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Terrorists never congregate in even numbers1

(or: Some strange results in fragmentation-coalescence )

Andreas E. Kyprianou, University of Bath, UK.

1Joint work with Steven Pagett, Tim Rogers
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Terrorists, consensus and biological clustering

Consider a collection of n identical particles
(terrorists/opinions), grouped together into some number of
clusters (cells/consensus). We define a stochastic dynamical
process as follows:

Every k-tuple of clusters coalesces at rate α(k)n1−k ,
independently of everything else that happens in the system.
The coalescing cells are merged to form a single cluster with
size equal to the sum of the sizes of the merged clusters.

Clusters fragment (terrorist cells are dispersed/consensus
breaks) at constant rate λ > 0, independently of everything
else that happens in the system. Fragmentation of a cluster of
size ` results in ` ‘singleton’ clusters of size one.
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Terrorists, consensus and biological clustering

Without fragmentation, the model falls within the domain of
study of Smoluchowski coagulation equations, originally
devised to consider chemical processes occurring in
polymerisation, coalescence of aerosols, emulsication,
flocculation.

In all cases: one is interested in the macroscopic behaviour of
the model (large n), in particular in exploring universality
properties.
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Model history (but only for dyadic coalescence)

This model is a variant of the one presented in:
Bohorquez, Gourley, Dixon, Spagat & Johnson (2009)
Common ecology quantifies human insurgency Nature 462,
911-914.

It is also related to: Ráth and Tóth (2009) Erdős-Rènyi
random graphs + forest fires = self-organized criticality, 14
Paper no. 45, 1290-1327.

λ(n)

1/n

In a system of size n ‘vacant’ edges become ‘occupied’ at rate 1/n,
each site ‘hit by lightning’ at rate λ(n) annihilating to singletons
the cluster in which it is contained.
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Heavy-tailed terrorism

In the insurgency model, two blocks merge if a terrorist in
each block make a connection, which they do at a fixed rate.
This means that coalescence is more likely for a big terrorist
cell.
The macroscopic-scale, large time limit of the insurgency
model for a “slow rate of fragmentation” shows that the
distribution of block size is heavy tailed:

“P(typical block = x) ≈ const.× x−α, x →∞.”
Taken from Bohorquez, Gourley, Dixon, Spagat & Johnson
(2009):
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Back to our model: Generating function

For each n ∈ N, and k ∈ {1, . . . , n}, the state of the system is
specified by the number of clusters of size k at time t.

Introduce the random variables

wn,k(t) :=
1

n
#{clusters of size k at time t}, 1 ≤ k ≤ n.

Rather than working with these quantities directly, use the
empirical generating function

Gn(x , t) =
n∑

k=1

xkwn,k(t), n ≥ 1, x ∈ (0, 1), t ≥ 0
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Theorem 1

Theorem

Suppose that the coalescence rates α : N→ R+ satisfy

α(k) ≤ exp(γk ln ln(k)) , ∀k ,

where γ < 1 is an arbitrary constant. Let G : [0, 1]× R+ → R be
the solution of the deterministic initial value problem

G(x , 0) = x ,

∂G

∂t
(x , t) = λ(x − G(x , t)) +

∞∑
k=2

α(k)

k!

(
G(x , t)k − kG(1, t)k−1G(x , t)

)
.

Then Gn(x , t) converges to G (x , t) in L2, uniformly in x and t, as
n→∞, that is

sup
x∈[0,1],t≥0

E
[
(G (x , t)− Gn(x , t))2

]
→ 0, as n→∞.
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Main technique in proof

For f (x ,wn) :=
∑n

k=1 x
kwn,k , we have

Anf (x ,wn) = λ(x − f (x ,wn))

+
n∑

k=2

α(k)

k!
(f (x ,wn)k − kf (1,wn)k−1f (x ,wn))

+ βn(x ,wn),

where

sup
wn

|βn(x ,wn)| ≤ A

n
,

where A is a constant independent of n and x .
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Main technique in proof

Look at the mean-field equations to ”guess” the limiting
behaviour of Gn(x , t) (equivalently consider the leading order
terms of the generator).

Apply Dynkin’s formula,play with leading terms in generator
and invoke Gronwall’s Lemma:

E[(G (x , t)− Gn(x , t))2]

= E
[∫ t

0

(
∂

∂s
+An

)
[(G (x , s)− Gn(x , s))2]ds

]
,
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The next theorem deals with the stationary cluster size
distribution.

Let

pn,k(t) :=
#{clusters of size k at time t}

#{clusters at time t}
, 1 ≤ k ≤ n.

Define
pk := lim

t→∞
lim
n→∞

pn,k(t) ,

as a distributional limit, which exists thanks to the previous
theorem and that

n∑
k=1

xkpn,k(t) =
Gn(x , t)

Gn(1, t)
, n ≥ 1, x ∈ (0, 1), t ≥ 0 .
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Theorem 2

Theorem

If α satisfies

α(k) ≤ exp(γk ln ln(k)) , ∀k ,

and m is the smallest integer such that α(m) > 0, then the
stationary cluster size distribution obeys

lim
λ↘0

pk =

 1
k

(
m−1
m

)k ( 1
m

) k−1
m−1

(m( k−1
m−1)
k−1
m−1

)
if m − 1 divides k − 1

0 otherwise

and in particular, as k →∞

lim
λ↘0

pk ≈

{
k−3/2 if m − 1 divides k − 1

0 otherwise.
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Terrorists never congregate in even numbers
Suppose we allow coalescence in groups of three or more but
not pairs (m = 3).

