
Exercise set 1∗

Question 1
Suppose that X is a stable process in any dimension (including the case of a Brownian motion).
Show that |X| is a positive self-similar Markov process.

Solution Question 1

• Temporarily write (X
(x)
t , t ≥ 0) in place of (X,Px)

• Markov property of X tells us that, for s, t ≥ 0,

X
(x)
t+s = X̃

(X
(x)
t )

s ,

where X̃(x) is an independent copy of X(x).

• Isotropy implies that

|X(x)
t+s| = |X̃(y)

s |y=X
(x)
t

=d |X̃(z)
s |z=(|X(x)

t |,0,0··· ,0)

• Hence Markov property holds, strong Markov property (and Feller property) can be developed
from this argument

• Self-similarity of |X| follows directly from the self-similarity of X.

Question 2
Suppose that B is a one-dimensional Brownian motion. Prove that

Bt
x

1(Bt>0), t ≥ 0,

is a martingale, where Bt = infs≤tBs.

Solution Question 2
• Note that (Bt, t ≥ 0) is a martingale.

• Optional stopping implies that (Bt∧τ−0
, t ≥ 0) is a martingale, where τ−0 = inf{t > 0 : Bt < 0}

• Since Bτ−0 = 0, it follows that Bt∧τ−0 = Bt1(t<τ−0 ), t ≥ 0.

• Finally note that {τ−0 > t} = {Bt > 0}

Question 3∗

Suppose that X is a stable process with two-sided jumps

• Show that the range of the ascending ladder process H, say range(H) has the property that
it is equal in law to c× range(H).

• Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies k(λ) =
λα1 for α1 ∈ (0, 1) (and hence the ascending ladder height process is a stable subordinator).

• Use the fact that, up to a multiplicative constant

Ψ(z) = |θ|α(eπiα( 1
2−ρ)1(θ>0) + e−πiα( 1

2−ρ)1(θ<0)) = κ̂(iz)κ(−iz)

to deduce that
κ(θ) = θαρ and κ̂(θ) = θαρ̂.

and that 0 < αρ, αρ̂ < 1

• What kind of process corresponds to the case that αρ = 1?
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Solution Question 3
• Range of H agrees with the range of X. Scaling of X applies to scaling of X, in particular

(cXc−αt, t ≥ 0) is equal in law to (Xt, t ≥ 0), so that c× rangeX = range(cX) = range(X).
And hence the same is true for H.

• The latter is equivalent to the condition that the Laplace exponent of H is proportional to
that of cH, i.e κ(z) = kcκ(cz), for z ≥ 0, where kc > 0 is a constant that only depends on
c. Since κ(1) must be a constant, we see that κ(z) = κ(cz)/κ(c). Hence, as κ is increasing,
one can easily deduce that k(λ) = κ(1)λα1 for some α1 ∈ [0, 1]. In other words, H is a stable
subordinator with parameter α1. We exclude the case α1 = 0 since it corresponds to the
setting where the range of H is the empty set. A similar argument applied to −X shows that
the descending ladder height process must also belong to the class of stable subordinators.

• We therefore assume that (up to multiplicative constants) κ(z) = zα1 , z ≥ 0, and κ̂(z) = zα2 ,
z ≥ 0, for some α1, α2 ∈ (0, 1]. Appealing to the the stable process exponemt, we must choose
the parameters α1 and α2 such that, for example, when z > 0,

zαeπiα( 1
2−ρ) = zα1e−

1
2πiα1 × zα2e

1
2πiα2 .

Matching radial and angular parts, this is only possible if α1 and α2 satisfy{
α1 + α2 = α,

α1 − α2 = −α(1− 2ρ),

which gives us α1 = αρ and α2 = αρ̂. As X does not have monotone paths, it is necessarily
the case that 0 < αρ ≤ 1 and 0 < αρ̂ ≤ 1. In conclusion, for θ ≥ 0,

κ(θ) = θαρ and κ̂(θ) = θαρ̂.

