valued Feller process which enjoys the following α -self-similarity property, where $\alpha > 0$. For any $x > 0$, and $c > 0$,

$$((X_t)_{t \geq 0}, \mathbb{P}_{cx}) \stackrel{(d)}{=} ((cX_{c^{-\alpha}t})_{t \geq 0}, \mathbb{P}_x).$$

Positive self-similar Markov process

- α -pssMp: A $[0, \infty)$ -valued Feller process which enjoys the following α -self-similarity property, where $\alpha > 0$. For any $x > 0$, and $c > 0$,

$$((X_t)_{t \geq 0}, \mathbb{P}_{cx}) \stackrel{(d)}{=} ((cX_{c^{-\alpha}t})_{t \geq 0}, \mathbb{P}_x).$$

- Lamperti (1972) showed that, for any $x \in \mathbb{R}$, there exists a one to one mapping between \mathbb{P}_x , the law of a generic Lévy process (possibly killed at an independent and exponentially distributed time), say $\xi = (\xi_t : t \geq 0)$, starting from x , and the law \mathbb{P}_{e^x} via the relation

$$X_t = e^{\xi_{A_t}}, \quad 0 \leq t < \zeta,$$

where $\zeta = \inf\{t > 0 : X_t = 0\}$ and

$$A_t = \inf\{s \geq 0; \int_0^s e^{\alpha \xi_u} du > t\}.$$

Spectrally negative, entrance law, recurrent extension

Spectrally negative, entrance law, recurrent extension

- In this talk we are interested in the case that X (and hence ξ) has only negative jumps.

Spectrally negative, entrance law, recurrent extension

- In this talk we are interested in the case that X (and hence ξ) has only negative jumps.
- When $\mathbb{E}(\xi_1) \geq 0$ and ξ is not killed, one may extend the definition of X to include the case that it is issued from the origin by establishing its entrance law P_0 as the weak limit with respect to the Skorohod topology of P_x as $x \downarrow 0$. Bertoin and Yor (2002).

Spectrally negative, entrance law, recurrent extension

- In this talk we are interested in the case that X (and hence ξ) has only negative jumps.
- When $\mathbb{E}(\xi_1) \geq 0$ and ξ is not killed, one may extend the definition of X to include the case that it is issued from the origin by establishing its entrance law P_0 as the weak limit with respect to the Skorohod topology of P_x as $x \downarrow 0$. Bertoin and Yor (2002).
- When $\mathbb{E}(\xi_1) < 0$ (resp. ξ is killed) then the boundary state 0 is reached continuously (resp. by a jump). In these two cases, one cannot construct an entrance law, however, Rivero (2005) and Fitzsimmons (2006), show that it is possible instead to construct a unique recurrent extension on $[0, \infty)$ such that paths leave 0 continuously, thereby giving a meaning to P_0 , if and only if there exists a $\theta \in (0, \alpha)$ such that $\mathbb{E}(e^{\theta \xi_1}) = 1$.

Spectrally negative, entrance law, recurrent extension

- In this talk we are interested in the case that X (and hence ξ) has only negative jumps.
- When $\mathbb{E}(\xi_1) \geq 0$ and ξ is not killed, one may extend the definition of X to include the case that it is issued from the origin by establishing its entrance law P_0 as the weak limit with respect to the Skorohod topology of P_x as $x \downarrow 0$. Bertoin and Yor (2002).
- When $\mathbb{E}(\xi_1) < 0$ (resp. ξ is killed) then the boundary state 0 is reached continuously (resp. by a jump). In these two cases, one cannot construct an entrance law, however, Rivero (2005) and Fitzsimmons (2006), show that it is possible instead to construct a unique recurrent extension on $[0, \infty)$ such that paths leave 0 continuously, thereby giving a meaning to P_0 , if and only if there exists a $\theta \in (0, \alpha)$ such that $\mathbb{E}(e^{\theta \xi_1}) = 1$.
- Objective of this talk: Fix $\alpha > 0$ and show that for a given spectrally negative Lévy process fitting the previous two categories, and hence given the associated law P_0 ,

$$(T_a, P_0) \stackrel{(d)}{=} \left(\int_0^\infty \mathbb{I}_{\{X_s \leq a\}} ds, P_0^* \right),$$

where $T_a = \inf\{t > 0 : X_t = a\}$ and P_0^* is to be identified.

