Strong law of large numbers for supercritical super-diffusions

Maren Eckhoff¹ Andreas E. Kyprianou² Matthias Winkel³

・ロト・日本・モート モー うへの

¹University of Bath, UK. ²Unversity of Bath, UK., your speaker for today. ³Oxford University, UK.

 Scatter a n 'initial ancestors' scattered in D ⊆ ℝ^d at positions x₁, · · · , x_n. Write ν(x) = ∑_{i=1}ⁿ δ_{xi}(dx) for the measure describing the initial state of the system.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Scatter a n 'initial ancestors' scattered in D ⊆ ℝ^d at positions x₁, ..., x_n. Write ν(x) = ∑_{i=1}ⁿ δ_{xi}(dx) for the measure describing the initial state of the system.
- From each point, issue an L-diffusion. Here we take

$$L = rac{1}{2}
abla \cdot a(x)
abla + b(x) \cdot
abla \qquad ext{on} \qquad D.$$

(absorption in ∂D allowed, a is a positive-definite matrix and b a vector, both are $C^{1,\eta}(D)$ for some $\eta \in (0,1]$)

- Scatter a n 'initial ancestors' scattered in D ⊆ ℝ^d at positions x₁, ..., x_n. Write ν(x) = ∑_{i=1}ⁿ δ_{xi}(dx) for the measure describing the initial state of the system.
- From each point, issue an L-diffusion. Here we take

$$L = \frac{1}{2} \nabla \cdot a(x) \nabla + b(x) \cdot \nabla$$
 on D .

(absorption in ∂D allowed, a is a positive-definite matrix and b a vector, both are $C^{1,\eta}(D)$ for some $\eta \in (0,1]$)

Each of these diffusions is halted at rate $\beta(x) \in C^{\eta}$, at which point the particle splits into two independent particles, which have the same stochastic behaviour as their parents.

- Scatter a n 'initial ancestors' scattered in D ⊆ ℝ^d at positions x₁, · · · , x_n. Write ν(x) = ∑_{i=1}ⁿ δ_{xi}(dx) for the measure describing the initial state of the system.
- From each point, issue an L-diffusion. Here we take

$$L = \frac{1}{2} \nabla \cdot a(x) \nabla + b(x) \cdot \nabla$$
 on D .

(absorption in ∂D allowed, a is a positive-definite matrix and b a vector, both are $C^{1,\eta}(D)$ for some $\eta \in (0,1]$)

- Each of these diffusions is halted at rate $\beta(x) \in C^{\eta}$, at which point the particle splits into two independent particles, which have the same stochastic behaviour as their parents.
- The resulting process is an (atomic) measure-valued Markov process $\{Z_t : t \ge 0\}$ where $Z_t(dx) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(dx)$, where $\{x_1(t), \cdots, x_{N_t}(t)\}$ is the spatial configuration of the N_t particles that are in existence at time t.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ = 目 - のへで

- Scatter a n 'initial ancestors' scattered in D ⊆ ℝ^d at positions x₁, · · · , x_n. Write ν(x) = ∑_{i=1}ⁿ δ_{xi}(dx) for the measure describing the initial state of the system.
- From each point, issue an L-diffusion. Here we take

$$L = \frac{1}{2} \nabla \cdot a(x) \nabla + b(x) \cdot \nabla$$
 on D .

(absorption in ∂D allowed, a is a positive-definite matrix and b a vector, both are $C^{1,\eta}(D)$ for some $\eta \in (0,1]$)

- Each of these diffusions is halted at rate $\beta(x) \in C^{\eta}$, at which point the particle splits into two independent particles, which have the same stochastic behaviour as their parents.
- The resulting process is an (atomic) measure-valued Markov process $\{Z_t : t \ge 0\}$ where $Z_t(dx) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(dx)$, where $\{x_1(t), \cdots, x_{N_t}(t)\}$ is the spatial configuration of the N_t particles that are in existence at time t.
- We denote its law by \mathbb{P}_{ν} .

