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DEFINITION OF ψ-CSBP.

A CSBP (X,Px) is a non-negative valued strong Markov process with probabilities
(Px, x ≥ 0) such that for any x, y ≥ 0, Px+y = Px ∗ Py.

In particular
Ex(e−θXt ) = e−xut(θ), x, θ, t ≥ 0,

where ut(θ) uniquely solves the evolution equation

ut(θ) +

∫ t

0
ψ(us(θ))ds = θ, t ≥ 0.

Here, we assume that the so-called branching mechanism ψ takes the form

ψ(θ) = −αθ + βθ2 +

∫
(0,∞)

(e−θx − 1 + θx)Π(dx), θ ≥ 0,

where α ∈ R, β ≥ 0 and Π is a measure concentrated on (0,∞) which satisfies∫
(0,∞)

(x ∧ x2)Π(dx) <∞

.
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PROPERTIES.

We assume that the process is conservative, i.e.∫
0+

1
|ψ(ξ)|

dξ =∞.

It is easily verified that

Ex[Xt] = xe−ψ
′(0+)t, t, x ≥ 0.

We say that the CSBP is supercritical, critical or subcritical accordingly as
−ψ′(0+) = α is strictly positive, equal to zero or strictly negative.

For a supercritical ψ-CSBP the probability of extinction is

Px(lim
t↑∞

Xt = 0) = e−λ
∗x,

where λ∗ is the unique root on (0,∞) of the equation ψ(θ) = 0.
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PROLIFIC SKELETON (SUPERCRITICAL CSBP)

The supercritical ψ-CSBP is equal in law to the total mass process obtained by the
following construction.
I Initiate Po(λ∗x) independent Galton-Watson processes with branching generator

q

∑
k≥0

pkrk − r

 =
1
λ∗
ψ(λ∗(1− r)), r ∈ [0, 1],

where q = ψ′(λ∗), p0 = p1 = 0 and for k ≥ 2

pk =
1

λ∗ψ′(λ∗)

{
β(λ∗)21{k=2} + (λ∗)k

∫
(0,∞)

rk

k!
e−λ

∗rΠ(dr)

}
.

I Along the edges immigrate CSBPs at rate

2βdQ∗ +

∫ ∞
0

ye−λ
∗yΠ(dy)dP∗y ,

where P∗x , x ≥ 0 is the law of the CSBP with branching mechanism
ψ∗(λ) = ψ(λ+ λ∗) (i.e. the process conditioned to die out) and Q∗ is the
associated excursion measure.
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PROLIFIC SKELETON (SUPERCRITICAL CSBP)
I Given that an individual dies and branches into k ≥ 2 offspring, an independent
ψ∗-CSBP is immigrated with initial mass r with probability

ηk(dr) =
1

pkλ∗ψ′(λ∗)

{
β(λ∗)2δ0(dr)1{k=2} + (λ∗)k rk

k!
e−λ

∗rΠ(dr)

}
.

I Finally an independent ψ∗-CSBP is issued at time zero with initial mass x.

time
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CSBP SDE.

The process (X,Px), x > 0, can be represented as the unique strong solution to the
stochastic differential equation (SDE)

Xt = x + α

∫ t

0
Xs−ds +

√
2β
∫ t

0

∫ Xs−

0
W(ds,du) +

∫ t

0

∫ ∞
0

∫ Xs−

0
rÑ(ds,dr,dν),

for x > 0, t ≥ 0, where
I W(ds,du) is a white noise process on (0,∞)2 based on the Lebesgue measure

ds⊗ du,
I N(ds,dr,dν) is a Poisson point process on (0,∞)3 with intensity ds⊗Π(dr)⊗ dν,

and Ñ(ds,dr,dν) the compensated measure of N(ds,dr,dν).
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PROLIFIC SKELETAL SDE DECOMPOSITION

Theorem (Fekete-Fontbona-K. (2017))
Suppose that ψ corresponds to a supercritical branching mechanism (i.e. α > 0). Consider the
coupled system of SDEs(

