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Strong law of large numbers for supercritical super-diffusions

1. (L, β;D)-supercritical branching particle diffusion

Scatter a n ‘initial ancestors’ scattered in D ⊆ Rd at positions x1, · · · , xn.
Write ν(x) =

∑n
i=1 δxi(dx) for the measure describing the initial state of

the system.

From each point, issue an L-diffusion. Here we take

L =
1

2
∇ · a(x)∇+ b(x) · ∇ on D.

(absorption in ∂D allowed, a is a positive-definite matrix and b a vector,
both are C1,η(D) for some η ∈ (0, 1])

Each of these diffusions is halted at rate β(x) ∈ Cη, at which point the
particle splits into two independent particles, which have the same
stochastic behaviour as their parents.

The resulting process is an (atomic) measure-valued Markov process
{Zt : t ≥ 0} where Zt(dx) =

∑Nt
i=1 δxi(t)(dx), where {x1(t), · · · , xNt(t)}

is the spatial configuration of the Nt particles that are in existence at time
t.

We denote its law by Pν .
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Strong law of large numbers for supercritical super-diffusions

2. (L, β;D)-supercritical branching particle diffusion

One way to characterise the evolution of the Markov process Z is to study
its transition semi-group through

Eν [e−〈f,Zt〉] =
n∏
i=1

vf (xi, t)

where
vf (x, t) = Eδx [e

−〈f,Zt〉], x ∈ D, t ≥ 0,

for bounded, positive, measurable f .

We get

∂

∂x
vf (x, t) = Lvf (x, t) + β(x)[vf (x, t)

2 − vf (x, t)] = 0, x ∈ D, t ≥ 0.

with vf (x, 0) = exp{−f(x)}, x ∈ D.

Can generalise this class of Markov processes and talk about
measure-valued processes, such that the measure need not be
atomic-valued.
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Strong law of large numbers for supercritical super-diffusions

3. (L, β, α;D)-superdiffusions

Can defined a superdiffusion through a process of approximation of
branching particle diffusions (but we won’t here).

We will work with the definition of a superdiffusion on D ⊆ Rd,
X = {Xt : t ≥ 0} as a Markov process valued in the space of finite
measures on D, denoted byMF (D), with probabilities
{Pµ : µ ∈MF (D)}, such that

Eµ[e
−〈f,Xt〉] = exp

{∫
D

uf (x, t)µ(dx)

}
,

where

∂

∂t
uf (x, t) = Luf (x, t)− ψ(uf (x, t), x), x ∈ D, t ≥ 0

with uf (x, 0) = f(x), x ∈ D and

ψ(λ, x) = −β(x)λ+ α(x)λ2, λ ∈ R, x ∈ D,

with α, β ∈ Cη and α ≥ 0.
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Strong law of large numbers for supercritical super-diffusions

4. Linear semigroups

For both (L, β;D) branching particle diffusions and (L, β, α;D)
superprocesses, the linear operator L+ β plays a special role.

Eδx [< f,Zt >] = Eδx [< f,Xt >] = wf (x, t),

where
∂

∂x
wf (x, t) =

(
L+ β(x)

)
wf (x, t), x ∈ D, t ≥ 0,

with wf (x, 0) = f(x), x ∈ D.

Spectral properties of L+ β tell us something about spatial growth:

λc = λc(L+ β;D) = inf{λ : ∃h > 0 s.t. (L+ β − λ)h = 0}

Local extinction is the event that a given (and it turns out subsequently
all) compact domain(s), B ⊂⊂ D becomes empty: ∃T (ω) <∞ such that
XT+t(B) = 0 ∀t ≥ 0. [Concept obviously still OK for Z as well]

Theorem: (Englander-Pinsky ’99, Englander-K ’04) Local extinction iff
λc ≤ 0. [Theorem doesn’t care if you talk about branching particle
diffusions or superprocesses]
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Strong law of large numbers for supercritical super-diffusions

5. Martingales and ergodicity

λc comes with the “ground state" eigenfunction φ: (L+ β − λc)φ = 0.

Linear semi-group suggests (and it is true) that

Wφ
t (X) := e−λct〈φ,Xt〉, t ≥ 0

is a martingale: when λc > 0 (supercriticaltiy) this martingale is uniformly
integrable.
Change of measure and spine decomposition (see blackboard). For
µ ∈MF (D) such that 〈φ, µ〉 <∞,

dPφ
µ

dPµ

∣∣∣∣∣
σ(Xs:s≤t)

= e−λct
〈φ,Xt〉
〈φ, µ〉

It turns out that the spine is a diffusion with generator (L+ β − λc)φ:
here we use the usual notation for Doob h-transform to a generator A
(with potential term)

Ahf =
1

h
A(hf).