• One way to characterise the evolution of the Markov process Z is to study its transition semi-group through

$$\mathbb{E}_{\nu}[\mathrm{e}^{-\langle f, Z_t \rangle}] = \prod_{i=1}^n v_f(x_i, t)$$

where

$$v_f(x,t) = \mathbb{E}_{\delta_x}[\mathrm{e}^{-\langle f, Z_t \rangle}], \qquad x \in D, t \ge 0,$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for bounded, positive, measurable f.

One way to characterise the evolution of the Markov process Z is to study its transition semi-group through

$$\mathbb{E}_{\nu}[\mathrm{e}^{-\langle f, Z_t \rangle}] = \prod_{i=1}^n v_f(x_i, t)$$

where

$$v_f(x,t) = \mathbb{E}_{\delta_x}[\mathrm{e}^{-\langle f, Z_t \rangle}], \qquad x \in D, t \ge 0,$$

for bounded, positive, measurable f.

We get

$$\frac{\partial}{\partial x}v_f(x,t) = Lv_f(x,t) + \beta(x)[v_f(x,t)^2 - v_f(x,t)] = 0, \qquad x \in D, t \ge 0.$$

with $v_f(x,0) = \exp\{-f(x)\}, x \in D.$

◆□▼ ▲□▼ ▲目▼ ▲□▼ ▲□▼

One way to characterise the evolution of the Markov process Z is to study its transition semi-group through

$$\mathbb{E}_{\nu}[\mathrm{e}^{-\langle f, Z_t \rangle}] = \prod_{i=1}^n v_f(x_i, t)$$

where

$$v_f(x,t) = \mathbb{E}_{\delta_x}[\mathrm{e}^{-\langle f, Z_t \rangle}], \qquad x \in D, t \ge 0,$$

for bounded, positive, measurable f.

We get

$$\frac{\partial}{\partial x}v_f(x,t) = Lv_f(x,t) + \beta(x)[v_f(x,t)^2 - v_f(x,t)] = 0, \qquad x \in D, t \ge 0.$$

with $v_f(x, 0) = \exp\{-f(x)\}, x \in D.$

 Can generalise this class of Markov processes and talk about measure-valued processes, such that the measure need not be atomic-valued.

3. $(L, \beta, \alpha; D)$ -superdiffusions

 Can defined a superdiffusion through a process of approximation of branching particle diffusions (but we won't here).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

3. $(L, \beta, \alpha; D)$ -superdiffusions

- Can defined a superdiffusion through a process of approximation of branching particle diffusions (but we won't here).
- We will work with the definition of a superdiffusion on $D \subseteq \mathbb{R}^d$, $X = \{X_t : t \ge 0\}$ as a Markov process valued in the space of finite measures on D, denoted by $\mathcal{M}_F(D)$, with probabilities $\{\mathbf{P}_{\mu} : \mu \in \mathcal{M}_F(D)\}$, such that

$$\mathbf{E}_{\mu}[\mathrm{e}^{-\langle f, X_t \rangle}] = \exp\left\{\int_D u_f(x, t)\mu(\mathrm{d}x)\right\},\,$$

where

$$\frac{\partial}{\partial t}u_f(x,t) = Lu_f(x,t) - \psi(u_f(x,t),x), \qquad x \in D, t \ge 0$$

with $u_f(x,0) = f(x)$, $x \in D$ and

$$\psi(\lambda, x) = -\beta(x)\lambda + \alpha(x)\lambda^2, \qquad \lambda \in \mathbb{R}, x \in D,$$

ション ふゆ アメリア メリア しょうくの

with $\alpha, \beta \in C^{\eta}$ and $\alpha \geq 0$.

For both $(L, \beta; D)$ branching particle diffusions and $(L, \beta, \alpha; D)$ superprocesses, the linear operator $L + \beta$ plays a special role.

$$\mathbb{E}_{\delta_x}[\langle f, Z_t \rangle] = \mathbb{E}_{\delta_x}[\langle f, X_t \rangle] = w_f(x, t),$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

where

with

$$\frac{\partial}{\partial x}w_f(x,t) = (L+\beta(x))w_f(x,t), \qquad x \in D, t \ge 0,$$
$$w_f(x,0) = f(x), x \in D.$$

For both $(L, \beta; D)$ branching particle diffusions and $(L, \beta, \alpha; D)$ superprocesses, the linear operator $L + \beta$ plays a special role.

$$\mathbb{E}_{\delta_x}[\langle f, Z_t \rangle] = \mathbb{E}_{\delta_x}[\langle f, X_t \rangle] = w_f(x, t),$$

where

$$\frac{\partial}{\partial x}w_f(x,t) = (L + \beta(x))w_f(x,t), \qquad x \in D, t \ge 0,$$

with $w_f(x,0) = f(x)$, $x \in D$.

