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Motivation

Consider a financial market consisting of a bank account and a risky
asset.

Bank account R = (Rt)t≥0 satisfies

dRt = rRtdt, R0 = 1, r ≥ 0,

that is, Rt = ert, t ≥ 0.

Risky asset under P is modeled as exponential Lévy process

St = S0e
Xt , S0 > 0, t ≥ 0.
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Motivation

A (perpetual) American lookback option gives the holder the
right to exercise at any finite stopping time τ yielding payout

e−ατ

(

M0 ∨ sup
0≤u≤τ

Su −K

)+

, M0 ≥ S0, α > 0.

Which translates to the optimal stopping problem

V AL(x, s) = sup
τ∈M

Ex,s

[

e−qτ
(

eXτ −K
)+]

, q > 0,K > 0,

where Xτ = sups≤τ Xs, x ≤ s

Px,s(·) = P(·|X0 = x,X0 = s)

and M is the set of all stopping times (not necessarily finite).

This problem has been earlier considered in a diffusive setting by
Conze and Viswanathan (1991), Pedersen (2000), Guo and Shepp
(2001) and Gapeev (2007).
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Motivation

A (perpetual) American lookback option with cap gives the
holder the right to exercise at any finite stopping time τ yielding
payouts

e−ατ

(

M0 ∨ sup
0≤u≤τ

Su ∧ C −K

)+

, C ≥M0 ≥ S0, α > 0.

Which translates to the optimal stopping problem

V AL
ǫ (x, s) = sup

τ∈M

Ex,s

[

e−qτ
(

eXτ∧ǫ −K
)+]

, q > 0,K > 0,

where x ≤ s and ǫ ∈ (log(K),∞].
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Notation

X is a spectrally negative Lévy process.

The Laplace exponent ψ of X is defined by

ψ(λ) :=
1

t
logE

[

eλXt
]

, λ ≥ 0

For q ≥ 0, its right-inverse Φ is given by

Φ(q) = sup{λ ≥ 0 : ψ(λ) = q}.

For q ≥ 0, the q-scale function W (q) : R −→ [0,∞) is the unique
function whose restriction to (0,∞) is continuous and has
Laplcae transform

∫ ∞

0

e−λxW (q)(x) dx =
1

ψ(λ)− q
,

for λ suff. large, and is defined to be zero for x ≤ 0.
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Notation

For q ≥ 0, we define Z(q) : R −→ [1,∞) by

Z(q)(x) = 1 + q

∫ x

0

W (q)(z) dz.
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How do Russian-type stopping problems work?

Capped American Lookback:

V AL
ǫ (x, s) = sup

τ∈M

Ex,s

[

e−qτ
(

eXτ∧ǫ −K
)+]

,

Russian:
V R
ǫ (x, s) := sup

τ∈M

Ex,s

[

e−qτ+Xτ
]

.

Recall the Russian option was introduced and studied by Shepp
and Shiryaev (1993,1994) in the Black-Scholes setting and was
studied in the current spectrally negative setting by Avram, K.
and Pistorius (2004).
As ǫ ↑ ∞ we expect to see V AL

ǫ (x, s) look more and more like the
value function of V AL. Moreover as s ↑ ∞ we expect to see V AL

look more and more like V R.
Roughly speaking all of these optimal stopping problems appear
to fit the following setting:

V f (x, s) = sup
τ∈M

Ex,s

[

e−qτf(Xτ )
]

,

where f is an increasing function.
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How do Russian-type stopping problems work?

V R(x, s) := sup
τ∈M

Ex,s

[

e−qτ+Xτ
]

.

Theorem [Shepp, Shiryaev, Avram, K., Pistorius]: Suppose that
q > ψ(1). Then

V R(x, s) = esZ(q)(x − s+ k∗)

with optimal strategy

τR = inf{t ≥ 0 : Xt −Xt ≥ k∗}

for some constant k∗ ∈ (0,∞), where k∗ is the unique solution to
Z(q)(z)− qW (q)(z) = 0.
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Russian stopping problem

x

s

k∗

D∗

C∗

Figure: Stopping region D∗ and continuatuion region C∗ for the Russian
optimal stopping problem.
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How do Russian-type stopping problems work?

V f (x, s) = sup
τ∈M

Ex,s

[

e−qτf(Xτ )
]

, x ≤ s.