Λt
Zt

)
=

(
Λ0
Z0

)
− ψ′(λ∗)

∫ t

0

(
Λs−
0

)
ds +

√
2β
∫ t

0

∫ Λs−

0

(
1
0

)
W(ds,du)

+

∫ t

0

∫ ∞
0

∫ Λs−

0

(
r
0

)
Ñ0(ds,dr,dν)

+

∫ t

0

∫ ∞
0

∫ Zs−

1

(
r
0

)
N1(ds,dr,dj) + 2β

∫ t

0

(
Zs−
0

)
ds

+

∫ t

0

∫ ∞
0

∫ ∞
0

∫ Zs−

1

(
r

k− 1

)
N2(ds,dr,dk,dj), t ≥ 0,

with Λ0 ≥ 0 given and fixed. Under the assumption that Z0 is an independent random
variable which is Poisson distributed with intensity λ∗Λ0 the coupled system of SDEs above
has a unique strong solution such that:

(i) For t ≥ 0, Zt|FΛ
t is Poisson distributed with intensity λ∗Λt, where

FΛ
t := σ(Λs : s ≤ t);

(ii) The process (Λt, t ≥ 0) is a weak solution to the CSBP SDE.
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DRIVING SOURCES OF RANDOMNESS

Let N0 = {0} ∪ N and ](d`) =
∑

i∈N0
δi(d`), ` ≥ 0.

Then in the previous theorem
I N0 is a Poisson random measure on (0,∞)3 with intensity measure

ds⊗ e−λ
∗rΠ(dr)⊗ dν, Ñ0 is the associated compensated version of N0,

I N1(ds,dr,dj) is a Poisson point process on (0,∞)2 × N with intensity
ds⊗ re−λ

∗rΠ(dr)⊗ ](dj),

I N2(ds,dr,dk,dj) is a Poisson point process on (0,∞)2 × N0 × N with intensity
ψ′(λ∗)ds⊗ ηk(dr)⊗ pk](dk)⊗ ](dj), and

I W(ds,du) is the white noise process on (0,∞)2 based on the Lebesgue measure
ds⊗ du.
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WHAT’S THE POINT?
I An SDE inherently shows us where (the) martingales (that we already know exist)

lie.
I Remember that α = −ψ′(0+) and (immigration = CSBP)

Ex[Λt] = xe−ψ
′(0+)t = xeαt

and that Z (skeleton) has branching mechanism ψ(λ∗(1− r))/λ∗, so that the rate
of growth is given by

q

( ∞∑
k=0

kpk − 1

)
=

1
λ∗

d
dr
ψ(λ∗(1− r))

∣∣∣∣
r=1

= −ψ′(0+) = α.

I As a consequence, we know that for both the CSBP and its skeleton:

(e−αtΛt, t ≥ 0) and (e−αtZt, t ≥ 0)

are martingales.
I Hence by rearrangement in our SDE, we should see that(

e−αtΛt
e−αtZt

)
= SDE = martingale

I (EXERCISE!!!!) Should be able to show that (under the appropriate x log x
conditions) the skeleton and immigration martingales converge together on the
same space to the same random variable.
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WHAT’S THE POINT?
I Still not a motivation!
I BUT! What if we could develop a similar SDE for a skeletal decomposition of a

superprocess?
I Roughly speaking (more careful description coming next): We want

(Xt(·), t ≥ 0) is an appropriately defined superprocess (measure-valued Markov
process), then there exists a branching particle diffusion (written as an atomic
measure-valued process) (Zt(·), t ≥ 0) and a measure-valued process of
immigration (Λt(·), t ≥ 0), such that for all "suitably smooth" functions f , g:(

〈f ,Λt〉
〈g,Zt〉

)
= SDE

I Still not a motivation!
I BUT! If we are in a scenario where we can define a "generalised principal

eigenvalue for the linear operator of the system" (say λc) for which(
e−λct〈f ,Λt〉
e−λct〈g,Zt〉

)
= SDE

I And hence we get a new tool for producing (OPEN PROBLEM!!!!!!) a Strong Law
of Large Numbers for the coupled system.