A new transformation for spectrally negative Lévy processes: \mathcal{T}_β

A new transformation for spectrally negative Lévy processes: \mathcal{T}_β

- For any spectrally negative Lévy process, henceforth denoted by $\xi = (\xi_t, t \geq 0)$, we define simultaneously the Laplace exponent and its law \mathbb{P}^ψ by

$$\psi(u) = \log \mathbb{E}^\psi(\exp\{u\xi_1\}), \quad u \geq 0.$$

Warning: included in the definition of ξ is the possibility of exponential killing!

A new transformation for spectrally negative Lévy processes: \mathcal{T}_β

- For any spectrally negative Lévy process, henceforth denoted by $\xi = (\xi_t, t \geq 0)$, we define simultaneously the Laplace exponent and its law \mathbb{P}^ψ by

$$\psi(u) = \log \mathbb{E}^\psi(\exp\{u\xi_1\}), \quad u \geq 0.$$

Warning: included in the definition of ξ is the possibility of exponential killing!

- For each fixed $\beta > 0$, define the linear transformation

$$\mathcal{T}_\beta \psi(u) = \frac{u}{u + \beta} \psi(u + \beta), \quad u \geq 0.$$

A new transformation for spectrally negative Lévy processes: \mathcal{T}_β

- For any spectrally negative Lévy process, henceforth denoted by $\xi = (\xi_t, t \geq 0)$, we define simultaneously the Laplace exponent and its law \mathbb{P}^ψ by

$$\psi(u) = \log \mathbb{E}^\psi(\exp\{u\xi_1\}), \quad u \geq 0.$$

Warning: included in the definition of ξ is the possibility of exponential killing!

- For each fixed $\beta > 0$, define the linear transformation

$$\mathcal{T}_\beta \psi(u) = \frac{u}{u + \beta} \psi(u + \beta), \quad u \geq 0.$$

- Theorem:** $\mathcal{T}_\beta \psi$ is the Laplace exponent of another spectrally negative Lévy process with no exponential killing.

A new transformation for spectrally negative Lévy processes: \mathcal{T}_β

- For any spectrally negative Lévy process, henceforth denoted by $\xi = (\xi_t, t \geq 0)$, we define simultaneously the Laplace exponent and its law \mathbb{P}^ψ by

$$\psi(u) = \log \mathbb{E}^\psi(\exp\{u\xi_1\}), \quad u \geq 0.$$

Warning: included in the definition of ξ is the possibility of exponential killing!

- For each fixed $\beta > 0$, define the linear transformation

$$\mathcal{T}_\beta \psi(u) = \frac{u}{u + \beta} \psi(u + \beta), \quad u \geq 0.$$

- Theorem:** $\mathcal{T}_\beta \psi$ is the Laplace exponent of another spectrally negative Lévy process with no exponential killing.

- Easy proof when ψ has no killing and $\psi'(0+) \geq 0$:**

Algebra: $\mathcal{T}_\beta \psi(u) = \mathcal{E}_\beta \psi(u) - \beta \mathcal{E}_\beta \phi(u)$

$$\mathcal{E}_\beta f(u) = f(u + \beta) - f(\beta) \quad (\text{Esscher transform})$$

$$\phi(u) = \psi(u)/u \quad (\text{Laplace exponent of descending ladder height subordinator}).$$

Ciesielski-Taylor identity for spectrally negative pssMp

Theorem

Fix $\alpha > 0$. Suppose that ψ is the Laplace exponent of a spectrally negative Lévy process. Assume that θ , the largest root in $[0, \infty)$ of the equation $\psi(\theta) = 0$, satisfies $\theta < \alpha$. Let P_0^ψ be the law of the pssMp associated with \mathbb{P}^ψ and issued from 0. Then for any $a > 0$, the following Ciesielski-Taylor type identity in law

$$\left(T_a, P_0^\psi \right) \stackrel{(d)}{=} \left(\int_0^\infty \mathbb{I}_{\{X_s \leq a\}} ds, P_0^{\mathcal{T}_\alpha \psi} \right)$$

holds.

A fluctuation identity of Patie

A fluctuation identity of Patie

- Assume that $0 \leq \theta < \alpha$ where $\psi(\theta) = 0$.

A fluctuation identity of Patie

- Assume that $0 \leq \theta < \alpha$ where $\psi(\theta) = 0$.
- Let

$$a_n(\psi; \alpha)^{-1} = \prod_{k=1}^n \psi(\alpha k), \quad a_0 = 1,$$

A fluctuation identity of Patie

- Assume that $0 \leq \theta < \alpha$ where $\psi(\theta) = 0$.

