Travelling waves for fragmentation processes.

J. Berestycki, A. E. Kyprianou and S.C. Harris.

Department of Mathematical Sciences, University of Bath

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Motivation

Motivation

Super-diffusions: Markov process $X = \{X_t : t \ge 0\}$ such that X_t is a measure on \mathbb{R} , its probabilities denoted by \mathbb{P}_{μ} for measures μ on \mathbb{R} where $X_0 = \mu$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

- Super-diffusions: Markov process $X = \{X_t : t \ge 0\}$ such that X_t is a measure on \mathbb{R} , its probabilities denoted by \mathbb{P}_{μ} for measures μ on \mathbb{R} where $X_0 = \mu$.
- Branching property: For two initial measures $\mu_1, \mu_2, \mathbb{P}_{\mu_1+\mu_2} = \mathbb{P}_{\mu_1} \star \mathbb{P}_{\mu_2}$.

Motivation

- Super-diffusions: Markov process $X = \{X_t : t \ge 0\}$ such that X_t is a measure on \mathbb{R} , its probabilities denoted by \mathbb{P}_{μ} for measures μ on \mathbb{R} where $X_0 = \mu$.
- Branching property: For two initial measures $\mu_1, \mu_2, \mathbb{P}_{\mu_1+\mu_2} = \mathbb{P}_{\mu_1} \star \mathbb{P}_{\mu_2}$.
- Non-linear semi-group: "Infinite divisibility" in the branching property suggests the natural object to describe the semi-group of is the Laplace functional

$$\exp\{-u_f(x,t)\} = \mathbb{E}_{\delta_x}(\exp\{-\langle f, X_t \rangle\})$$

where $f : \mathbb{R} \to [0, \infty)$, $\langle f, X_t \rangle = \int_{\mathbb{R}} f(y) X_t(\mathrm{d}y)$ and one finds

$$\frac{\partial}{\partial t}u_f(x,t) = Lu_f(x,t) - \psi(u_f(x,t)) \qquad \text{with} \qquad u_f(x,0) = f(x),$$

where L is the infinitesimal generator of the "underlying motion" and ψ necessarily respects the Lévy-Khintchine formula,

$$\psi(\lambda) = \alpha \lambda + \beta \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x \mathbf{1}_{\{x < 1\}}) \nu(\mathrm{d}x)$$

for $\lambda \geq 0$ where $\alpha \in \mathbb{R}$, $\beta \geq 0$ and ν is a measure concentrated on $(0, \infty)$ which satisfies $\int_{(0,\infty)} (1 \wedge x^2) \nu(\mathrm{d}x) < \infty$.

• Linear semi-group: Set $v_g(x,t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle)$ and it solves

$$\frac{\partial}{\partial t}v_g(x,t) = Lv_g(x,t) - \psi'(0)v_g(x,t) \qquad \text{with} \qquad v_g(x,0) = g(x).$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

• Linear semi-group: Set $v_g(x,t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle)$ and it solves

$$\frac{\partial}{\partial t}v_g(x,t) = Lv_g(x,t) - \psi'(0)v_g(x,t) \qquad \text{with} \qquad v_g(x,0) = g(x).$$

• Multiplicative martingales: Look for positive monotone "travelling" solutions with speed $c \in \mathbb{R}$, i.e. $u_f(x,t) = f(x-ct)$ and consequently $Lf + cf' - \psi(f) = 0$. Let X^c be the super-diffusion with added linear drift c to the support, then the associated motion operator is $L + c\frac{d}{dr}$ and

$$e^{-f(x)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X_t^c \rangle}) \Rightarrow e^{-\langle f, X_t^c \rangle} \text{ is a martingale}$$

うして ふゆう ふほう ふほう しょうく

• Linear semi-group: Set $v_g(x,t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle)$ and it solves

$$\frac{\partial}{\partial t}v_g(x,t) = Lv_g(x,t) - \psi'(0)v_g(x,t) \qquad \text{with} \qquad v_g(x,0) = g(x).$$

• Multiplicative martingales: Look for positive monotone "travelling" solutions with speed $c \in \mathbb{R}$, i.e. $u_f(x,t) = f(x-ct)$ and consequently $Lf + cf' - \psi(f) = 0$. Let X^c be the super-diffusion with added linear drift c to the support, then the associated motion operator is $L + c\frac{d}{dx}$ and

$$e^{-f(x)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X_t^c \rangle}) \Rightarrow e^{-\langle f, X_t^c \rangle}$$
 is a martingale.