I Variant of the previous open problem: Previous studies have shown that when
(e−λct〈g,Zt〉, t ≥ 0) has a SLLN, then (e−λct〈f ,Λt〉, t ≥ 0) has a SLLN.
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SUPERPROCESS

I Let E be a domain of Rd, and denote byM(E) the space of finite Borel measures
on E.

I Want a strong Markov process X on E taking values inM(E).
I The process is characterised by two quantities P and ψ.
I P = (Pt)t≥0 is the semigroup of an Rd-valued diffusion killed on exiting E.
I For technical reasons we assume that P is a Feller semigroup whose generator

takes the form

L =
1
2
∇ · a(x)∇+ b(x) · ∇,

where a : E→ Rd×d is the diffusion matrix that takes values in the set of
symmetric, positive definite matrices, and b : E→ Rd is the drift term.

I ψ is the so-called branching mechanism. The latter takes the form

ψ(x, z) = −α(x)z + β(x)z2 +

∫
(0,∞)

(
e−zu − 1 + zu

)
m(x,du), x ∈ E, z ≥ 0,

where α and β ≥ 0 are bounded continuous mappings from E to R and [0,∞)
respectively, and (u ∧ u2)m(x,du) is a bounded kernel from E to (0,∞).
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SEMIGROUP REPRESENTATION OF SUPERPROCESS

I For all µ ∈M(E) and f ∈ B+(E), where B+(E) denotes the non-negative
measurable functions on E, we have

Eµ
[

e−〈f ,Xt〉
]

= exp

{
−
∫

E
uf (x, t)µ(dx)

}
, t ≥ 0,

I here, uf (x, t) is the unique non-negative solution to the integral equation

uf (x, t) = Pt[f ](x)−
∫ t

0
ds · Ps[ψ(·, uf (·, t− s))](x), x ∈ E, t ≥ 0. (1)

Here we use the notation

〈f , µ〉 =

∫
E

f (x)µ(dx), µ ∈M(E), f ∈ B+(E).

I For each µ ∈M(E) we denote by Pµ the law of the process X issued from X0 = µ.
The process (X,Pµ) is called a (P, ψ)-superprocess.
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w-SKELETON
I Suppose that w(x) > 0, for all x ∈ E, supx∈E w(x) <∞ and

Eµ
(

e−〈w,Xt〉
)

= e−〈w,µ〉, for all µ ∈M(E), t ≥ 0.

I w-skeleton Z = (Zt, t ≥ 0) is a Markov branching process with diffusion
semigroup Pw is "formally" associated to the generator

Lw := w−1L(wu)− w−1Lw

and branching generator

F(x, s) = q(x)
∑
n≥0

pn(x)(sn − s), x ∈ E, s ∈ [0, 1],

where

q(x) = ψ′(x,w(x))−
ψ(x,w(x))

w(x)
,

and p0(x) = p1(x) = 0, and for n ≥ 2

pn(x) =
1

w(x)q(x)

{
β(x)w2(x)1{n=2} + wn(x)

∫
(0,∞)

yn

n!
e−w(x)ym(x,dy)

}
.

Here we used the notation

ψ′(x,w(x)) :=
∂

∂z
ψ(x, z)

∣∣∣∣
z=w(x)

, x ∈ E.

We refer to the process Z as the (Pw, F) skeleton.
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IMMIGRATION
I The function

ψ∗(x, z) = ψ(x, z + w(x))− ψ(x,w(x)), x ∈ E,

is a branching mechanism which can be written as

ψ∗(x, z) = −α∗(x)z + β(x)z2 +

∫
(0,∞)

(e−zu − 1 + zu)m∗(x,du), x ∈ E,

where
α∗(x) = −ψ′(x,w(x)) and m∗(x,du) = e−w(x)um(x,du).