- Let

$$a_n(\psi; \alpha)^{-1} = \prod_{k=1}^n \psi(\alpha k), \quad a_0 = 1,$$

- Define the positive and entire function $\mathcal{I}_{\psi, \alpha}(z)$ which admits the series representation

$$\mathcal{I}_{\psi, \alpha}(z) = \sum_{n=0}^{\infty} a_n(\psi; \alpha) z^n, \quad z \in \mathbb{C}.$$

A fluctuation identity of Patie

- Assume that $0 \leq \theta < \alpha$ where $\psi(\theta) = 0$.

- Let

$$a_n(\psi; \alpha)^{-1} = \prod_{k=1}^n \psi(\alpha k), \quad a_0 = 1,$$

- Define the positive and entire function $\mathcal{I}_{\psi, \alpha}(z)$ which admits the series representation

$$\mathcal{I}_{\psi, \alpha}(z) = \sum_{n=0}^{\infty} a_n(\psi; \alpha) z^n, \quad z \in \mathbb{C}.$$

- Theorem (Patie): For $0 \leq x \leq a$ and $q \geq 0$, we have

$$E_x^\psi \left[e^{-qT_a} \right] = \frac{\mathcal{I}_{\psi, \alpha}(qx^\alpha)}{\mathcal{I}_{\psi, \alpha}(qa^\alpha)}.$$

In particular

$$E_0^\psi \left[e^{-qT_a} \right] = \frac{1}{\mathcal{I}_{\psi, \alpha}(qa^\alpha)}.$$

How the proof works: I

How the proof works: I

- Define

$$O_q^{\mathcal{T}_\alpha \psi}(x; a) = \mathbb{E}_x^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^\infty \mathbb{I}_{\{X_s \leq a\}} ds} \right]$$

and try to show that $O_q^{\mathcal{T}_\alpha \psi}(0; a) = \mathbb{E}_0^\psi \left[e^{-q T_a} \right] = 1/\mathcal{I}_{\psi, \alpha}(qa^\alpha)$ for all $q \geq 0$.

How the proof works: I

- Define

$$O_q^{\mathcal{T}_\alpha \psi}(x; a) = \mathbb{E}_x^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^\infty \mathbb{I}_{\{X_s \leq a\}} ds} \right]$$

and try to show that $O_q^{\mathcal{T}_\alpha \psi}(0; a) = \mathbb{E}_0^\psi \left[e^{-q T_a} \right] = 1/\mathcal{I}_{\psi, \alpha}(qa^\alpha)$ for all $q \geq 0$.

- Self-similarity of X means that

$$O_q^{\mathcal{T}_\alpha \psi}(0; a) = O_{qa^\alpha}^{\mathcal{T}_\alpha \psi}(0; 1),$$

so enough to establish the suggested equality when $a = 1$.

How the proof works: I

- Define

$$O_q^{\mathcal{T}_\alpha \psi}(x; a) = \mathbb{E}_x^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^\infty \mathbb{I}_{\{X_s \leq a\}} ds} \right]$$

and try to show that $O_q^{\mathcal{T}_\alpha \psi}(0; a) = \mathbb{E}_0^{\psi} \left[e^{-q T_a} \right] = 1/\mathcal{I}_{\psi, \alpha}(qa^\alpha)$ for all $q \geq 0$.

- Self-similarity of X means that

$$O_q^{\mathcal{T}_\alpha \psi}(0; a) = O_{qa^\alpha}^{\mathcal{T}_\alpha \psi}(0; 1),$$

so enough to establish the suggested equality when $a = 1$.

- Next, note using spectral negativity,

$$O_q^{\mathcal{T}_\alpha \psi}(0; 1) = \mathbb{E}_0^{\mathcal{T}_\alpha \psi} \left(e^{-q T_1} \right) O_q^{\mathcal{T}_\alpha \psi}(1; 1)$$

so it is enough to show that

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1) = \frac{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}{\mathcal{I}_{\psi, \alpha}(q)}.$$

How the proof works: II

How the proof works: II

- Let $\tau_1 = \inf\{s > 0; X_s < 1\}$ and $T_1 = \inf\{s > 0 : X_s = 1\}$.

How the proof works: II

- Let $\tau_1 = \inf\{s > 0; X_s < 1\}$ and $T_1 = \inf\{s > 0 : X_s = 1\}$.
- Fix $y > 1$.

