The mass of super-Brownian motion upon exiting balls and Sheu's compact support condition

Marion Hesse¹ and Andreas E. Kyprianou²

¹WIAS, Berlin, Germany.

²Unversity of Bath, UK.

Consider a finite-measure-valued strong Markov process $\{X_t: t \geq 0\}$ on \mathbb{R}^d whose evolution is characterised via its log-laplace semi-group: For all $f \in C_b^+(\mathbb{R})$, the space of positive, uniformly bounded, continuous functions on \mathbb{R}^d , and $\mu \in \mathcal{M}_F(\mathbb{R}^d)$ (the space of finite measure on \mathbb{R}^d),

$$-\log \mathbf{E}_{\mu}(\mathrm{e}^{-\langle f, X_t \rangle}) = \int_{\mathbb{R}} v_f(x, t) \mu(\mathrm{d}x), \ t \geq 0,$$

where $v_f(x,t)$ is the unique positive solution to the evolution equation for $x\in\mathbb{R}$ and t>0

$$\frac{\partial}{\partial t}v_f(x,t)=\frac{1}{2}\frac{\partial^2}{\partial x^2}v_f(x,t)-\psi(v_f(x,t)),$$

with initial condition $v_f(x,0) = f(x)$. The branching mechanism ψ satisifes:

$$\psi(\lambda) = -\alpha\lambda + \beta\lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \nu(dx), \tag{1}$$

for $\lambda \geq 0$ where $\alpha = -\psi'(0^+) \in (0, \infty)$, $\beta \geq 0$ and ν is a measure concentrated on $(0, \infty)$ which satisfies $\int_{(0, \infty)} (x \wedge x^2) \nu(dx) < \infty$.

 Another way of representing the log-Laplace semi-group evolution is via the integral equation:

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f=1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t|| := \langle 1, X_t \rangle$, $t \geq 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+)=\alpha$ gives us the growth rate and hence process is sub/super-critical with $\alpha<0/\alpha>0$. Largely indifferent to criticality in this talk.

 Another way of representing the log-Laplace semi-group evolution is via the integral equation:

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f=1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t|| := \langle 1, X_t \rangle$, $t \geq 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+)=\alpha$ gives us the growth rate and hence process is sub/super-critical with $\alpha<0/\alpha>0$. Largely indifferent to criticality in this talk.

 Another way of representing the log-Laplace semi-group evolution is via the integral equation:

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f=1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t||:=\langle 1,X_t\rangle,\ t\geq 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+)=\alpha$ gives us the growth rate and hence process is sub/super-critical with $\alpha<0/\alpha>0$. Largely indifferent to criticality in this talk.

 Another way of representing the log-Laplace semi-group evolution is via the integral equation:

$$v_f(x,t) = \mathbb{E}_x[f(\xi_t)] - \mathbb{E}_x\Big[\int_0^t \psi(v_f(\xi_z,t-z)) dz\Big],$$

- Choosing f=1 produces the log-Laplace exponent a CSBP with branching mechanism ψ . That is to say the total mass process, $||X_t||:=\langle 1,X_t\rangle$, $t\geq 0$, is a CSBP.
- This super-BM is the continuum analogue of Branching Brownian motion with a general off-spring distribution (including allowing for no offspring w.p.p.).
- The constant $-\psi'(0+)=\alpha$ gives us the growth rate and hence process is sub/super-critical with $\alpha<0/\alpha>0$. Largely indifferent to criticality in this talk.

Mass decay and Grey's condition

Following the same property of all (non-monotone) CSBPs:

$$\mathbf{P}_{\mu}(\lim_{t\to\infty}||X_t||=0 \mid ||X_0||=x)=\mathrm{e}^{-\lambda^*||\mu||},$$

where
$$\psi(\lambda^*) = 0$$
 and $\mu \in \mathcal{M}_F(\mathbb{R}^d)$.