• Additive martingales: Look for "travelling" solutions of the form $v_g(x,t) = g(x-ct)$, i.e. $Lg + cg' - \psi'(0)g = 0$. Then,

$$g(x) = \mathbb{E}_{\delta_x}(\langle g, X_t^c \rangle) \Rightarrow \langle g, X_t^c \rangle$$
 is a martingale

うして ふゆう ふほう ふほう しょうく

• Linear semi-group: Set $v_g(x,t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle)$ and it solves

$$\frac{\partial}{\partial t}v_g(x,t) = Lv_g(x,t) - \psi'(0)v_g(x,t) \qquad \text{with} \qquad v_g(x,0) = g(x).$$

• Multiplicative martingales: Look for positive monotone "travelling" solutions with speed $c \in \mathbb{R}$, i.e. $u_f(x,t) = f(x-ct)$ and consequently $Lf + cf' - \psi(f) = 0$. Let X^c be the super-diffusion with added linear drift c to the support, then the associated motion operator is $L + c\frac{d}{dx}$ and

$$e^{-f(x)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X_t^c \rangle}) \Rightarrow e^{-\langle f, X_t^c \rangle}$$
 is a martingale.

• Additive martingales: Look for "travelling" solutions of the form $v_g(x,t) = g(x-ct)$, i.e. $Lg + cg' - \psi'(0)g = 0$. Then,

$$g(x) = \mathbb{E}_{\delta_x}(\langle g, X_t^c \rangle) \Rightarrow \langle g, X_t^c \rangle$$
 is a martingale.

• Martingale limits: Positive martingales have limits so what does the relation between $\lim_{t \uparrow \infty} \langle f, X_t^c \rangle$, $\lim_{t \uparrow \infty} \langle g, X_t^c \rangle$ tell us (about f and g)??

うくう かんかく ふく ふきょう しょう

BBM and BRW

4/14 《 미 》 《 圊 》 《 恴 》 《 恴 》 원 · 옛 오 ♡

BBM and BRW

• (McKean/Neveu/Chauvin/Lalley-Sellke/Harris/K./Murillo/Liu/Ren) All this works for branching Brownian motion/super-Brownian motion $(\psi(\lambda) = -\mathbf{a}\lambda + \mathbf{b}\lambda^2)$, in which case we see that for $\lambda \in \mathbb{R}$, one may take $g(x) = e^{-\lambda x}$ and $c = c_{\lambda} = \lambda/2 + \mathbf{a}/\lambda$. Monotone travelling waves exist uniquely up to linear shift in the argument if and only if $|c_{\lambda}| \ge \sqrt{2a}$ in which case, when $|\lambda| < \sqrt{2a}$ ($\Rightarrow |c_{\lambda}| > \sqrt{2a}$),

$$\lim_{t\uparrow\infty} \langle f, X_t^{c_\lambda} \rangle = \lim_{t\uparrow\infty} \langle e^{-\lambda \cdot}, X_t^{c_\lambda} \rangle \geqq 0 \text{ and } f(x) \sim e^{-\lambda x}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

and when $|\lambda| = \sqrt{2a} \ (\Rightarrow c_{\lambda} = \sqrt{2a})$, $\lim_{t\uparrow\infty} \langle f, X_t^{c_{\lambda}} \rangle = \lim_{t\uparrow\infty} \langle \cdot e^{-\lambda \cdot}, X_t^{c_{\lambda}} \rangle \geqq 0 \text{ and } f(x) \sim x e^{-\lambda x}.$

BBM and BRW

• (McKean/Neveu/Chauvin/Lalley-Sellke/Harris/K./Murillo/Liu/Ren) All this works for branching Brownian motion/super-Brownian motion $(\psi(\lambda) = -\mathbf{a}\lambda + \mathbf{b}\lambda^2)$, in which case we see that for $\lambda \in \mathbb{R}$, one may take $g(x) = e^{-\lambda x}$ and $c = c_{\lambda} = \lambda/2 + \mathbf{a}/\lambda$. Monotone travelling waves exist uniquely up to linear shift in the argument if and only if $|c_{\lambda}| \ge \sqrt{2a}$ in which case, when $|\lambda| < \sqrt{2a}$ ($\Rightarrow |c_{\lambda}| > \sqrt{2a}$),