How the proof works: II

- Let $\tau_1 = \inf\{s > 0; X_s < 1\}$ and $T_1 = \inf\{s > 0 : X_s = 1\}$.
- Fix $y > 1$.
- Use Strong Markov Property, $(\mathcal{T}_\alpha \psi)'(0^+) = \psi(\alpha)/\alpha > 0$ and spectral negativity:

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1)$$

$$= \mathbf{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_y} \mathbb{I}_{\{X_s \leq 1\}} ds} \right] \left(\mathbf{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbf{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-q T_1} \right] \right] O_q^{\mathcal{T}_\alpha \psi}(1; 1) + \mathbf{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 = \infty\}} \right] \right)$$

How the proof works: II

- Let $\tau_1 = \inf\{s > 0 : X_s < 1\}$ and $T_1 = \inf\{s > 0 : X_s = 1\}$.
- Fix $y > 1$.
- Use Strong Markov Property, $(\mathcal{T}_\alpha \psi)'(0^+) = \psi(\alpha)/\alpha > 0$ and spectral negativity:

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1)$$

$$= \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_y} \mathbb{I}_{\{X_s \leq 1\}} ds} \right] \left(\mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbb{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-q T_1} \right] \right] O_q^{\mathcal{T}_\alpha \psi}(1; 1) + \mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 = \infty\}} \right] \right)$$

- Solving for $O_q^{\mathcal{T}_\alpha \psi}(1; 1)$ we get

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1) = \frac{\mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 = \infty\}} \right]}{\left\{ \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_y} \mathbb{I}_{\{X_s \leq 1\}} ds} \right] \right\}^{-1} - \mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbb{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-q T_1} \right] \right]}.$$

How the proof works: II

- Let $\tau_1 = \inf\{s > 0 : X_s < 1\}$ and $T_1 = \inf\{s > 0 : X_s = 1\}$.
- Fix $y > 1$.
- Use Strong Markov Property, $(\mathcal{T}_\alpha \psi)'(0^+) = \psi(\alpha)/\alpha > 0$ and spectral negativity:

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1)$$

$$= \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_y} \mathbb{I}_{\{X_s \leq 1\}} ds} \right] \left(\mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbb{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-q T_1} \right] \right] O_q^{\mathcal{T}_\alpha \psi}(1; 1) + \mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 = \infty\}} \right] \right)$$

- Solving for $O_q^{\mathcal{T}_\alpha \psi}(1; 1)$ we get

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1) = \frac{\mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 = \infty\}} \right]}{\left\{ \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_y} \mathbb{I}_{\{X_s \leq 1\}} ds} \right] \right\}^{-1} - \mathbb{E}_y^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbb{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-q T_1} \right] \right]}.$$

- Proof is formalised by taking limits as $y \downarrow 1$.

How the proof works III: special case, bounded variation paths

How the proof works III: special case, bounded variation paths

- Let $\tau_0^\xi = \inf\{t > 0 : \xi_t < 0\}$. Bounded variation paths for ξ implies that $\mathbb{P}^{\mathcal{T}_\alpha \psi}(\tau_0^\xi > 0) = 1$.

How the proof works III: special case, bounded variation paths

- Let $\tau_0^\xi = \inf\{t > 0 : \xi_t < 0\}$. Bounded variation paths for ξ implies that $\mathbb{P}^{\mathcal{T}_\alpha \psi}(\tau_0^\xi > 0) = 1$.
- Hence $\mathbb{P}_1^{\mathcal{T}_\alpha \psi}(\tau_1 > 0) = 1$. Hence can just set $y = 0$ in the formula for $O_q^{\mathcal{T}_\alpha \psi}(1; 1)$.

How the proof works III: special case, bounded variation paths

- Let $\tau_0^\xi = \inf\{t > 0 : \xi_t < 0\}$. Bounded variation paths for ξ implies that $\mathbb{P}^{\mathcal{T}_\alpha \psi}(\tau_0^\xi > 0) = 1$.
- Hence $\mathbb{P}_1^{\mathcal{T}_\alpha \psi}(\tau_1 > 0) = 1$. Hence can just set $y = 0$ in the formula for $O_q^{\mathcal{T}_\alpha \psi}(1; 1)$.
- In which case, $\mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_1} \mathbb{I}_{\{X_s \leq 1\}} ds} \right] = 1$.