Spectral properties of $L + \beta$ tell us something about spatial growth:

$$\lambda_c = \lambda_c(L + \beta; D) = \inf\{\lambda : \exists h > 0 \text{ s.t. } (L + \beta - \lambda)h = 0\}$$

For both $(L, \beta; D)$ branching particle diffusions and $(L, \beta, \alpha; D)$ superprocesses, the linear operator $L + \beta$ plays a special role.

$$\mathbb{E}_{\delta_x}[\langle f, Z_t \rangle] = \mathbb{E}_{\delta_x}[\langle f, X_t \rangle] = w_f(x, t),$$

where

$$\frac{\partial}{\partial x}w_f(x,t) = (L + \beta(x))w_f(x,t), \qquad x \in D, t \ge 0,$$

with $w_f(x,0) = f(x)$, $x \in D$.

Spectral properties of $L + \beta$ tell us something about spatial growth:

$$\lambda_c = \lambda_c (L + \beta; D) = \inf \{ \lambda : \exists h > 0 \text{ s.t. } (L + \beta - \lambda)h = 0 \}$$

• Local extinction is the event that a given (and it turns out subsequently all) compact domain(s), $B \subset D$ becomes empty: $\exists T(\omega) < \infty$ such that $X_{T+t}(B) = 0 \ \forall t \ge 0$. [Concept obviously still OK for Z as well]

For both $(L, \beta; D)$ branching particle diffusions and $(L, \beta, \alpha; D)$ superprocesses, the linear operator $L + \beta$ plays a special role.

$$\mathbb{E}_{\delta_x}[\langle f, Z_t \rangle] = \mathbb{E}_{\delta_x}[\langle f, X_t \rangle] = w_f(x, t),$$

where

$$\frac{\partial}{\partial x}w_f(x,t) = (L + \beta(x))w_f(x,t), \qquad x \in D, t \ge 0,$$

with $w_f(x,0) = f(x)$, $x \in D$.

Spectral properties of $L + \beta$ tell us something about spatial growth:

$$\lambda_c = \lambda_c(L+\beta;D) = \inf\{\lambda : \exists h > 0 \text{ s.t. } (L+\beta-\lambda)h = 0\}$$

- Local extinction is the event that a given (and it turns out subsequently all) compact domain(s), $B \subset D$ becomes empty: $\exists T(\omega) < \infty$ such that $X_{T+t}(B) = 0 \ \forall t \ge 0$. [Concept obviously still OK for Z as well]
- Theorem: (Englander-Pinsky '99, Englander-K '04) Local extinction iff $\lambda_c \leq 0$. [Theorem doesn't care if you talk about branching particle diffusions or superprocesses]

• λ_c comes with the "ground state" eigenfunction ϕ : $(L + \beta - \lambda_c)\phi = 0$.

- λ_c comes with the "ground state" eigenfunction ϕ : $(L + \beta \lambda_c)\phi = 0$.
- Linear semi-group suggests (and it is true) that

$$W_t^{\phi}(X) := e^{-\lambda_c t} \langle \phi, X_t \rangle, \qquad t \ge 0$$

is a martingale: when $\lambda_c > 0$ (supercriticaltiy) this martingale is uniformly integrable.

- λ_c comes with the "ground state" eigenfunction ϕ : $(L + \beta \lambda_c)\phi = 0$.
- Linear semi-group suggests (and it is true) that

$$W_t^{\phi}(X) := e^{-\lambda_c t} \langle \phi, X_t \rangle, \qquad t \ge 0$$

is a martingale: when $\lambda_c > 0$ (supercriticaltiy) this martingale is uniformly integrable.