$$\lim_{t\uparrow\infty} \langle f, X_t^{c_\lambda} \rangle = \lim_{t\uparrow\infty} \langle e^{-\lambda \cdot}, X_t^{c_\lambda} \rangle \geqq 0 \text{ and } f(x) \sim e^{-\lambda x}.$$

and when $|\lambda| = \sqrt{2a} \ (\Rightarrow c_{\lambda} = \sqrt{2a})$, $\lim_{t\uparrow\infty} \langle f, X_t^{c_{\lambda}} \rangle = \lim_{t\uparrow\infty} \langle \cdot e^{-\lambda \cdot}, X_t^{c_{\lambda}} \rangle \geqq 0 \text{ and } f(x) \sim x e^{-\lambda x}.$

• (Durrett/Liggett/Biggins/K./Liu) For BRW, if positions at generation n are given by $\{\zeta_i^n: i \ge 1\}$ then a "travelling wave" $\phi: \mathbb{R} \to [0,1]$ is a solution to the functional equation

$$\phi(x) = \mathbb{E} \prod_{i} \phi(x + \zeta_i^n + cn)$$

and can be similarly analysed by comparing against the behaviour of Biggins' martingale $W_n(\lambda) := \sum_i e^{-\lambda \zeta_i^n} / m(\lambda)^n$.

• State space: Let $\nabla = \{ \mathbf{s} = (s_1, s_2, \cdots) : s_1 \ge s_2 \ge \cdots \text{ and } \sum_i s_i = 1 \}.$

- State space: Let $\nabla = \{ \mathbf{s} = (s_1, s_2, \cdots) : s_1 \ge s_2 \ge \cdots \text{ and } \sum_i s_i = 1 \}.$
- Mass fragmentation: X = {X(t) : t ≥ 0} is a ∇-valued Markov process with X(0) = (1,0,0,···) and otherwise we write X(t) = (X₁(t), X₂(t),···). Think of an object of unit mass falling apart into pieces such that the total mass is preserved.

ション ふゆ アメリア メリア しょうめん

- State space: Let $\nabla = \{ \mathbf{s} = (s_1, s_2, \cdots) : s_1 \ge s_2 \ge \cdots \text{ and } \sum_i s_i = 1 \}.$
- Mass fragmentation: $\mathbf{X} = {\mathbf{X}(t) : t \ge 0}$ is a ∇ -valued Markov process with $\mathbf{X}(0) = (1, 0, 0, \cdots)$ and otherwise we write $\mathbf{X}(t) = (X_1(t), X_2(t), \cdots)$. Think of an object of unit mass falling apart into pieces such that the total mass is preserved.
- Notation: Its probabilities are denoted by $\{\mathbb{P}_s : s \in \nabla\}$ and, for $s \in (0, 1]$, we shall reserve the special notation \mathbb{P}_s as short hand for $\mathbb{P}_{(s,0,\cdots)}$ and in particular write \mathbb{P} for \mathbb{P}_1 .

うして ふゆう ふほう ふほう しょうく

- State space: Let $\nabla = \{ \mathbf{s} = (s_1, s_2, \cdots) : s_1 \ge s_2 \ge \cdots \text{ and } \sum_i s_i = 1 \}.$
- Mass fragmentation: X = {X(t) : t ≥ 0} is a ∇-valued Markov process with X(0) = (1,0,0,···) and otherwise we write X(t) = (X₁(t), X₂(t),···). Think of an object of unit mass falling apart into pieces such that the total mass is preserved.
- Notation: Its probabilities are denoted by $\{\mathbb{P}_s : s \in \nabla\}$ and, for $s \in (0, 1]$, we shall reserve the special notation \mathbb{P}_s as short hand for $\mathbb{P}_{(s,0,\cdots)}$ and in particular write \mathbb{P} for \mathbb{P}_1 .
- Markov (fragmentation) property: Given that $\mathbf{X}(t) = (s_1, s_2, \cdots)$, where $t \ge 0$, then for u > 0, $\mathbf{X}(t+u)$ has the same law as the variable obtained by ranking in decreasing order the sequences $\mathbf{X}^{(1)}(u), \mathbf{X}^{(2)}(u), \cdots$ where the latter are independent, random mass partitions with values in ∇ having the same distribution as $\mathbf{X}(u)$ under $\mathbb{P}_{s_1}, \mathbb{P}_{s_2}, \cdots$ respectively.