Assuming the optimal strategy is of the form

τf = inf{t > 0 : Xt −Xt > g(Xt)} :

Let τ+s = inf{t > 0 : Xt > s} and τ−z = inf{t > 0 : Xt < z},

V f (x, s) = f(s)Ex,s(e
−qτ

−

s−g(s)1(τ−

s−g(s)
<τ

+
s )) + Ex,s(e

−qτ+
s 1(τ−

s−g(s)
>τ

+
s ))V

f (s, s)
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How do Russian-type stopping problems work?

Hence

V f (x, s) = f(s)

(

Z(q)(x− s+ g(s))−W (q)(x− s+ g(s))
Z(q)(g(s))

W (q)(g(s))

)

+
W (q)(x − s+ g(s))

W (q)(g(s))
V f (s, s)

Smooth fit:

0 = lim
x↓s−g(s)

∂V f

∂x
(x, s)

= lim
x↓s−g(s)

W (q)′(x− s+ g(s))

W (q)(g(s))

[

V f (s, s)− f(s)Z(q)(g(s))
]

.

=⇒ V f (x, s) = f(s)Z(q)(x− s+ g(s)).

(Russian) : V R(x, s) = esZ(q)(x− s+ k∗)
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How do Russian-type stopping problems work?

Once we know V f (x, s) = f(s)Z(q)(x− s+ g(s)), normal
reflection at (s, s) tells us

∂V f

∂s
(s−, s) = 0 =⇒ g′(s) = 1−

f ′(s)Z(q)(g(s))

f(s)qW (q)(g(s))

(Russian) : (k∗)′ = 0 = 1−
esZ(q)(k∗)

esqW (q)(k∗)
⇒ Z(q)(k∗)− qW (q)(k∗) = 0
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Guess solution
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II

k∗

log(K)

Figure: Expected shape of optimal boundary for the Capped American
Lookback when ǫ = (log(K),∞) and ǫ = ∞ respectively.

Andreas E. Kyprianou and Curdin Ott Capped American Lookback



Result

Lemma (Solution of ODE)

There exists a unique solution g of the ODE

g′(s) = 1−
esZ(q)(g(s))

(es −K)qW (q)(g(s))
on (log(K), ǫ) (1)

satisfying the boundary conditions g(log(K)+) = ∞ and

lim
s↑ǫ

g(s) =

{

0, ǫ ∈ (log(K),∞),

k∗, ǫ = ∞,

where k∗ ∈ (0,∞) is the unique root of Z(q)(s)− qW (q)(s) = 0.

See below for sketch of proof.
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Result

Theorem

Suppose that q > ψ(1). The solution of the American Lookback OSP

is given by

V ∗(x, s) =

{

(es∧ǫ −K)Z(q)(x− s+ g(s)), (x, s) ∈ C∗
I ∪D∗,

e−Φ(q)(log(K)−x)A, (x, s) ∈ C∗
II ,

where A = lims↓log(K)(e
s −K)Z(q)(g(s)) > 0, with optimal strategy

τ∗ = inf{t ≥ 0 : Xt −Xt ≥ g(Xt) and Xt > log(K)},

where g is given in the Lemma above.
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Sketch of proof of ODE lemma

Consider the ODE

g′(s) = 1−
esZ(q)(g(s))

(es −K)qW (q)(g(s))
on (log(K),∞).

The 0-isocline is given by the graph of

f(H) = log

(

K

(

1−
Z(q)(H)

qW (q)(H)

)−1)

,

where H ∈ (k∗,∞). It can be shown that f is strictly decreasing,
η := f(∞) = log(K(1− Φ(q)−1)−1) and f(k∗+) = ∞.
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Direction field

s

k∗

H 7→ f(H)

η

0

log(K)

H

Figure: A qualitative picture of the direction field.
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Sketch of proof of ODE lemma / maximality principle

g(s)

s

k∗

0

log(K)

x
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log(K)

Figure: The solutions to the ODE and the corresponding possible stopping
boundaries.
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Link to maximality principle

The solutions exhibit a behavior parallel to Peskir’s maximality
principle in both cases ǫ = ∞ and ǫ ∈ (log(K),∞).

If ǫ = ∞, the “red” curves correspond to the so-called “bad-good”
solutions in Peskir’s maximality principle (see Peskir (1998));
“bad” because they do not give the optimal boundary, “good” as
they can be used to approximate the optimal boundary.

The same can be observed in the capped Russian stopping
problem.
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Current/future work (Curdin!!!):

American lookback with floating strike:

V ∗(x, s) = sup
τ

Ex,s

[

e−qτ
(

eXτ −KeXτ
)+]

Cap X or X , both?

π-option:

V ∗(x, s) = sup
τ

Ex,s

[

e−qτ
(

eaXτ+bXτ −K
)+]

,

where a, b > 0.
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