Change of measure and spine decomposition (see blackboard). For $\mu \in \mathcal{M}_F(D)$ such that $\langle \phi, \mu \rangle < \infty$,

$$\left. \frac{\mathrm{d}\mathbf{P}_{\mu}^{\phi}}{\mathrm{d}\mathbf{P}_{\mu}} \right|_{\sigma(X_s:s \le t)} = \mathrm{e}^{-\lambda_c t} \frac{\langle \phi, X_t \rangle}{\langle \phi, \mu \rangle}$$

- λ_c comes with the "ground state" eigenfunction ϕ : $(L + \beta \lambda_c)\phi = 0$.
- Linear semi-group suggests (and it is true) that

$$W_t^{\phi}(X) := e^{-\lambda_c t} \langle \phi, X_t \rangle, \qquad t \ge 0$$

is a martingale: when $\lambda_c > 0$ (supercriticaltiy) this martingale is uniformly integrable.

• Change of measure and spine decomposition (see blackboard). For $\mu \in \mathcal{M}_F(D)$ such that $\langle \phi, \mu \rangle < \infty$,

$$\left. \frac{\mathrm{d} \mathbf{P}_{\mu}^{\phi}}{\mathrm{d} \mathbf{P}_{\mu}} \right|_{\sigma(X_s:s \leq t)} = \mathrm{e}^{-\lambda_c t} \frac{\langle \phi, X_t \rangle}{\langle \phi, \mu \rangle}$$

It turns out that the spine is a diffusion with generator $(L + \beta - \lambda_c)^{\phi}$: here we use the usual notation for Doob *h*-transform to a generator *A* (with potential term)

$$A^h f = \frac{1}{h} A(hf).$$

- λ_c comes with the "ground state" eigenfunction ϕ : $(L + \beta \lambda_c)\phi = 0$.
- Linear semi-group suggests (and it is true) that

$$W_t^{\phi}(X) := e^{-\lambda_c t} \langle \phi, X_t \rangle, \qquad t \ge 0$$

is a martingale: when $\lambda_c > 0$ (supercriticaltiy) this martingale is uniformly integrable.

Change of measure and spine decomposition (see blackboard). For $\mu \in \mathcal{M}_F(D)$ such that $\langle \phi, \mu \rangle < \infty$,

$$\left. \frac{\mathrm{d} \mathbf{P}_{\mu}^{\phi}}{\mathrm{d} \mathbf{P}_{\mu}} \right|_{\sigma(X_s:s \leq t)} = \mathrm{e}^{-\lambda_c t} \frac{\langle \phi, X_t \rangle}{\langle \phi, \mu \rangle}$$

It turns out that the spine is a diffusion with generator $(L + \beta - \lambda_c)^{\phi}$: here we use the usual notation for Doob *h*-transform to a generator *A* (with potential term)

$$A^h f = \frac{1}{h} A(hf).$$

• $\widetilde{\phi}$ is the groundstate of the adjoint of $L + \beta - \lambda_c$ and the assumption $\langle \widetilde{\phi}, \phi \rangle < \infty$ (and hence $\langle \widetilde{\phi}, \phi \rangle = 1$) ensures that the spine is an ergodic diffusion with stationary distribution density $\widetilde{\phi}\phi$.

• We also see the the spine by studying the linear semi-group, for "nice" f,

$$e^{-\lambda_c t} \mathbf{E}_{\mu}[\langle f, X_t \rangle] = \int_D \frac{f(y)}{\phi(y)} p^{(L+\beta-\lambda_c)^{\phi}}(x, \mathrm{d}y, t) \phi(x) \mu(\mathrm{d}x) \xrightarrow{t \to \infty} \langle f, \widetilde{\phi} \rangle \langle \phi, \mu \rangle$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

• We also see the the spine by studying the linear semi-group, for "nice" f,

$$e^{-\lambda_c t} \mathbf{E}_{\mu}[\langle f, X_t \rangle] = \int_D \frac{f(y)}{\phi(y)} p^{(L+\beta-\lambda_c)^{\phi}}(x, \mathrm{d}y, t) \phi(x) \mu(\mathrm{d}x) \xrightarrow{t \to \infty} \langle f, \widetilde{\phi} \rangle \langle \phi, \mu \rangle$$