• When αρ = 1, the ascending ladder height process is a pure linear drift. In that case, the
range of the maximum process X is [0,∞). The process is spectrally negative.

Question 4
Suppose that (X,Px), x > 0 is a positive self-similar Markov process and let ζ = inf{t > 0 : Xt = 0}
be the lifetime of X. Show that Px(ζ <∞) does not depend on x and is either 0 for all x > 0 or
1 for all x > 0.

Solution Question 4
• We can appeal to the scaling property and write, for all c > 0,

ζ(cx) = inf{t > 0 : X
(cx)
t = 0}

d
= cα inf{c−αt > 0 : cX

(x)
c−αt = 0}

= cαζ(x),

showing that Px(ζ < ∞) = Pcx(ζ < ∞), for all x, c > 0, as claimed. Note that this also
shows that x−αζ(x) is independent of the value of x.

• Denote by p ∈ [0, 1] the common value of the probabilities Px(ζ <∞), x > 0. We shall now
show that either p = 0 or p = 1. Thanks to the Markov property, we can now write, for all
x, t > 0,

Px(t < ζ <∞) = Ex(1(t<ζ)PXt(ζ <∞)) = pPx(t < ζ),

and, hence,

p = Px(ζ ≤ t) + Px(t < ζ <∞)

= Px(ζ ≤ t) + p(1− Px(ζ ≤ t))
= p+ (1− p)Px(ζ ≤ t).

This forces us to conclude that either p = 1 or Px(ζ ≤ t) = 0, for all x, t > 0. In other words,
p = 1 or p = 0.
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Question 5∗

Suppose that X is a symmetric stable process in dimension one (in particular ρ = 1/2) and that
the underlying Lévy process for |Xt|1(t<τ{0}), where τ{0} = inf{t > 0 : Xt = 0}, is written ξ.
(Note the indicator is only needed when α ∈ (1, 2) as otherwise X does not hit the origin.) Show
that (up to a multiplicative constant) its characteristic exponent is given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + 1))

Γ( 1
2 (iz + 1− α))

, z ∈ R.

[Hint!] Think about what happens after X first crosses the origin and apply the Markov property
as well as symmetry. You will need to use the law of the overshoot of X below the origin given a
few slides back.

Solution Question 5
• The trick is to go back and think about the pssMp (Xt1Xt>0, t ≥ 0). Previously we had

identified the characteristics exponent of its underlying Lévy process (through the Lamperti
transform) as killed Lévy process with exponent

Ψ∗(z) =
Γ(α− iz)

Γ(αρ̂− iz)

Γ(1 + iz)

Γ(1− αρ̂+ iz)
, z ∈ R, (1)

which contained a killing rate

q∗ = Ψ∗(0) =
Γ(α)

Γ(αρ̂)Γ(1− αρ̂)
. (2)

(Note in our setting, ρ = ρ̂ = 1/2).

• Instead of killing the underlying ξ at rate q∗ (i.e. the stable process goes negative), we want
our process to regenerate in (0,∞), corresponding to our underlying Lévy process undergoing
a jump at rate q∗. In other words, the Lévy process corresponding to |X| can be written in
the form

ξ = ξ∗ + ξ∗∗,

where ξ∗∗ is a compound Poisson process with arrival rate q∗ and jump distribution F , which
we are to determine. In particular, if Ψ is the characteristic exponent of the Lévy process
that underlies |X|, then

Ψ(θ) = (Ψ∗(θ)− q∗) + q∗
∫
R

(1− eiθx)F (dx) = Ψ∗(θ)− q∗
∫
R

eiθxF (dx) (3)

• The point of regeneration must correspond to precisely −Xτ−0
. In particular, referring to the

Lamperti transform, we must have

−Xτ−0

Xτ−0 −
= e∆,

where ∆ has distribution F .

