Exercise set 1*

Question 1
Suppose that X is a stable process in any dimension (including the case of a Brownian motion).
Show that | X| is a positive self-similar Markov process.
Solution Question 1
e Temporarily write (Xt(:c), t > 0) in place of (X,P,)
e Markov property of X tells us that, for s,t > 0,
X = X0,

where X is an independent copy of X ().

Isotropy implies that

‘Xt(f-)9| = |X—§y)|y:Xt(I) =1 |X§Z)‘Z=(‘Xt(z)|7070...70)

Hence Markov property holds, strong Markov property (and Feller property) can be developed
from this argument

Self-similarity of | X| follows directly from the self-similarity of X.

Question 2
Suppose that B is a one-dimensional Brownian motion. Prove that

&1(3 >0)» > 0)
r =

is a martingale, where B, = inf,<; B;.

Solution Question 2

Note that (B, t > 0) is a martingale.

Optional stopping implies that (Bt/\rg ,t > 0) is a martingale, where 7;” = inf{t > 0: B, < 0}

Since BTD_ =0, it follows that B,, - = Btl( t>0.

T <7y )’

Finally note that {7y >t} = {B, > 0}

Question 3*

Suppose that X is a stable process with two-sided jumps

e Show that the range of the ascending ladder process H, say range(H ) has the property that
it is equal in law to ¢ X range(H).

e Hence show that, up to a multiplicative constant, the Laplace exponent of H satisfies k(\) =
A%t for ap € (0,1) (and hence the ascending ladder height process is a stable subordinator).

e Use the fact that, up to a multiplicative constant
U(z) = (0] (eGP 1oy + e MG 5 )) = R(iz)r(—iz)

to deduce that A
k(0) = 0%° and k(0) = 6°°.

and that 0 < ap,ap < 1

e What kind of process corresponds to the case that ap = 17



Solution Question 3
e Range of H agrees with the range of X. Scaling of X applies to scaling of X, in particular

(X o—ay,t > 0) is equal in law to (X4, > 0), so that ¢ x rangeX = range(cX) = range(X).
And hence the same is true for H.

e The latter is equivalent to the condition that the Laplace exponent of H is proportional to
that of cH, i.e k(z) = k.rk(cz), for z > 0, where k. > 0 is a constant that only depends on
c. Since k(1) must be a constant, we see that k(z) = k(cz)/k(c). Hence, as k is increasing,
one can easily deduce that k(\) = k(1)A** for some oy € [0,1]. In other words, H is a stable
subordinator with parameter a;. We exclude the case oy = 0 since it corresponds to the
setting where the range of H is the empty set. A similar argument applied to —X shows that
the descending ladder height process must also belong to the class of stable subordinators.

e We therefore assume that (up to multiplicative constants) x(z) = 2, z > 0, and &(z) = 2°2,
z > 0, for some a1, as € (0,1]. Appealing to the the stable process exponemt, we must choose
the parameters a; and as such that, for example, when z > 0,

Zoceﬂ'ioz(%fp) _ Zoqef%ﬂ'ial % Z()éze%ﬂ'iotz.
Matching radial and angular parts, this is only possible if oy and as satisfy

o] + a2 =,
a1 —as = —a(l —2p),

which gives us a1 = ap and as = ap. As X does not have monotone paths, it is necessarily
the case that 0 < ap <1 and 0 < ap < 1. In conclusion, for § > 0,

r(0) = 6°° and #(0) = 0P,
e When ap = 1, the ascending ladder height process is a pure linear drift. In that case, the
range of the maximum process X is [0,00). The process is spectrally negative.
Question 4

Suppose that (X, P,), x > 0 is a positive self-similar Markov process and let ¢ = inf{t > 0: X; = 0}
be the lifetime of X. Show that P, (¢ < co) does not depend on z and is either 0 for all z > 0 or
1 for all z > 0.