• Assuming $\lambda_c > 0$ and $\langle \phi, \phi \rangle = 1$ the above limit as well as the fact that $W^{\phi}_{\infty}(X)$ is an UI limit is strongly suggestive that λ_c is in fact the growth rate on compacta in the sense that a limit for

$$e^{-\lambda_c t} X_t(B)$$
 as $t \to \infty$

ション ふゆ アメリア メリア しょうくの

exists in some sense for all $B \subset \subset D$. (see blackboard)

• We also see the the spine by studying the linear semi-group, for "nice" f,

$$e^{-\lambda_c t} \mathbf{E}_{\mu}[\langle f, X_t \rangle] = \int_D \frac{f(y)}{\phi(y)} p^{(L+\beta-\lambda_c)^{\phi}}(x, \mathrm{d}y, t) \phi(x) \mu(\mathrm{d}x) \xrightarrow{t \to \infty} \langle f, \widetilde{\phi} \rangle \langle \phi, \mu \rangle$$

• Assuming $\lambda_c > 0$ and $\langle \phi, \phi \rangle = 1$ the above limit as well as the fact that $W^{\phi}_{\infty}(X)$ is an UI limit is strongly suggestive that λ_c is in fact the growth rate on compacta in the sense that a limit for

$$e^{-\lambda_c t} X_t(B)$$
 as $t \to \infty$

exists in some sense for all $B \subset \subset D$. (see blackboard)

 A number of attempts have been made to address this, but only with weak convergence or strong convergence with restrictive conditions.
 [Englander-Turaev '02, Fleischman-Swart '03, Englander-Winter '06, Liu-Ren-Song '13]. But more success with branching particle diffusions where generic strong laws have been obtained [Englander-Harris-K '10]

• We also see the the spine by studying the linear semi-group, for "nice" f,

$$e^{-\lambda_c t} \mathbf{E}_{\mu}[\langle f, X_t \rangle] = \int_D \frac{f(y)}{\phi(y)} p^{(L+\beta-\lambda_c)^{\phi}}(x, \mathrm{d}y, t) \phi(x) \mu(\mathrm{d}x) \xrightarrow{t \to \infty} \langle f, \widetilde{\phi} \rangle \langle \phi, \mu \rangle$$

• Assuming $\lambda_c > 0$ and $\langle \phi, \phi \rangle = 1$ the above limit as well as the fact that $W^{\phi}_{\infty}(X)$ is an UI limit is strongly suggestive that λ_c is in fact the growth rate on compacta in the sense that a limit for

$$e^{-\lambda_c t} X_t(B)$$
 as $t \to \infty$

exists in some sense for all $B \subset \subset D$. (see blackboard)

 A number of attempts have been made to address this, but only with weak convergence or strong convergence with restrictive conditions.
 [Englander-Turaev '02, Fleischman-Swart '03, Englander-Winter '06, Liu-Ren-Song '13]. But more success with branching particle diffusions where generic strong laws have been obtained [Englander-Harris-K '10]

■ Theorem: Suppose that $\lambda_c > 0$, $\langle \phi, \phi \rangle = 1$, $||\alpha \phi||_{\infty} < \infty$ and (Mystery Hypothesis), then, for all $0 \le f \le \phi$ and $\mu \in \mathcal{M}_F(D)$ such that $\langle \phi, \mu \rangle < \infty$ and $\mu \in \mathcal{M}_F(D)$,

 $\lim_{t \to \infty} e^{-\lambda_c t} \langle f, X_t \rangle = \langle f, \widetilde{\phi} \rangle W^{\phi}_{\infty}(X) \qquad \mathbf{P}_{\mu}\text{-a.s.}$