• We can use the previously given joint overshoot distribution

P1(−Xτ−0
∈ du, Xτ−0 −

∈ dv)

=
sin(απ/2)

π

Γ(α+ 1)

Γ(α/2)2

(∫ ∞
0

1(y≤1∧v)
(1− y)

α
2−1(v − y)

α
2−1

(v + u)1+α
dy

)
dvdu
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and note that (the point of issue x does not matter by scaling)∫
R

eiθxF (dx)

= Ex

(−Xτ−0

Xτ−0 −

)iθ
 = E1

(−Xτ−0

Xτ−0 −

)iθ


=
sin(παρ̂)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

∫ ∞
0

∫ ∞
0

∫ ∞
0

1(y≤1∧v)
uiθ(1− y)αρ̂−1(v − y)αρ−1

viθ(v + u)1+α
dudvdy

=
sin(παρ̂)

π

Γ(α+ 1)

Γ(αρ)Γ(αρ̂)

∫ 1

0

∫ ∞
y

∫ ∞
0

uiθ(1− y)αρ̂−1(v − y)αρ−1

viθ(v + u)1+α
dudv dy (4)

Note ρ = ρ̂ = 1/2.

• For the innermost integral in (4), substituting w = v/u and appealing to the integral repre-
sentation of the beta function, we have∫ ∞

0

uiθ

(u+ v)1+α
du = viθ−α

∫ ∞
0

wiθ

(1 + w)1+α
dw = viθ−αΓ(iθ + 1)Γ(α− iθ)

Γ(α+ 1)
.

Substituting z = v/y, the next iterated integral in (4) becomes∫ ∞
y

v−α(v − y)αρ−1 dv = y−αρ̂
∫ ∞

0

zαρ−1

(1 + z)α
dz = y−αρ̂

Γ(αρ)Γ(αρ̂)

Γ(α)
.

Finally, it remains to calculate the resulting outer integral of (4),∫ 1

0

y−αρ̂(1− y)αρ̂−1 dy = Γ(1− αρ̂)Γ(αρ̂).

Multiplying together these expressions and using the reflection identity for the gamma func-
tion1 we obtain

E1

[(
−
Xτ−0

Xτ−0 −

)iθ
]

=
Γ(iθ + 1)Γ(α− iθ)

Γ(α)
. (5)

• Putting (1), (2), (3) and (5) together, together with the reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
,

we get (with ρ = ρ̂ = 1/2),

Ψ(θ) =
Γ(α− iθ)

Γ(α2 − iθ)

Γ(1 + iθ)

Γ(1− α
2 + iθ)

− Γ(α)

Γ(α2 )Γ(1− α
2 )

Γ(iθ + 1)Γ(α− iθ)

Γ(α)

=
Γ(α− iθ)Γ(1 + iθ)

π

(
sin(

πα

2
− iπθ)− sin(

πα

2
)
)
.

Next, recalling that
2 sin(α) sin(β) = cos(α− β)− cos(α+ β),

we can write

2 sin(
π(α− 1)

2
− i

πθ

2
) sin(−i

πθ

2
) = cos(

πα

2
− π

2
)− cos(

πα

2
− π

2
− πiθ)

= sin(
πα

2
)− sin(

πα

2
− πiθ).

At this point, things become nasty! We need to used the Legendre duplication formula,

Γ(z)Γ(z +
1

2
) = 21−2zΓ(2z),

1Γ(z)Γ(1 − z) = π/ sin(πz)
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the reflection formula again and the recursion formula, Γ(1 + z) = zΓ(z), to get

Ψ(θ) = −2
Γ(α− iθ)Γ(1 + iθ)

π
sin(

π(α− 1)

2
− i

πθ

2
) sin(−i

πθ

2
)

= −2 · 2−1+α−iθΓ(
α

2
− i

θ

2
)Γ(

α

2
+

1

2
− i

θ

2
) · 2−1+1+iθΓ(

1

2
+ i

θ

2
)Γ(1 + i

θ

2
)

× 1

Γ(α2 −
1
2 − i θ2 )Γ( 3

2 −
α
2 + i θ2 )

· π

Γ(−i θ2 )Γ(1 + i θ2 )

= −π2α
Γ( 1

2 (−iθ + α))

Γ(− 1
2 iθ)

Γ( 1
2 (iθ + 1))