I Dress the branches of the spatial tree that describes the trajectory of Z in such a
way that a particle at the space-time position (x, t) ∈ E× [0,∞) has an
independent D([0,∞)×M(E))-valued trajectory grafted on to it with rate

2β(x)dN∗x +

∫
(0,∞)

ye−w(x)ym(x,dy)× dP∗yδx
.

Here N∗x is the excursion measure on the space D([0,∞)×M(E)) associated to P∗.
I When a particle in Z dies and gives birth to n ≥ 2 offspring at spatial position

x ∈ E, with probability ηn(x,dy)P∗yδx
an additional independent

D([0,∞)×M(E))-valued trajectory is grafted on to the space-time branching
point, where

ηn(x,dy) =
1

w(x)q(x)pn(x)

{
β(x)w2(x)δ0(dy)1{n=2} + wn(x)

yn

n!
e−w(x)ym(x,dy)

}
.
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w-SKELETAL PATH DECOMPOSITION

Theorem (Engländer-Pinsky (1999), K.-Pérez-Ren (2015))
Suppose that µ ∈M(E), and let Z be a (Pw, F)-Markov branching process with initial
configuration consisting of a Poisson random field of particles in E with intensity w(x)µ(dx).

Define Λt as the total mass from the dressing present at time t together with the mass present at
time t from an independent copy of (X,P∗µ) issued at time 0.

Denote the law of (Λ,Z) by Pµ. Then (Λ,Pµ) is is equal in law to (X,Pµ). Furthermore,
under Pµ, conditionally on Λt, the measure Zt is a Poisson random measure with intensity
w(x)Λt(dx).

(Less exotic versions were proved before and more exotic versions with non-local
branching mechanisms have since been proved)
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SDE REPRESENTATION OF SUPERPROCESS
I Define H(x,dν) as the natural extension of m from (0,∞) toM(E) \ {0}. More

precisely H is concentrated on measures of the form {uδx} and assume it satisfies
the integrability condition

sup
x∈E

∫
M(E)

(〈1, ν〉 ∧ 〈1, ν〉2)H(x,dν) = sup
x∈E

∫
(0,∞)

(u ∧ u2)m(x,du) <∞.

I Let C0(E)+ denote the space of non-negative continuous functions on E vanishing
at infinity. We assume x 7→ (〈1, ν〉 ∧ 〈1, ν〉2)H(x,dν) is continuous in the sense of
weak convergence onM(E) \ {0}, and

f 7→
∫
M(E)

(〈f , ν〉 ∧ 〈f , ν〉2)H(x,dν) =

∫
(0,∞)

(uf (x) ∧ u2f (x)2)m(x,du)

maps C0(E)+ into itself.
I Next let N(ds,dν) be the optional random measure on [0,∞)×M(E) defined by

N(ds,dν) =
∑
s>0

1{∆Xs 6=0}δ(s,∆Xs)(ds,dν),

where ∆Xs = Xs − Xs−, and let N̂(ds,dν) denote the predictable compensator of
N(ds,dν). It can be shown that N̂(ds,dν) = K(Xs−,dν)ds with

K(µ,dν) =

∫
E
µ(dx)H(x,dν).
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SUPERPROCESS SDE

I If we denote the compensated measure by Ñ(ds,dν), then for any f ∈ D0(L) (the
set of functions in C0(E) that are also in the domain of L) we have

〈f ,Xt〉 = 〈f ,X0〉+ Mc
t(f ) + Md

t (f ) +

∫ t

0
〈Lf + αf ,Xs〉ds, t ≥ 0,

where t 7→ Mc
t(f ) is a continuous local martingale with quadratic variation∫ t

0 〈2βf 2,Xs−〉ds and

t 7→ Md
t (f ) =

∫ t

0

∫
M(E)

〈f , ν〉Ñ(ds,dν), t ≥ 0,

is a purely discontinuous local martingale.
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w-SKELETAL SDE DECOMPOSITION

Theorem (Fekete-Fontbona-K. (2019))
Suppose that w(x) > 0, for all x ∈ E, w ∈ D0(L), supx∈E w(x) <∞ and

Eµ
(

e−〈w,Xt〉
)

= e−〈w,µ〉, for all µ ∈M(E), t ≥ 0.