ション ふゆ アメリア メリア しょうめん

- State space: Let $\nabla = \{ \mathbf{s} = (s_1, s_2, \cdots) : s_1 \ge s_2 \ge \cdots \text{ and } \sum_i s_i = 1 \}.$
- Mass fragmentation: $\mathbf{X} = {\mathbf{X}(t) : t \ge 0}$ is a ∇ -valued Markov process with $\mathbf{X}(0) = (1, 0, 0, \cdots)$ and otherwise we write $\mathbf{X}(t) = (X_1(t), X_2(t), \cdots)$. Think of an object of unit mass falling apart into pieces such that the total mass is preserved.
- Notation: Its probabilities are denoted by $\{\mathbb{P}_s : s \in \nabla\}$ and, for $s \in (0, 1]$, we shall reserve the special notation \mathbb{P}_s as short hand for $\mathbb{P}_{(s,0,\cdots)}$ and in particular write \mathbb{P} for \mathbb{P}_1 .
- Markov (fragmentation) property: Given that $\mathbf{X}(t) = (s_1, s_2, \cdots)$, where $t \ge 0$, then for u > 0, $\mathbf{X}(t+u)$ has the same law as the variable obtained by ranking in decreasing order the sequences $\mathbf{X}^{(1)}(u), \mathbf{X}^{(2)}(u), \cdots$ where the latter are independent, random mass partitions with values in ∇ having the same distribution as $\mathbf{X}(u)$ under $\mathbb{P}_{s_1}, \mathbb{P}_{s_2}, \cdots$ respectively.
- **Rate of fragmentation:** Fragmentation is governed by a measure ν on ∇ such that an individual block of mass $s \leq 1$ in the process **X** at time t will dislocate into an array of fragments $s \times s$ with rate $\nu(ds) \times dt + o(dt)$.

• Natural analogue of " $\exp\{-u(x,t)\} = \mathbb{E}_{\delta_x}(\exp\{-\langle f, X_t \rangle\})$ ":

$$u(x,t) := \mathbb{E}\left(\prod_{i} g(x - \log X_i(t))\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

with initial condition u(x,0) = g(x).

Natural analogue of " $\exp\{-u(x,t)\} = \mathbb{E}_{\delta_x}(\exp\{-\langle f, X_t \rangle\})$ ":

$$u(x,t) := \mathbb{E}\left(\prod_{i} g(x - \log X_i(t))\right)$$

with initial condition u(x, 0) = g(x).

Apply Markov (fragmentation) property:

$$u(x,t+h) = \mathbb{E}\left(\prod_{i} u(x-\log X_i(h),t)\right)$$

ション ふゆ アメリア メリア しょうめん

Natural analogue of " $\exp\{-u(x,t)\} = \mathbb{E}_{\delta_x}(\exp\{-\langle f, X_t \rangle\})$ ":

$$u(x,t) := \mathbb{E}\left(\prod_{i} g(x - \log X_i(t))\right)$$

with initial condition u(x, 0) = g(x).

Apply Markov (fragmentation) property:

$$u(x,t+h) = \mathbb{E}\left(\prod_{i} u(x-\log X_i(h),t)\right)$$

As $h \downarrow 0$

$$u(x,t+h) - u(x,t)$$

$$= \mathbb{E}\left(\prod_{i} u(x - \log X_{i}(h),t)\right) - u(x,t)$$

$$= \int_{\nabla} \left\{\prod_{i} u(x - \log s_{i},t) - u(x,t)\right\} \nu(\mathrm{d}\mathbf{s})h + o(h).$$

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

$$\frac{\partial u}{\partial t}(x,t) = \int_{\nabla} \left\{ \prod_{i} u(x - \log s_i, t) - u(x,t) \right\} \nu(\mathrm{d}s)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

$$\frac{\partial u}{\partial t}(x,t) = \int_{\nabla} \left\{ \prod_{i} u(x - \log s_i, t) - u(x,t) \right\} \nu(\mathrm{d}s)$$