• The event $\mathcal{E} := \{ \exists t \ge 0 : X_t(D) = 0 \}$ generates the rate function ω in the following sense:

$$\mathbf{P}_{\mu}(\mathcal{E}) = \mathrm{e}^{-\langle \omega, \mu \rangle}$$

•

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• The event $\mathcal{E} := \{ \exists t \ge 0 : X_t(D) = 0 \}$ generates the rate function ω in the following sense:

$$\mathbf{P}_{\mu}(\mathcal{E}) = \mathrm{e}^{-\langle \omega, \mu \rangle}$$

In fact, one can show that ω is a non-linear positive harmonic function:

$$L\omega - \psi(\omega, x) = 0$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• The event $\mathcal{E} := \{ \exists t \ge 0 : X_t(D) = 0 \}$ generates the rate function ω in the following sense:

$$\mathbf{P}_{\mu}(\mathcal{E}) = \mathrm{e}^{-\langle \omega, \mu \rangle}.$$

In fact, one can show that ω is a non-linear positive harmonic function:

$$L\omega - \psi(\omega, x) = 0$$

ション ふゆ アメリア メリア しょうくの

• A skeletal decomposition of (X, \mathbf{P}_{μ}) can be seen through the function ω (see blackboard)

• The event $\mathcal{E} := \{ \exists t \ge 0 : X_t(D) = 0 \}$ generates the rate function ω in the following sense:

$$\mathbf{P}_{\mu}(\mathcal{E}) = \mathrm{e}^{-\langle \omega, \mu \rangle}$$

In fact, one can show that ω is a non-linear positive harmonic function:

$$L\omega - \psi(\omega, x) = 0$$

- A skeletal decomposition of (X, \mathbf{P}_{μ}) can be seen through the function ω (see blackboard)
- The skeleton $Z = \{Z_t : t \ge 0\}$ can be described exactly as dyadic branching at rate $\alpha(x)w(x)$ with diffusion generator given by

$$L_0^\omega = L^\omega - \omega^{-1} L \omega$$

• The event $\mathcal{E} := \{ \exists t \ge 0 : X_t(D) = 0 \}$ generates the rate function ω in the following sense:

$$\mathbf{P}_{\mu}(\mathcal{E}) = \mathrm{e}^{-\langle \omega, \mu \rangle}$$

In fact, one can show that ω is a non-linear positive harmonic function:

$$L\omega - \psi(\omega, x) = 0$$

- A skeletal decomposition of (X, \mathbf{P}_{μ}) can be seen through the function ω (see blackboard)
- The skeleton $Z = \{Z_t : t \ge 0\}$ can be described exactly as dyadic branching at rate $\alpha(x)w(x)$ with diffusion generator given by

$$L_0^\omega = L^\omega - \omega^{-1} L \omega$$

• Moreover, the ground state of this $(L_0^{\omega}, \alpha \omega; D)$ branching diffusions is precisely φ/ω with eigenvalue λ_c because

$$L_0^{\omega}(\phi/\omega) + \alpha \omega(\phi/\omega) - \lambda_c(\phi/\omega) = (L + \beta(x) - \lambda_c)\phi = 0.$$

• The event $\mathcal{E} := \{ \exists t \ge 0 : X_t(D) = 0 \}$ generates the rate function ω in the following sense:

$$\mathbf{P}_{\mu}(\mathcal{E}) = \mathrm{e}^{-\langle \omega, \mu \rangle}.$$

In fact, one can show that ω is a non-linear positive harmonic function:

$$L\omega - \psi(\omega, x) = 0$$

- A skeletal decomposition of (X, \mathbf{P}_{μ}) can be seen through the function ω (see blackboard)
- The skeleton $Z = \{Z_t : t \ge 0\}$ can be described exactly as dyadic branching at rate $\alpha(x)w(x)$ with diffusion generator given by

$$L_0^\omega = L^\omega - \omega^{-1} L \omega$$

• Moreover, the ground state of this $(L_0^{\omega}, \alpha \omega; D)$ branching diffusions is precisely φ/ω with eigenvalue λ_c because

$$L_0^{\omega}(\phi/\omega) + \alpha \omega(\phi/\omega) - \lambda_c(\phi/\omega) = (L + \beta(x) - \lambda_c)\phi = 0.$$

• One similarly shows that the ground state of the adjoint of $L_0^{\omega} + \alpha \omega$ is $\omega \phi$.

• As a consequence $W_t^{\phi/\omega}(Z) := e^{-\lambda_c t} \langle \phi/\omega, Z_t \rangle$, $t \ge 0$, is a martingale.