Consider the following system of SDEs for f , h ∈ D0(L),(
〈f ,Λt〉
〈h,Zt〉

)
=

(
〈f ,Λ0〉
〈h,Z0〉

)
−
∫ t

0

(
〈ψ′(·,w(·))f (·),Λs−〉
0

)
ds +

(
Uc

t (f )
Vc

t (h)

)
+

∫ t

0

∫
M(E)

(
〈f , ν〉
0

)
Ñ0(ds,dν) +

∫ t

0

(
〈Lf ,Λs−〉
〈Lwh,Zs−〉

)
ds

+

∫ t

0

∫
M(E)

(
〈f , ν〉
0

)
N1(ds,dν) +

∫ t

0

(
〈2β(·)f (·),Zs−〉
0

)
ds

+

∫ t

0

∫
Ma(E)

∫
M(E)

(
〈f , ν〉
〈h, ρ〉

)
N2(ds,dρ,dν), t ≥ 0,

where Λ0 ∈M(E) is given and fixed. Then under the assumption that Z0 is a Poisson random
measure with intensity w(x)Λ0(dx) we have the following:

(i) Zt|FΛ
t (where FΛ

t = σ(Λs : s ≤ t)) is a Poisson random measure with intensity
w(x)Λt(dx);

(ii) The process (Λt, t ≥ 0) is Markovian and a weak solution to the superprocess SDE.
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DRIVING SOURCES OF RANDOMNESS
I Let N0(ds,dν) be an optional random measure on [0,∞)×M(E)\{0}with

predictable compensator

N̂0
(ds,dν)|ν=uδx = ds

∫
E

Λs−(dx)e−w(x)um(x,du),

and Ñ0(ds,dν) is its compensated version,
I N1(ds,dν) be an optional random measure on [0,∞)×M(E)\{0}with

predictable compensator

N̂1
(ds,dν)|ν=uδx = ds

∫
E

Zs−(dx)ue−w(x)um(x,du),

I and N2(ds,dρ,dν) an optional random measure on [0,∞)×Ma(E)×M(E)\{0}
with predictable compensator

N̂2
(ds,dρ,dν)|ν=uδx,ρ=(k−1)δx = ds

∫
E

Zs−(dx)q(x)pk(x)ηk(x,du)π(x,dk),

π(x,dk) = #(d(k− 1))δx so that
∫
{2,3,··· }〈h, π(x, ·)〉 =

∑
k≥2 h(x, k− 1).

I Finally let (Uc
t (f ), t ≥ 0) be a continuous local martingale with quadratic variation

2〈βf 2,Λt−〉dt, and (Vc
t (h), t ≥ 0) be a continuous local martingale with quadratic

variation 〈(∇h)ta∇h,Zt−〉dt.
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SLLN

I Typically want to assume that there exists λc > 0 such that

λc = inf{λ ∈ R : ∃ smooth h > 0 and (L+ α− λ)h = 0}

and associated to this eigenvalue are the left- and right-eigenfunctions ϕ̃ and ϕ,
normalised so that 〈ϕ̃, ϕ〉 = 1.

I (Roughly speaking): We have that

Wϕ
t (Λ) := e−λct〈ϕ,Λt〉 and Wϕ/w

t (Z) := e−λct〈ϕ/w,Zt〉, t ≥ 0,

are martingales.
I One should be able to prove that

Wϕ
∞(Λ) = Wϕ/w

∞ (Z) =: ∆

I The SLLN would say that for f ≤ ϕ and g ≤ ϕ/w,

lim
t→∞

(
e−λct〈f ,Λt〉
e−λct〈g,Zt〉

)
=

(
〈f , ϕ̃〉
〈g,wϕ̃〉

)
∆
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