 \blacksquare Hence a travelling wave $\psi:\mathbb{R}\to [0,1]$ with wave speed $c\in\mathbb{R}$ solves the equation

$$-c\psi'(x) + \int_{\nabla} \left\{ \prod_{i} \psi(x - \log s_i) - \psi(x) \right\} \nu(\mathrm{d}\mathbf{s}) = 0$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

$$\frac{\partial u}{\partial t}(x,t) = \int_{\nabla} \left\{ \prod_{i} u(x - \log s_i, t) - u(x,t) \right\} \nu(\mathrm{d}s)$$

 \blacksquare Hence a travelling wave $\psi:\mathbb{R}\to [0,1]$ with wave speed $c\in\mathbb{R}$ solves the equation

$$-c\psi'(x) + \int_{\nabla} \left\{ \prod_{i} \psi(x - \log s_i) - \psi(x) \right\} \nu(\mathrm{d}\mathbf{s}) = 0$$

• We look for monotone waves satisfying $\psi(-\infty) = 0$ and $\psi(\infty) = 1$.

/ 14

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

$$\frac{\partial u}{\partial t}(x,t) = \int_{\nabla} \left\{ \prod_{i} u(x - \log s_i, t) - u(x,t) \right\} \nu(\mathrm{d}s)$$

 \blacksquare Hence a travelling wave $\psi:\mathbb{R}\to [0,1]$ with wave speed $c\in\mathbb{R}$ solves the equation

$$-c\psi'(x) + \int_{\nabla} \left\{ \prod_{i} \psi(x - \log s_i) - \psi(x) \right\} \nu(\mathrm{d}\mathbf{s}) = 0$$

- \blacksquare We look for monotone waves satisfying $\psi(-\infty)=0$ and $\psi(\infty)=1.$
- With some further restriction on the class in which ψ sits, one can show through stochastic calculus for semi-martingales (Poisson random fields) that ψ is a travelling wave with speed c iff

$$M_t(c) := \prod_i \psi(x - \log X_i(t) - ct), \ t \ge 0$$

is a martingale.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Spine

Spine

• For each $t \ge 0$, $\mathbf{X}(t)$ is a (random) probability distribution,

$$\mathbb{E}\left(\sum_{i} X_{i}(t)g(-\log X_{i}(t))\right) = E(g(\xi_{t}))$$

where $\{\xi_t:t\geq 0\}$ under P is a pure jump subordinator with Laplace exponent

$$-\frac{1}{t}\log E(e^{-q\xi_t}) = \Phi(q) = \int_{\nabla_1} \left(1 - \sum_{i=1}^{\infty} s_i^{q+1}\right) \nu(ds), \ q > \underline{p},$$

where

$$\underline{p} := \inf\left\{p \in \mathbb{R} : \int_{\nabla_1} \sum_{i=2}^{\infty} s_i^{p+1} \nu(ds) < \infty\right\} \le 0.$$

8/ 14

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Spine

For each $t \ge 0$, $\mathbf{X}(t)$ is a (random) probability distribution,

$$\mathbb{E}\left(\sum_{i} X_{i}(t)g(-\log X_{i}(t))\right) = E(g(\xi_{t}))$$

where $\{\xi_t:t\geq 0\}$ under P is a pure jump subordinator with Laplace exponent

$$-\frac{1}{t}\log E(e^{-q\xi_t}) = \Phi(q) = \int_{\nabla_1} \left(1 - \sum_{i=1}^{\infty} s_i^{q+1}\right) \nu(ds), \ q > \underline{p},$$

where

$$\underline{p} := \inf \left\{ p \in \mathrm{I\!R} : \int_{\nabla_1} \sum_{i=2}^{\infty} s_i^{p+1} \nu(ds) < \infty \right\} \le 0.$$

• Without major restriction, we assume $\underline{p} < 0$ and that $\Phi(\underline{p}) = -\infty$.