Solution Question 4

e We can appeal to the scaling property and write, for all ¢ > 0,

C(cm) — inf{t >0 Xt(c:v) — 0}
L o inf{c™t>0: cXif)at =0}
= ¢,

showing that P,(( < 00) = Pe(¢ < 00), for all z,¢ > 0, as claimed. Note that this also
shows that 2=*¢(®) is independent of the value of x.

e Denote by p € [0, 1] the common value of the probabilities P,({ < o0), z > 0. We shall now
show that either p = 0 or p = 1. Thanks to the Markov property, we can now write, for all

z,t >0,
Pyt < (< 0)=E;(1p<c)Px,(( <0)) =pP(t < (),
and, hence,
P P.((<t)+ Py(t < (< 0)
= P(¢<t)+p(l—Pe(¢<H))
= p+(1-pPr(C=t).
This forces us to conclude that either p = 1 or P,(¢ <t) =0, for all z,¢ > 0. In other words,

p=1lorp=0.



Question 5*

Suppose that X is a symmetric stable process in dimension one (in particular p = 1/2) and that
the underlying Lévy process for |X¢|1(, (o), where 0 = inf{t > 0 : X; = 0}, is written &.
(Note the indicator is only needed when « € (1,2) as otherwise X does not hit the origin.) Show
that (up to a multiplicative constant) its characteristic exponent is given by

JGE (-2 +a) T(3(1z+1)

I(—3iz) T(3(z+1-0a)’

U(z) =2 zeR.

[Hint!] Think about what happens after X first crosses the origin and apply the Markov property
as well as symmetry. You will need to use the law of the overshoot of X below the origin given a
few slides back.

Solution Question 5

e The trick is to go back and think about the pssMp (X;1x,>0,t > 0). Previously we had
identified the characteristics exponent of its underlying Lévy process (through the Lamperti
transform) as killed Lévy process with exponent

MNa—iz) TI(1+iz)
T(ap —iz) T(1 — ap +iz)’

U*(z) = z € R, (1)

which contained a killing rate
(2)

(Note in our setting, p = p = 1/2).

e Instead of killing the underlying £ at rate ¢* (i.e. the stable process goes negative), we want
our process to regenerate in (0, 00), corresponding to our underlying Lévy process undergoing
a jump at rate ¢*. In other words, the Lévy process corresponding to |X| can be written in
the form

=+,
where £** is a compound Poisson process with arrival rate ¢* and jump distribution F', which

we are to determine. In particular, if ¥ is the characteristic exponent of the Lévy process
that underlies | X|, then

(1 ) P(dz) = U*(0) — ¢* /R 6197 () 3)

W(0) = (T°(0) — ¢°) + ¢ /

R

e The point of regeneration must correspond to precisely 7XT07' In particular, referring to the
Lamperti transform, we must have

where A has distribution F.

e We can use the previously given joint overshoot distribution
Pl(—XT(; € du, Xrg— € dv)

_sin(ar/2) I'(a+1) > 1=y tv-—y2!
- ([ s Tt




and note that (the point of issue x does not matter by scaling)

/]R e F(dx)

shirop) Mo th) (> [~ [~ W1 — )Ly — gt
7w  D(ep)l(ep) Jo Jo Jo (y<1Av) W00+ u)ita dudvdy

_sin(rap) T'(a+1) Lopoo o0 (1 — y)ah=1(y — g)ap=1 s
T Tn r(amr(aﬁ)/o/y | P ayre e @

Note p=p=1/2.

e For the innermost integral in (4), substituting w = v/u and appealing to the integral repre-
sentation of the beta function, we have

/OO ul? dut = -0 /OO wi? duo — Uig_ar(ie + DI (a — i6)
o (utwv)tte o (I+w)tte Pla+1)

Substituting z = v/y, the next iterated integral in (4) becomes

- g [z _osT(@p)T(ap)
v v —y)** ldv:yap/ dz =y .
[ ee-w AT I(a)