• On the event $\{||X_t|| \to 0\}$, Grey (1974) gives us a nice dichotomy

$$\{\exists T(\omega) > 0 \text{ s.t. } ||X_{T+t}|| = 0 \ \forall t \ge 0\} \text{ (extinction)}$$

or
$$\{||X_t|| \to 0 \text{ and } ||X_t|| > 0 \ \forall t > 0\}$$
 (extinguishing)

$$\int_{-\infty}^{\infty} \frac{1}{\psi(\lambda)} d\lambda < \infty \text{ or } = \infty$$

Mass decay and Grey's condition

Following the same property of all (non-monotone) CSBPs:

$$\mathbf{P}_{\mu}(\lim_{t\to\infty}||X_t||=0 \mid ||X_0||=x)=\mathrm{e}^{-\lambda^*||\mu||},$$

where $\psi(\lambda^*) = 0$ and $\mu \in \mathcal{M}_F(\mathbb{R}^d)$.

• On the event $\{||X_t|| \to 0\}$, Grey (1974) gives us a nice dichotomy between the two ways in which this can happen: either

$$\{\exists T(\omega) > 0 \text{ s.t. } ||X_{T+t}|| = 0 \ \forall t \ge 0\} \text{ (extinction)}$$

or
$$\{||X_t|| \to 0 \text{ and } ||X_t|| > 0 \ \forall t > 0\}$$
 (extinguishing)

accordingly as

$$\int_{-\infty}^{\infty} \frac{1}{\psi(\lambda)} d\lambda < \infty \text{ or } = \infty$$

Sheu's condition

• For the case of super-Brownian motion, Sheu (1994) offers an additional unusual condition for the event of compact support: Let

$$\mathcal{S} = \overline{\bigcup_{t \geq 0} \mathsf{supp} X_t}$$

Then for all compactly supported $\mu \in \mathcal{M}_F(\mathbb{R}^d)$,

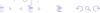
$$\mathbf{P}_{\mu}(\mathcal{S} \text{ is compact}) = e^{-\lambda_*||\mu||}$$

if and only if

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathrm{d}\theta}} \; \mathrm{d}\lambda < \infty$$

and otherwise $\mathbb{P}_{\mu}(\mathcal{S} \text{ is compact}) = 0$.

- What is the relation between this condition and Grey's condition?
- What is the relation between $\{S \text{ is compact}\}\$ and $\{\|X_t\| \to 0\}$?



Sheu's condition

• For the case of super-Brownian motion, Sheu (1994) offers an additional unusual condition for the event of compact support: Let

$$\mathcal{S} = \overline{\bigcup_{t \geq 0} \mathsf{supp} X_t}$$

Then for all compactly supported $\mu \in \mathcal{M}_F(\mathbb{R}^d)$,

$$\mathbf{P}_{\mu}(\mathcal{S} \text{ is compact}) = e^{-\lambda_*||\mu||}$$

if and only if

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathrm{d}\theta}} \; \mathrm{d}\lambda < \infty$$

and otherwise $\mathbb{P}_{\mu}(\mathcal{S} \text{ is compact}) = 0$.

- What is the relation between this condition and Grey's condition? Sheu's condition comes out of PDE analysis and it is unclear where the condition comes from.
- What is the relation between $\{S \text{ is compact}\}\$ and $\{||X_t|| \to 0\}$?

Sheu's condition

• For the case of super-Brownian motion, Sheu (1994) offers an additional unusual condition for the event of compact support: Let

$$\mathcal{S} = \overline{\bigcup_{t \geq 0} \mathsf{supp} X_t}$$

Then for all compactly supported $\mu \in \mathcal{M}_F(\mathbb{R}^d)$,

$$\mathbf{P}_{\mu}(\mathcal{S} \text{ is compact}) = e^{-\lambda_*||\mu||}$$

if and only if

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathrm{d}\theta}} \; \mathrm{d}\lambda < \infty$$

and otherwise $\mathbb{P}_{\mu}(\mathcal{S} \text{ is compact}) = 0$.

- What is the relation between this condition and Grey's condition? Sheu's condition comes out of PDE analysis and it is unclear where the condition comes from.
- What is the relation between $\{\mathcal{S} \text{ is compact}\}$ and $\{||X_t|| \to 0\}$?

- Fix an initial radius r > 0 and let $D_s := \{x \in \mathbb{R}^d : ||x|| < s\}$ be the open ball of radius $s \ge r$ around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \geq r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line à Ia Chauvin-Neveu.
- For $s \ge r$, let $Z_s := ||X_{D_s}||$ denote the mass that is 'frozen' when it first hits the boundary of the ball D_s . We can then define the mass process $(Z_s, s \ge r)$ which uses the radius s as its time-parameter.