8/ 14

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Range of speeds: Let $c_p = \Phi(p)/(p+1)$. There exists a unique solution to the equation $(p+1)\Phi'(p) = \Phi(p)$, denoted by \overline{p} . Then wave speeds exist for $c \in (c_{\underline{p}}, c_{\overline{p}}]$. Note $\log X_{-}(t)$

$$\lim_{t\uparrow\infty}\frac{-\log X_1(t)}{t}=c_{\overline{p}}, \text{ a.s.}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Range of speeds: Let $c_p = \Phi(p)/(p+1)$. There exists a unique solution to the equation $(p+1)\Phi'(p) = \Phi(p)$, denoted by \overline{p} . Then wave speeds exist for $c \in (c_{\underline{p}}, c_{\overline{p}}]$. Note $\log Y_{-}(t)$

$$\lim_{t\uparrow\infty}\frac{-\log X_1(t)}{t}=c_{\overline{p}}, \text{ a.s.}$$

Supercritical speeds: Note that if ψ for speeds $c > c_p$,

$$\prod_{i} \psi(x - \log X_i(t) - ct) \le \psi(x - \log X_1(t) - ct) \stackrel{t \uparrow \infty}{\to} \psi(-\infty) = 0. (!)$$

ション ふゆ アメリア メリア しょうめん

Range of speeds: Let $c_p = \Phi(p)/(p+1)$. There exists a unique solution to the equation $(p+1)\Phi'(p) = \Phi(p)$, denoted by \overline{p} . Then wave speeds exist for $c \in (c_{\underline{p}}, c_{\overline{p}}]$. Note

$$\lim_{t\uparrow\infty}\frac{-\log X_1(t)}{t}=c_{\overline{p}}, \text{ a.s.}$$

Supercritical speeds: Note that if ψ for speeds $c > c_p$,

$$\prod_{i} \psi(x - \log X_i(t) - ct) \le \psi(x - \log X_1(t) - ct) \xrightarrow{t \uparrow \infty} \psi(-\infty) = 0. (!)$$

Subcritical speeds: Biggins' martingale convergence theorem (Bertoin-Rouault) for additive martingales, $p \in (p, \overline{p})$,

$$W(t,p) := \sum_{i} X_i(t)^{p+1} e^{\Phi(p)t} \stackrel{t \uparrow \infty}{\to} W(\infty,p), \text{ a.s.}, L^1.$$

 $\psi(x) = \mathbb{E}(\exp\{-e^{-(p+1)x}W(\infty, p)\})$ is a travelling wave.

Critical speeds: Replace $W(\infty, p)$ by $-\partial W(\infty, p)/\partial p$.

10/14 ▲□▶ ▲륜▶ ▲불▶ ▲불▶ = 환 - 외역관

• Let $L_p(x) = e^{(p+1)x}(1-\psi(x))$. As $-\log \psi(z) \sim 1-\psi(z)$ when $z \uparrow \infty$ and $-\log X_1(t) - c_p t \to +\infty$,

$$-\log M_t(c_p) \sim e^{-(p+1)x} \sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Let $L_p(x) = e^{(p+1)x}(1-\psi(x))$. As $-\log \psi(z) \sim 1-\psi(z)$ when $z \uparrow \infty$ and $-\log X_1(t) - c_p t \to +\infty$,

$$-\log M_t(c_p) \sim e^{-(p+1)x} \sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct)$$

Naively: Show that

$$\sum_{i} X_{i}(t)^{p+1} e^{\Phi(p)t} L_{p}(x - \log X_{i}(t) - ct) \sim L_{p}(\alpha t) \sum_{i} X_{i}(t)^{p+1} e^{\Phi(p)t}$$

for some α , then $-\log M_t(c_p)/W(t,p) \sim L(\alpha t) \Rightarrow L_p \sim k_p \in (0,\infty)$ and uniqueness follows.

• Let $L_p(x) = e^{(p+1)x}(1-\psi(x))$. As $-\log \psi(z) \sim 1-\psi(z)$ when $z \uparrow \infty$ and $-\log X_1(t) - c_p t \to +\infty$,

$$-\log M_t(c_p) \sim e^{-(p+1)x} \sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct)$$

Naively: Show that

$$\sum_{i} X_{i}(t)^{p+1} e^{\Phi(p)t} L_{p}(x - \log X_{i}(t) - ct) \sim L_{p}(\alpha t) \sum_{i} X_{i}(t)^{p+1} e^{\Phi(p)t}$$

for some α , then $-\log M_t(c_p)/W(t,p) \sim L(\alpha t) \Rightarrow L_p \sim k_p \in (0,\infty)$ and uniqueness follows.

ション ふゆ アメリア メリア しょうめん

Problem: " $-\log X_i(t) - ct$ " behaves like a Lévy process with no positive jumps drifting to $+\infty$. Too difficult to control all of them uniformly.