Finally, it remains to calculate the resulting outer integral of (4),
1 ~ ~
| v p g =1 - aprap)
0
Multiplying together these expressions and using the reflection identity for the gamma func-

tion! we obtain ‘
. ( X, - )9] T(i6 + 1)T(a — i6)
(=

X, B I'() ' 5)

e Putting (1), (2), (3) and (5) together, together with the reflection formula

L1 = 2) = sin?ﬁz)’
we get (with p = p =1/2),
T(9) — INa—i0) T(1+10) ') r@if + 1)Na — i6)
) = N(¢—-if)r(1—2+i9) T(Lra-9g) I (o
= Lo —i0)I(1 +16) (sin(ﬂ- —imf) — sin(ﬂ-—)>

Next, recalling that
2sin(a) sin(B) = cos(a — ) — cos(a + B),
we can write

D ) sin( D) = cos("E — 1) cos(T — T ig)
9 9 2 2 2 2 2

= sin(?) - sin(? — 7if).

2 sin(

At this point, things become nasty! We need to used the Legendre duplication formula,

T(z)I(z+ %) = 21721 (22),

IT(2)I'(1 — 2) = 7/ sin(nz)



the reflection formula again and the recursion formula, I'(1 + z) = 2I'(z), to get

Fla—i) (1 +i0) . 7w(la—1) 70 .0

U(g) =-2 - sin( 5 - 17) sm(—17)
o oltasiop @ 0o 100 e L0 0
=-2.2 I‘(2 12)F(2+2 12) 2 F(2+12)F(1+12)
o 1 s
(g -1 -i9rG -5 +i3) I(Hra+id)
L TGCi4a) TRGO41)  T(3+ 3N+l
[(=31) T((0+1-a)) T(5-3-if)(; — 5 +iHl(1+i3)
_ 77r2a1‘(%(—i0 +a)) T(3(0+1) T(5—35-i§)(§—35—if)
(=3i0) TGE0+1-a) T(5-3-i§)(; -5 +i5)

F(i(-i0+a)) T(3(i0+1))
r(—-3i0) T(3GE0+1-a)

= 2%
which is the required exponent up to the multiplicative constant 7.

Question 6*

Use the previous exercise to deduce that the MAP exponent underlying a stable process with two
sided jumps is given by

- DPla=2)(1+2) MNa—-2)I'(1+2)
T(ap —2)T(1 — ap + 2) T(ap)T(1 — ap)
IMNa—2)T'(1+2) - Tla=2)P(1+2)
L(ap)T(1 — ap) T(ap —2)I(1 —ap + 2)

for Re(z) € (-1, ).

Solution Question 6

First recall that the matrix exponent takes the specific form
1(z) 0 —Qi,-1 Q11 1 E[e*V1.-1]
U(z) = + o (6)
0 P_1(2) Q-1p —Q-11 Efe?V-11] 1

We can borrow lots of ideas and calculations from Question 5. Until it first crosses the origin, X
behaves like X1(x~¢) and hence we can take

Pi(z) = —(V7(=iz) — ¢").

Moreover the rate at which the change from the positive to the negative half-line occurs is rate ¢*.

When the process jumps from the positive to negative half line, the process the chain maps
from 1 to —1 transferring the left-limit Xro‘— to —XTO_; However the actual positioning is XTO—7
so a multiplicative correction in the radial positioning of

|X7'(; ‘ Uy _1
- — =€ .
X~

From (5), we thus conclude that

is needed.



By anti-symmetry (or otherwise noting that the behaviour on the negative half-line is that of
—X with the roles of p and p interchanged, written p <+ 5). In conclusion we have everything we
need to populate the matrices in (6). And hence,

[ (¥ (=) =) 0 — gt ] [ g
W (z) = + o

i ° ° ° . . °

r_ I(a—z) T(d+2) T'(z+1)T'(a—2)

T(ap—2) T(1—ap+s) T(ap)l(1—ap)

L . °
[ Tla—z) T(d+2) T'(z+1)I'(a—2)
Tap—2) T(1—ap+7) T(ap) T (1—ap)
B T(z+1)T'(a—2) _ Tla—z) T(1+2)
T'(ap)l(1—ap) T'(ap—=z) I'(1—ap+z)

as required.