Γ( 1
2 (iθ + 1− α))

·
Γ(α2 + 1

2 − i θ2 )Γ(1 + i θ2 )

Γ(α2 −
1
2 − i θ2 )( 1

2 −
α
2 + i θ2 )Γ(1 + i θ2 )

= −π2α
Γ( 1

2 (−iθ + α))

Γ(− 1
2 iθ)

Γ( 1
2 (iθ + 1))

Γ( 1
2 (iθ + 1− α))

·
Γ(α2 −

1
2 − i θ2 )(α2 −

1
2 − i θ2 )

Γ(α2 −
1
2 − i θ2 )( 1

2 −
α
2 + i θ2 )

= π2α
Γ( 1

2 (−iθ + α))

Γ(− 1
2 iθ)

Γ( 1
2 (iθ + 1))

Γ( 1
2 (iθ + 1− α))

,

which is the required exponent up to the multiplicative constant π.

Question 6∗

Use the previous exercise to deduce that the MAP exponent underlying a stable process with two
sided jumps is given by

− Γ(α− z)Γ(1 + z)

Γ(αρ̂− z)Γ(1− αρ̂+ z)

Γ(α− z)Γ(1 + z)

Γ(αρ̂)Γ(1− αρ̂)

Γ(α− z)Γ(1 + z)

Γ(αρ)Γ(1− αρ)
− Γ(α− z)Γ(1 + z)

Γ(αρ− z)Γ(1− αρ+ z)

 ,
for Re(z) ∈ (−1, α).

Solution Question 6
First recall that the matrix exponent takes the specific form

Ψ(z) =

 ψ1(z) 0

0 ψ−1(z)

+

 −Q1,−1 Q1,−1

Q−1,1 −Q−1,1

 ◦
 1 E[ezU1,−1 ]

E[ezU−1,1 ] 1

 (6)

We can borrow lots of ideas and calculations from Question 5. Until it first crosses the origin, X
behaves like X1(X>0) and hence we can take

ψ1(z) = −(Ψ∗(−iz)− q∗).

Moreover the rate at which the change from the positive to the negative half-line occurs is rate q∗.
When the process jumps from the positive to negative half line, the process the chain maps

from 1 to −1 transferring the left-limit Xτ−0 −
to −Xτ−0 −

. However the actual positioning is Xτ−0
,

so a multiplicative correction in the radial positioning of

|Xτ−0
|

Xτ−0 −
= eU1,−1 .

From (5), we thus conclude that

E[eizU1,−1 ] =
Γ(iz + 1)Γ(α− iz)

Γ(α)

is needed.
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By anti-symmetry (or otherwise noting that the behaviour on the negative half-line is that of
−X with the roles of ρ and ρ̂ interchanged, written ρ↔ ρ̂). In conclusion we have everything we
need to populate the matrices in (6). And hence,

Ψ(z) =

 −(Ψ∗(−iz)− q∗) 0

• •

+

 −q∗ q∗

• •

 ◦
 1 Γ(z+1)Γ(α−z)

Γ(α)

· •


=

 − Γ(α−z)
Γ(αρ̂−z)

Γ(1+z)
Γ(1−αρ̂+z)

Γ(z+1)Γ(α−z)
Γ(αρ̂)Γ(1−αρ̂)

• •



=

 −
Γ(α−z)
Γ(αρ̂−z)

Γ(1+z)
Γ(1−αρ̂+z)

Γ(z+1)Γ(α−z)
Γ(αρ̂)Γ(1−αρ̂)

Γ(z+1)Γ(α−z)
Γ(αρ)Γ(1−αρ) − Γ(α−z)

Γ(αρ−z)
Γ(1+z)

Γ(1−αρ+z)


as required.

Exercise Set 2

Question 1
Use the fact that the radial part of a d-dimensional (d ≥ 2) isotropic stable process has MAP
(ξ,Θ), for which the first component is a Lévy process with characteristic exponent given by

Ψ(z) = 2α
Γ( 1

2 (−iz + α))

Γ(− 1
2 iz)

Γ( 1
2 (iz + d))

Γ( 1
2 (iz + d− α))

, z ∈ R.

to deduce the following facts:

• Irrespective of its point of issue, we have limt→∞ |Xt| =∞ almost surely.