φ̃ is the groundstate of the adjoint of L+ β − λc and the assumption
〈φ̃, φ〉 <∞ (and hence 〈φ̃, φ〉 = 1) ensures that the spine is an ergodic
diffusion with stationary distribution density φ̃φ.
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6. Laws of large numbers

We also see the the spine by studying the linear semi-group, for “nice" f ,

e−λctEµ[〈f,Xt〉] =
∫
D

f(y)

φ(y)
p(L+β−λc)φ(x,dy, t)φ(x)µ(dx)

t→∞→ 〈f, φ̃〉〈φ, µ〉

Assuming λc > 0 and 〈φ̃, φ〉 = 1 the above limit as well as the fact that
Wφ
∞(X) is an UI limit is strongly suggestive that λc is in fact the growth

rate on compacta in the sense that a limit for

e−λctXt(B) as t→∞
exists in some sense for all B ⊂⊂ D. (see blackboard)
A number of attempts have been made to address this, but only with weak
convergence or strong convergence with restrictive conditions.
[Englander-Turaev ’02, Fleischman-Swart ’03, Englander-Winter ’06,
Liu-Ren-Song ’13]. But more success with branching particle diffusions
where generic strong laws have been obtained [Englander-Harris-K ’10]
Theorem: Suppose that λc > 0, 〈φ̃, φ〉 = 1, ||αφ||∞ <∞ and (Mystery
Hypothesis), then, for all 0 ≤ f ≤ φ and µ ∈MF (D) such that
〈φ, µ〉 <∞ and µ ∈MF (D),

lim
t→∞

e−λct〈f,Xt〉 = 〈f, φ̃〉Wφ
∞(X) Pµ-a.s.
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7. The skeleton

The event E := {∃t ≥ 0 : Xt(D) = 0} generates the rate function ω in the
following sense:

Pµ(E) = e−〈ω,µ〉.

In fact, one can show that ω is a non-linear positive harmonic function:

Lω − ψ(ω, x) = 0

A skeletal decomposition of (X,Pµ) can be seen through the function ω
(see blackboard)

The skeleton Z = {Zt : t ≥ 0} can be described exactly as dyadic
branching at rate α(x)w(x) with diffusion generator given by

Lω0 = Lω − ω−1Lω

Moreover, the ground state of this (Lω0 , αω;D) branching diffusions is
precisely ϕ/ω with eigenvalue λc because

Lω0 (φ/ω) + αω(φ/ω)− λc(φ/ω) = (L+ β(x)− λc)φ = 0.

One similarly shows that the ground state of the adjoint of Lω0 +αω is ωφ̃.
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Strong law of large numbers for supercritical super-diffusions

8. The mystery condition

As a consequence Wφ/ω
t (Z) := e−λct〈φ/ω,Zt〉, t ≥ 0, is a martingale.

If one changes measure on the skeleton process using the martingale
W

φ/ω
t (Z), then a spine decomposition emerges (see blackboard) for which

the spine has diffusion operator

(Lω0 + αφ− λc)φ/ω = (L+ β − λc)φ

and has stationary distribution (φ/ω)(ωφ̃) = φφ̃.

Remarkably one can prove that Wφ
∞(X) =W

φ/ω
∞ (Z) almost surely.

A SLLN for the skeleton would thus read: for 0 ≤ f ≤ φ/ω

lim
t→∞

e−λct〈f, Zt〉 = 〈f, ωφ̃〉Wφ/ω
∞ (Z) (∗)

Theorem: Suppose that λc > 0, 〈φ̃, φ〉 = 1, ||αφ||∞ <∞ and (*) holds
along all lattice sequences δN, δ > 0, , then, for all 0 ≤ f ≤ φ and
µ ∈MF (D) such that 〈φ, µ〉 <∞ and µ ∈MF (D),

lim
t→∞

e−λct〈f,Xt〉 = 〈f, φ̃〉Wφ
∞(X) Pµ-a.s.
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Strong law of large numbers for supercritical super-diffusions

9. Why the skeleton is a natural approach

First note, it suffices to prove that for 0 ≤ f ≤ φ

lim inf
t→∞

e−λct〈f,Xt〉 ≥ 〈f, φ̃〉Wφ
∞(X)

Then consider the same liming with f replaced by φ− f : this give the
limsup.

The skeleton is a “smaller" process than the superprocess giving a “lower
bound" from which the liminf can be extracted from the SLLN for the
backbone.

(See blackboard)
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10. Examples

The mystery condition looks ugly, but it is easily verified thanks to SLLN
for branching particle diffusions in (Englander, Harris, K. ’10).

Example 1. [Super-outward-OU process with constant branching] Suppose
D = Rd,

L =
1

2
4+ γx · ∇,

β is a constant valued in (γd,∞) and α is uniformly bounded. Then,

λc = β − γd, φ(x) = (γ/π)d/2 exp{−||x||2}, φ̃(x) = 1

. All conditons, in particular (mystery condition), is automatically satisfied.
Example 2. (Continuing unfinished work of Fleischmann & Swart ’03).
[Super-Fisher-Wright diffusion] Suppose D = (0, 1), β > 1 (constant) and
α(x) uniformly bounded and

L =
1

2
x(1− x) d2

dx2

in which case

λc = β − 1, φ(x) = 6x(1− x), φ̃(x) = 1
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