Exercise Set 2

Question 1

Use the fact that the radial part of a d-dimensional (d > 2) isotropic stable process has MAP
(&, 0), for which the first component is a Lévy process with characteristic exponent given by

af(%(—iz + a)) F(%(iz +4d))

, z€eR.
T(1z) T(h(z+d—a) ©

U(z) =2

to deduce the following facts:

e Irrespective of its point of issue, we have lim; . | X¢| = co almost surely.

e By considering the roots of ¥ show that
exp((a - d)ft)a t> 07
is a martingale.

e Deduce that
|Xe[*, t>0,

is a martingale.

Solution Question 1

e One can use the fact that E[¢;] = —19/(0) to deduce that lim; o, & = oo and hence, recalling
that |X| is a pssMp, and that only three types of behaviour are possible for pssMp, one has
that lim;_, | X¢| = oo.

o If we write ¢(\) = —¥(—i)\) = logE[e**1] for the Laplace exponent of &, then it is well
defined for A € (—d, ) with roots at A =0 and A = « — d.

e Note that
exp((oz - d)é.t)a t Z 07

is a martingale

e Recalling that | X;| = exp(,,) and that ¢, is an almost surely finite stopping time (because
limy_y 00 & = 00) we can deduce that

|Xt|a7d7 t Z Oa

is a martingale (effectively invoking an Esscher transform to ).



Question 2

Remaining in d-dimensions (d > 2), recalling that
apg | | X
dP,, 7 o ‘xla—d )

show that under P°, X is absorbed continuously at the origin in an almost surely finite time.

t>0,2#0,

Question 2 solution

Note that if (£°,0) is the MAP underlying (X,P°), then it is still the case that & alone is a
Lévy process because the change of measure P° is written in terms of the radial component only.
Moreover, the characteristic exponent of £° is given by
F(i(-iz+d) T(3(z+a))
[(—i(z+a—d) TI(3iz)

and one can check that ¥°(0) = 0 and E°[¢;] = —17(0) < 0. Remember that there are only three
categories of pssMp and |X| must still be a pssMp because of isotropy of (X,P°). So |X| must fit
the category of pssMp that is continuously absorbed at the origin.

U°(z) =2¢ z e R.

Question 3*

Recall the following theorem.

Theorem. Define the function

’1_| | ‘oc/2

o(asy) = WD T(A[2) st /2) eyl
1 «

for z,y € Rd\Sd_l. Let
P =inf{t > 0:|X;| <1} and 72 ;= inf{t > 0 : | X;| > 1}.
(i) Suppose that |z| < 1, then
Py (Xre € dy) = g(a,y)dy, [yl > 1.
(ii) Suppose that |z| > 1, then
Pyp(Xro €dy, 79 <o0) =g(z,y)dy, |yl <1.

Prove (ii) (i.e. || > 1) from the identity in (i) (i.e. |z| < 1).

Solution Question 3
e Start by noting from the Riesz-Bogdan-Zak transform that, for |z| > 1,
P.(X,0 € D) =Py, (KX, 0 € D),
where Kz = z/|z|?, |Kz — Kz| = |z — z|/|z||2] and KD = {Kx : z € D}.
e Noting that d(Kz) = |z|~2?dz, we have
P,(X,e € D)

_ Y™ s
= KDWQ( z,y)dy

—a 7a|17|K‘T|2|a/2 -
Cad/ |2 | K| Wuﬁﬁ—?ﬂ ddy

a/2
x _
o [ PR A
1l

—d
o T ez =~ 2

= Ca,d