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- As a consequence $W_t^{\phi/\omega}(Z) := e^{-\lambda_c t} \langle \phi/\omega, Z_t \rangle$, $t \ge 0$, is a martingale.
- If one changes measure on the skeleton process using the martingale $W_t^{\phi/\omega}(Z)$, then a spine decomposition emerges (see blackboard) for which the spine has diffusion operator

$$(L_0^{\omega} + \alpha \phi - \lambda_c)^{\phi/\omega} = (L + \beta - \lambda_c)^{\phi}$$

ション ふゆ アメリア メリア しょうくの

and has stationary distribution $(\phi/\omega)(\omega\widetilde{\phi}) = \phi\widetilde{\phi}$.

- As a consequence $W_t^{\phi/\omega}(Z) := e^{-\lambda_c t} \langle \phi/\omega, Z_t \rangle$, $t \ge 0$, is a martingale.
- If one changes measure on the skeleton process using the martingale $W_t^{\phi/\omega}(Z)$, then a spine decomposition emerges (see blackboard) for which the spine has diffusion operator

$$(L_0^{\omega} + \alpha \phi - \lambda_c)^{\phi/\omega} = (L + \beta - \lambda_c)^{\phi}$$

うして ふぼう ふほう ふほう しょうく

and has stationary distribution $(\phi/\omega)(\omega\widetilde{\phi}) = \phi\widetilde{\phi}$.

 \blacksquare Remarkably one can prove that $W^\phi_\infty(X)=W^{\phi/\omega}_\infty(Z)$ almost surely.

- As a consequence $W_t^{\phi/\omega}(Z) := e^{-\lambda_c t} \langle \phi/\omega, Z_t \rangle$, $t \ge 0$, is a martingale.
- If one changes measure on the skeleton process using the martingale $W_t^{\phi/\omega}(Z)$, then a spine decomposition emerges (see blackboard) for which the spine has diffusion operator

$$(L_0^{\omega} + \alpha \phi - \lambda_c)^{\phi/\omega} = (L + \beta - \lambda_c)^{\phi}$$

and has stationary distribution $(\phi/\omega)(\omega\widetilde{\phi}) = \phi\widetilde{\phi}$.

- Remarkably one can prove that $W^{\phi}_{\infty}(X) = W^{\phi/\omega}_{\infty}(Z)$ almost surely.
- \blacksquare A SLLN for the skeleton would thus read: for $0 \leq f \leq \phi/\omega$

$$\lim_{t \to \infty} e^{-\lambda_c t} \langle f, Z_t \rangle = \langle f, \omega \widetilde{\phi} \rangle W_{\infty}^{\phi/\omega}(Z)$$
(*)

うして ふぼう ふほう ふほう しょうく

- As a consequence $W_t^{\phi/\omega}(Z) := e^{-\lambda_c t} \langle \phi/\omega, Z_t \rangle$, $t \ge 0$, is a martingale.
- If one changes measure on the skeleton process using the martingale $W_t^{\phi/\omega}(Z)$, then a spine decomposition emerges (see blackboard) for which the spine has diffusion operator

$$(L_0^{\omega} + \alpha \phi - \lambda_c)^{\phi/\omega} = (L + \beta - \lambda_c)^{\phi}$$

and has stationary distribution $(\phi/\omega)(\omega\widetilde{\phi}) = \phi\widetilde{\phi}$.

- Remarkably one can prove that $W^{\phi}_{\infty}(X) = W^{\phi/\omega}_{\infty}(Z)$ almost surely.
- \blacksquare A SLLN for the skeleton would thus read: for $0 \leq f \leq \phi/\omega$

$$\lim_{t \to \infty} e^{-\lambda_c t} \langle f, Z_t \rangle = \langle f, \omega \widetilde{\phi} \rangle W_{\infty}^{\phi/\omega}(Z) \tag{(*)}$$