• By considering the roots of Ψ show that

exp((α− d)ξt), t ≥ 0,

is a martingale.

• Deduce that
|Xt|α−d, t ≥ 0,

is a martingale.

Solution Question 1
• One can use the fact that E[ξ1] = −iΨ′(0) to deduce that limt→∞ ξt =∞ and hence, recalling

that |X| is a pssMp, and that only three types of behaviour are possible for pssMp, one has
that limt→∞ |Xt| =∞.

• If we write ψ(λ) = −Ψ(−iλ) = logE[eλX1 ] for the Laplace exponent of ξ, then it is well
defined for λ ∈ (−d, α) with roots at λ = 0 and λ = α− d.

• Note that
exp((α− d)ξt), t ≥ 0,

is a martingale

• Recalling that |Xt| = exp(ξϕt) and that ϕt is an almost surely finite stopping time (because
limt→∞ ξt =∞) we can deduce that

|Xt|α−d, t ≥ 0,

is a martingale (effectively invoking an Esscher transform to ψ).
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Question 2
Remaining in d-dimensions (d ≥ 2), recalling that

dP◦x
dPx

∣∣∣∣
Ft

=
|Xt|α−d

|x|α−d
, t ≥ 0, x 6= 0,

show that under P◦, X is absorbed continuously at the origin in an almost surely finite time.

Question 2 solution
Note that if (ξ◦,Θ) is the MAP underlying (X,P◦), then it is still the case that ξ alone is a
Lévy process because the change of measure P◦ is written in terms of the radial component only.
Moreover, the characteristic exponent of ξ◦ is given by

Ψ◦(z) = 2α
Γ( 1

2 (−iz + d))

Γ(− 1
2 (iz + α− d))

Γ( 1
2 (iz + α))

Γ( 1
2 iz)

, z ∈ R.

and one can check that Ψ◦(0) = 0 and E◦[ξt] = −iΨ◦′(0) < 0. Remember that there are only three
categories of pssMp and |X| must still be a pssMp because of isotropy of (X,P◦). So |X| must fit
the category of pssMp that is continuously absorbed at the origin.

Question 3∗

Recall the following theorem.

Theorem. Define the function

g(x, y) = π−(d/2+1) Γ(d/2) sin(πα/2)

∣∣1− |x|2∣∣α/2
|1− |y|2|α/2

|x− y|−d

for x, y ∈ Rd\Sd−1. Let

τ⊕ := inf{t > 0 : |Xt| < 1} and τ	a := inf{t > 0 : |Xt| > 1}.
(i) Suppose that |x| < 1, then

Px(Xτ	 ∈ dy) = g(x, y)dy, |y| ≥ 1.

(ii) Suppose that |x| > 1, then

Px(Xτ⊕ ∈ dy, τ⊕ <∞) = g(x, y)dy, |y| ≤ 1.

Prove (ii) (i.e. |x| > 1) from the identity in (i) (i.e. |x| < 1).

Solution Question 3
• Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

Px(Xτ⊕ ∈ D) = P◦Kx(KXτ	 ∈ D),

where Kx = x/|x|2, |Kx−Kz| = |x− z|/|x||z| and KD = {Kx : x ∈ D}.

• Noting that d(Kz) = |z|−2ddz, we have

Px(Xτ⊕ ∈ D)

=

∫
KD

|y|α−d

|Kx|α−d
g(Kx, y)dy

= cα,d

∫
KD

|z|d−α|Kx|d−α |1− |Kx|
2|α/2

|1− |y|2|α/2
|Kx− y|−ddy

= cα,d

∫
D

|z|2d |1− |x|
2|α/2

|1− |z|2|α/2
|x− z|−dd(Kz)

= cα,d

∫
D

|1− |x|2|α/2

|1− |z|2|α/2
|x− z|−ddz
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