Stopping lines

Figure: Freeze fragments as soon as $-\log X(t) - c_p t \ge z$ with $p \in (0,\overline{p})$. Collection of block sizes and their "freezing time" denoted $\{(B_i(z), \ell_i(z)) : i \ge 1\}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Stopping lines

Figure: Freeze fragments as soon as $-\log X(t) - c_p t \ge z$ with $p \in (0, \underline{p})$. Collection of block sizes and their "freezing time" denoted $\{(B_i(z), \ell_i(z)) : i \ge 1\}$.

ション ふゆ アメリア メリア しょうめん

Working with stopping lines

Working with stopping lines

All martingales concerned are uniformly integrable and their limits can be "projected back" on to the stopping lines to give "stopped" versions of martingales. For $z \ge 0$

$$M_{\ell_z}(c_p) := \prod_i \psi(x - \log B_i(z) - c_p \ell_i(z)) \text{ and } W(\ell_z, p) := \sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Working with stopping lines

All martingales concerned are uniformly integrable and their limits can be "projected back" on to the stopping lines to give "stopped" versions of martingales. For $z \ge 0$

$$M_{\ell_z}(c_p) := \prod_i \psi(x - \log B_i(z) - c_p \ell_i(z)) \text{ and } W(\ell_z, p) := \sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)}.$$

Now much easier to compare $-\log M_{\ell_z}$ against $W(\ell_z, p)$ $(x - \log B_i(z) - c_p \ell_i(z) \ge x + z$ uniformly in *i*) and deduce that, as $z \uparrow \infty$,

$$\frac{-\log M_{\ell_z}(c_p)}{W(\ell_z, p)} \sim e^{-(p+1)x} \sum_i \frac{B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)}}{W(\ell_z, p)} L_p(x - \log B_i(z) - c_p\ell_i(z))$$
$$\sim e^{-(p+1)x} L_p(x+z)$$

ション ふゆ アメリア メリア しょうめん

and our naive argument can be made rigorous.

14/14 《 ロ > 《 문 > 《 문 > 《 문 > 《 문 - 외 < 연

To asymptotically replace

 $\sum_{i} B_{i}(z)^{(p+1)} e^{\Phi(p)\ell_{i}(z)} L_{p}(x - \log B_{i}(z) - c_{p}\ell_{i}(z)) \text{ by } L_{p}(x + z)W(\ell_{z}, p)$ we need the following technical lemma which echos Nerman's classical strong law of large numbers for CMJ processes.

ション ふゆ アメリア メリア しょうめん

To asymptotically replace

 $\sum_{i} B_{i}(z)^{(p+1)} e^{\Phi(p)\ell_{i}(z)} L_{p}(x - \log B_{i}(z) - c_{p}\ell_{i}(z)) \text{ by } L_{p}(x+z)W(\ell_{z},p)$ we need the following technical lemma which echos Nerman's classical strong law of large numbers for CMJ processes.

For all exponentially bounded positive functions f and $p \in (p, \overline{p}]$,

$$\sum_{i} B_{i}(z)^{(p+1)} e^{\Phi(p)\ell_{i}(z)} f(x - \log B_{i}(z) - c_{p}\ell_{i}(z)) \sim Q_{p}(f)W(\infty, p)$$

ション ふゆ アメリア メリア しょうめん

where $Q_p(f)$ is the expectation of f with respect to the stationary overshoot distribution of a subordinator.

To asymptotically replace

 $\sum_{i} B_{i}(z)^{(p+1)} e^{\Phi(p)\ell_{i}(z)} L_{p}(x - \log B_{i}(z) - c_{p}\ell_{i}(z)) \text{ by } L_{p}(x+z)W(\ell_{z},p)$ we need the following technical lemma which echos Nerman's classical strong law of large numbers for CMJ processes.

For all exponentially bounded positive functions f and $p \in (p, \overline{p}]$,

$$\sum_{i} B_{i}(z)^{(p+1)} e^{\Phi(p)\ell_{i}(z)} f(x - \log B_{i}(z) - c_{p}\ell_{i}(z)) \sim Q_{p}(f)W(\infty, p)$$

where $Q_{\mathbb{P}}(f)$ is the expectation of f with respect to the stationary overshoot distribution of a subordinator.

• When $p \in (0, \overline{p})$ this result can in fact be deduced from Nerman's classical strong law.

ション ふゆ アメリア メリア しょうめん