■ Theorem: Suppose that $\lambda_c > 0$, $\langle \phi, \phi \rangle = 1$, $||\alpha \phi||_{\infty} < \infty$ and (*) holds along all lattice sequences $\delta \mathbb{N}$, $\delta > 0$, , then, for all $0 \le f \le \phi$ and $\mu \in \mathcal{M}_F(D)$ such that $\langle \phi, \mu \rangle < \infty$ and $\mu \in \mathcal{M}_F(D)$,

$$\lim_{t \to \infty} e^{-\lambda_c t} \langle f, X_t \rangle = \langle f, \widetilde{\phi} \rangle W^{\phi}_{\infty}(X) \qquad \mathbf{P}_{\mu}\text{-a.s.}$$

うして ふぼう ふほう ふほう しょうく

9. Why the skeleton is a natural approach

 \blacksquare First note, it suffices to prove that for $0 \leq f \leq \phi$

$$\liminf_{t \to \infty} e^{-\lambda_c t} \langle f, X_t \rangle \ge \langle f, \widetilde{\phi} \rangle W^{\phi}_{\infty}(X)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Then consider the same liming with f replaced by $\phi-f$: this give the limsup.

9. Why the skeleton is a natural approach

 \blacksquare First note, it suffices to prove that for $0 \leq f \leq \phi$

$$\liminf_{t \to \infty} e^{-\lambda_c t} \langle f, X_t \rangle \ge \langle f, \widetilde{\phi} \rangle W^{\phi}_{\infty}(X)$$

Then consider the same liming with f replaced by $\phi-f$: this give the limsup.

The skeleton is a "smaller" process than the superprocess giving a "lower bound" from which the liminf can be extracted from the SLLN for the backbone.

9. Why the skeleton is a natural approach

 \blacksquare First note, it suffices to prove that for $0 \leq f \leq \phi$

$$\liminf_{t \to \infty} e^{-\lambda_c t} \langle f, X_t \rangle \ge \langle f, \widetilde{\phi} \rangle W^{\phi}_{\infty}(X)$$

Then consider the same liming with f replaced by $\phi-f$: this give the limsup.

The skeleton is a "smaller" process than the superprocess giving a "lower bound" from which the liminf can be extracted from the SLLN for the backbone.

ション ふゆ アメリア メリア しょうくの

(See blackboard)

10. Examples

The mystery condition looks ugly, but it is easily verified thanks to SLLN for branching particle diffusions in (Englander, Harris, K. '10).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

10. Examples

- The mystery condition looks ugly, but it is easily verified thanks to SLLN for branching particle diffusions in (Englander, Harris, K. '10).
- **Example 1**. [Super-outward-OU process with constant branching] Suppose $D = \mathbb{R}^d$,

$$L = \frac{1}{2} \triangle + \gamma x \cdot \nabla,$$

 β is a constant valued in $(\gamma d,\infty)$ and α is uniformly bounded. Then,

$$\lambda_c = \beta - \gamma d, \quad \phi(x) = (\gamma/\pi)^{d/2} \exp\{-||x||^2\}, \quad \widetilde{\phi}(x) = 1$$

. All conditons, in particular (mystery condition), is automatically satisfied.

10. Examples

- The mystery condition looks ugly, but it is easily verified thanks to SLLN for branching particle diffusions in (Englander, Harris, K. '10).
- **Example 1**. [Super-outward-OU process with constant branching] Suppose $D = \mathbb{R}^d$,

$$L = \frac{1}{2} \triangle + \gamma x \cdot \nabla,$$

 β is a constant valued in $(\gamma d,\infty)$ and α is uniformly bounded. Then,

$$\lambda_c = \beta - \gamma d, \quad \phi(x) = (\gamma/\pi)^{d/2} \exp\{-||x||^2\}, \quad \widetilde{\phi}(x) = 1$$

. All conditons, in particular (mystery condition), is automatically satisfied. **Example 2**. (Continuing unfinished work of Fleischmann & Swart '03). [Super-Fisher-Wright diffusion] Suppose D = (0, 1), $\beta > 1$ (constant) and $\alpha(x)$ uniformly bounded and

$$L = \frac{1}{2}x(1-x)\frac{\mathrm{d}^2}{\mathrm{d}x^2}$$

in which case

$$\lambda_c = \beta - 1, \quad \phi(x) = 6x(1 - x), \quad \widetilde{\phi}(x) = 1$$