In the large n and small λ limit we will see no clusters of even
size whatsoever in the stationary distribution.

The model has the apparently paradoxical feature that
clusters of even size are vanishingly rare, despite the fact that
limλ↘0 p1 ≈ 2/3.

This is a consequence of the weight of the tail of the cluster
size distribution.

The universal exponent 3/2 suggests a typical cluster size∑n
1 kpk ≈ O(n1/2) ⇒ ] clusters ≈ O(n1/2).

Coalescence of triples:
(n1/2

3

)
× α(3)n1−3 ≈ O(n−1/2)

Coalescence of quadruples:
(n1/2

4

)
× α(4)n1−4 ≈ O(n−1)

With 2/3 of blocks being singletons, this creates an imbalance
with manifests in the disappearance of even sized blocks.
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Some more strange results for exchangeable
fragmentation-coalescence models2

2Joint work with Steven Pagett, Tim Rogers and Jason Schweinsberg.
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Kingman n-coalescent

The Kingman n-coalescent is an (exchangeable) coalescent
process on the space of partitions of {1, · · · , n} denoted by

Π(n)(t) = (Π
(n)
1 (t), · · · ,Π(n)

N(t)(t)), t ≥ 0,

where N(t) is the number of blocks at time t and Π
(n)
i (t) is

the elements of {1, · · · , n} that belong to the i-th block.
Blocks merge in pairs, with a fixed rate c of any two blocks
merging.
Both N(t), t ≥ 0, is a Markov process and Π(n) is a Markov
process.
The notion of the Kingman coalescent can be mathematically
extended in a consistent way to the space of partitions on N.
That is to say the pathwise limit

{Π(t) : t ≥ 0} := lim
n→∞
{Π(n)(t) : t ≥ 0}

make sense.
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Kingman coalescent

Included in this statement is the ability of Π to “come down
from infinity”.

(Slighly) more precisely: if the initial configuration is the
trivial partition

Π(0) := ({1}, {2}, {3}, · · · )

(so that N(0) =∞) then N(t) <∞ almost surely, for all
t > 0.

In particular, the Markov Chain N(t) has an entrance law at
+∞.
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Kingman insurgents meet counter terrorism

At rate µ, each block in the system is shattered into
singletons.

When there are a finite number of blocks, each block must
contain an infinite number of integers and hence when a block
shatters, the system jumps back up to “infinity”.

If started with a finite number of blocks, the resulting process
is still a Markov process on the space of partitions of N until
the arrival of the first fragmentation.

Can process be “extended” to a Markov process on
N ∪ {+∞}? Can the process “come down from infinty”?

This would allow us to consider the process as recurrent on
N ∪ {+∞}.
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A remarkable phase transition

We can continue to use the same notation as before with

Π(t) = (Π1(t), · · ·ΠN(t)), t ≥ 0,

as a partitioned-valued process.

A little thought (exchangeability!) shows that both N(t) and
M(t) := 1/N(t), t ≥ 0, are Markov process (with a possible
absorbing state at +∞ resp. 0).

We now understand the notion of coming down from infinity
to mean that M := (M(t) : t ≥ 0) has an entrance law at 0.
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A remarkable phase transition

Theorem

If θ := 2µ/c < 1, then M is a recurrent strong Markov process on
{1/n : n ∈ N} ∪ {0}.
(Comes down from infinity.)

If θ := 2µ/c ≥ 1, then 0 is an absorbing state for M.
(Does not come down from infinity.)
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Coming down from infinity
N
(t
)

500

1,000

t

M
(t
)

0 1 2 3 4 5 6 7 8 9 10
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Local time properties at the boundary θ := 2µ/c < 1

We can build an excursion theory for N (resp. M) at ∞ (resp.
0). In particular there exists a local time L of N (resp. M) at
∞ (resp. 0).

Zero time at the boundary point:
Leb{t : N(t) =∞} = Leb{t : M(t) = 0} i.e. inverse local
time L−1 of N at ∞ (resp. of M at 0) has zero drift

Aforesaid inverse local time has Laplace exponent

Φ(q) = t−1 logE[e−qL
−1
t ] where

Φ(q) =
Γ(1− θ)Γ(1− α+(q))Γ(1− α−(q))

Γ(α+(q))Γ(α−(q))
, q ≥ 0,

such that θ = 2µ/c

α±(q) =
1− θ

2
± 1

2

√
(1 + θ)2 − 8q/c , q ≥ 0.

Hausdorff dimension of of {t : N(t) =∞} is θ = 2µ/c
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α±(q) =
1− θ

2
± 1

2

√
(1 + θ)2 − 8q/c , q ≥ 0.

Hausdorff dimension of of {t : N(t) =∞} is θ = 2µ/c
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Local time properties at the boundary θ := 2µ/c < 1

We can build an excursion theory for N (resp. M) at ∞ (resp.
0). In particular there exists a local time L of N (resp. M) at
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Stationary distribution

Theorem

Let θ := 2µ/c < 1, then M has stationary distribution given by the
Beta-Geometric (1− θ, θ) distribution

ρM(1/k) =
(1− θ)

Γ(θ)

Γ(k − 1 + θ)

Γ(k + 1)
, k ∈ N.

In particular ρM(0) = 0.
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Thank you!
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