How the proof works III: special case, bounded variation paths

- Let $\tau_0^\xi = \inf\{t > 0 : \xi_t < 0\}$. Bounded variation paths for ξ implies that $\mathbb{P}^{\mathcal{T}_\alpha \psi}(\tau_0^\xi > 0) = 1$.
- Hence $\mathbb{P}_1^{\mathcal{T}_\alpha \psi}(\tau_1 > 0) = 1$. Hence can just set $y = 0$ in the formula for $O_q^{\mathcal{T}_\alpha \psi}(1; 1)$.
- In which case, $\mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[e^{-q \int_0^{T_1} \mathbb{1}_{\{X_s \leq 1\}} ds} \right] = 1$.
- On the one hand, recalling that $(\mathcal{T}_\alpha \psi)'(0^+) = \psi(\alpha)/\alpha > 0$, we observe that

$$\mathbb{E}_1^{\mathcal{T}_\alpha \psi} [\mathbb{1}_{\{\tau_1 = \infty\}}] = \mathbb{P}_0^{\mathcal{T}_\alpha \psi} (\tau_0^\xi = \infty) = \frac{1}{(\mathcal{T}_\alpha \psi)'(0^+)} W_{\mathcal{T}_\alpha \psi}(0+) = \frac{\psi(\alpha)}{\alpha} W_{\mathcal{T}_\alpha \psi}(0+) > 0$$

Here $W_{\mathcal{T}_\alpha \psi}$ is the scale function under $\mathbb{P}^{\mathcal{T}_\alpha \psi}$. In other words it is the unique continuous function on $[0, \infty)$ whose Laplace transform satisfies

$$\int_0^\infty e^{-ux} W_{\mathcal{T}_\alpha \psi}(x) dx = \frac{1}{\mathcal{T}_\alpha \psi(u)}.$$

How the proof works IV: special case, bounded variation paths

How the proof works IV: special case, bounded variation paths

- For the remaining term, by Fubini's theorem (recalling the positivity of coefficients in the definition of $\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}$), we have with the help of Patie's identity,

$$\begin{aligned}
 & \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbb{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-qT_1} \right] \right] \\
 &= \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[\frac{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(qX_{\tau_1}^\alpha) \mathbb{I}_{\{\tau_1 < \infty\}}}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)} \right] \\
 &= \frac{1}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)} \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[\sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n X_{\tau_1}^{\alpha n} \mathbb{I}_{\{\tau_1 < \infty\}} \right] \\
 &= \frac{1}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)} \sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n \mathbb{E}_0^{\mathcal{T}_\alpha \psi} \left[e^{\alpha n \xi_{\tau_0^\xi}} \mathbb{I}_{\{\tau_0^\xi < \infty\}} \right].
 \end{aligned}$$

How the proof works IV: special case, bounded variation paths

- For the remaining term, by Fubini's theorem (recalling the positivity of coefficients in the definition of $\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}$), we have with the help of Patie's identity,

$$\begin{aligned}
 & \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[\mathbb{I}_{\{\tau_1 < \infty\}} \mathbb{E}_{X_{\tau_1}}^{\mathcal{T}_\alpha \psi} \left[e^{-qT_1} \right] \right] \\
 &= \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[\frac{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(qX_{\tau_1}^\alpha) \mathbb{I}_{\{\tau_1 < \infty\}}}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)} \right] \\
 &= \frac{1}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)} \mathbb{E}_1^{\mathcal{T}_\alpha \psi} \left[\sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n X_{\tau_1}^{\alpha n} \mathbb{I}_{\{\tau_1 < \infty\}} \right] \\
 &= \frac{1}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)} \sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n \mathbb{E}_0^{\mathcal{T}_\alpha \psi} \left[e^{\alpha n \xi_{\tau_0^\xi}} \mathbb{I}_{\{\tau_0^\xi < \infty\}} \right].
 \end{aligned}$$

- Classical fluctuation theory for spectrally negative Lévy processes gives (in the bounded variation case):

$$\mathbb{E}_0^{\mathcal{T}_\alpha \psi} (e^{u \xi_{\tau_0^\xi}} \mathbb{I}_{\{\tau_0^\xi < \infty\}}) = 1 - \frac{\mathcal{T}_\alpha \psi(u)}{u} W_{\mathcal{T}_\alpha \psi}(0+).$$

How the proof works V:

How the proof works V:

- Putting the bits together

$$\begin{aligned}
 & O_q^{\mathcal{T}_\alpha \psi}(1; 1) \\
 &= \frac{\psi(\alpha) W_{\mathcal{T}_\alpha \psi}(0+)/\alpha}{1 - \frac{\sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n \left\{ 1 - \frac{\mathcal{T}_\alpha \psi(\alpha n)}{\alpha n} y^{-\alpha n} W_{\mathcal{T}_\alpha \psi}(0+) \right\}}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}} \\
 &= \frac{\psi(\alpha) \mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}{\alpha \sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n \frac{\mathcal{T}_\alpha \psi(\alpha n)}{\alpha n}}.
 \end{aligned}$$

How the proof works V:

- Putting the bits together

$$\begin{aligned}
 & O_q^{\mathcal{T}_\alpha \psi}(1; 1) \\
 &= \frac{\psi(\alpha) W_{\mathcal{T}_\alpha \psi}(0+)/\alpha}{1 - \frac{\sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n \left\{ 1 - \frac{\mathcal{T}_\alpha \psi(\alpha n)}{\alpha n} y^{-\alpha n} W_{\mathcal{T}_\alpha \psi}(0+) \right\}}{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}} \\
 &= \frac{\psi(\alpha) \mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}{\alpha \sum_{n=0}^{\infty} a_n(\mathcal{T}_\alpha \psi; \alpha) q^n \frac{\mathcal{T}_\alpha \psi(\alpha n)}{\alpha n}}.
 \end{aligned}$$

- Next, observing that, for any $n \geq 1$,

$$\frac{\psi(\alpha) \alpha n}{\alpha \mathcal{T}_\alpha \psi(\alpha n)} a_n(\mathcal{T}_\alpha \psi; \alpha)^{-1} = \prod_{k=1}^n \psi(\alpha k) \quad (= 1 \text{ when } n = 0).$$

we deduce, as required, the identity

$$O_q^{\mathcal{T}_\alpha \psi}(1; 1) = \frac{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}{\sum_{n=0}^{\infty} a_n(\psi; \alpha) q^n} = \frac{\mathcal{I}_{\mathcal{T}_\alpha \psi, \alpha}(q)}{\mathcal{I}_{\psi, \alpha}(q)}.$$

Example: cross reference against the original CT identity

Example: cross reference against the original CT identity

- When ψ has no jump component it is possible to extract the original Ciesielski-Taylor identity for Bessel processes.

Example: cross reference against the original CT identity

- When ψ has no jump component it is possible to extract the original Ciesielski-Taylor identity for Bessel processes.
- Indeed, we may take $\alpha = 2$ and

$$\psi_\nu(u) = \frac{1}{2}u^2 + \left(\frac{\nu}{2} - 1\right)u$$

where $\nu > 0$. In that case it follows that P^{ψ_ν} is the law of a Bessel process of dimension ν as described in the introduction.

Example: cross reference against the original CT identity

- When ψ has no jump component it is possible to extract the original Ciesielski-Taylor identity for Bessel processes.
- Indeed, we may take $\alpha = 2$ and

$$\psi_\nu(u) = \frac{1}{2}u^2 + \left(\frac{\nu}{2} - 1\right)u$$

where $\nu > 0$. In that case it follows that P^{ψ_ν} is the law of a Bessel process of dimension ν as described in the introduction.

- Note that the root θ is zero for $\nu \geq 2$ and when $\nu \in (0, 2)$ we have $\theta = 2 - \nu < 2 = \alpha$ thereby fulfilling the required condition of the main result.

Example: cross reference against the original CT identity

- When ψ has no jump component it is possible to extract the original Ciesielski-Taylor identity for Bessel processes.
- Indeed, we may take $\alpha = 2$ and

$$\psi_\nu(u) = \frac{1}{2}u^2 + \left(\frac{\nu}{2} - 1\right)u$$

where $\nu > 0$. In that case it follows that P^{ψ_ν} is the law of a Bessel process of dimension ν as described in the introduction.

- Note that the root θ is zero for $\nu \geq 2$ and when $\nu \in (0, 2)$ we have $\theta = 2 - \nu < 2 = \alpha$ thereby fulfilling the required condition of the main result.
- The transformation \mathcal{T}_2 gives us the new Laplace exponent

$$\mathcal{T}_2\psi_\nu(u) = \frac{1}{2}u^2 + \frac{\nu}{2}u = \psi_{\nu+2}(u).$$