First passage branching process

- Fix an initial radius r > 0 and let $D_s := \{x \in \mathbb{R}^d : ||x|| < s\}$ be the open ball of radius $s \ge r$ around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \geq r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line à Ia Chauvin-Neveu.
- For $s \ge r$, let $Z_s := ||X_{D_s}||$ denote the mass that is 'frozen' when it first hits the boundary of the ball D_s . We can then define the mass process $(Z_s, s \ge r)$ which uses the radius s as its time-parameter.

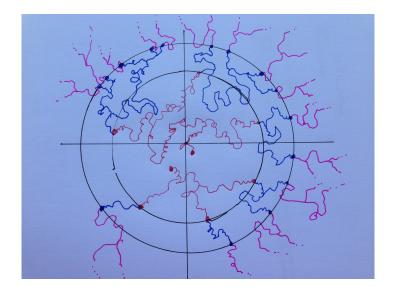
First passage branching process

- Fix an initial radius r > 0 and let $D_s := \{x \in \mathbb{R}^d : ||x|| < s\}$ be the open ball of radius $s \ge r$ around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \geq r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line λ la Chauvin-Neveu.
- For $s \ge r$, let $Z_s := ||X_{D_s}||$ denote the mass that is 'frozen' when it first hits the boundary of the ball D_s . We can then define the mass process $(Z_s, s \ge r)$ which uses the radius s as its time-parameter.

First passage branching process

- Fix an initial radius r > 0 and let $D_s := \{x \in \mathbb{R}^d : ||x|| < s\}$ be the open ball of radius $s \ge r$ around the origin.
- According to Dynkin's theory of exit measures we can describe the mass of X as it first exits the growing sequence of balls $(D_s, s \ge r)$ as a sequence of random measures on \mathbb{R}^d , known as branching Markov exit measures.
- We denote this sequence of branching Markov exit measures by $\{X_{D_s}, s \geq r\}$. Informally, the measure X_{D_s} is supported on the boundary ∂D_s and it is obtained by 'freezing' mass of the super-Brownian motion when it first hits ∂D_s . If X were a branching Brownian motion, then X_{D_s} would be a stopping line λ la Chauvin-Neveu.
- For $s \ge r$, let $Z_s := ||X_{D_s}||$ denote the mass that is 'frozen' when it first hits the boundary of the ball D_s . We can then define the mass process $(Z_s, s \ge r)$ which uses the radius s as its time-parameter.

Z is a time-inhomogenous CSBP



Z is a time-inhomogenous CSBP



Z is a time-inhomogenous CSBP

Theorem

Let r > 0. The process $Z = (Z_s, s \ge r)$ is a time-inhomogeneous continuous-state branching process. Let r > 0 and $\mu \in \mathcal{M}_F(\partial D_r)$ with $||\mu|| = a$. Then, for $s \ge r$, we have

$$E_{a,r}[e^{-\theta Z_s}] = e^{-u(r,s,\theta)a}, \quad \theta \ge 0,$$

where the Laplace functional $u(r, s, \theta)$ satisfies

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

for a family of branching mechanisms $(\Psi(r,\cdot), r>0)$ satisfying the PDE

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \frac{1}{2}\frac{\partial}{\partial \theta}\Psi^{2}(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$

$$\Psi(r,\lambda^{*}) = 0,$$

Proposition

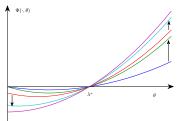
(i) For (sub)critical ψ , we have, for $0 < r \le s$,

$$\Psi(r,\theta) \leq \Psi(s,\theta)$$
 for all $\theta \geq 0$.

(ii) For supercritical ψ , we have, for $0 < r \le s$,

$$\Psi(r,\theta) \ge \Psi(s,\theta)$$
 for all $\theta \le \lambda^*$

$$\Psi(r,\theta) \leq \Psi(s,\theta)$$
 for all $\theta \geq \lambda^*$.



Asymptotic behaviour of Z

Lemma

For each $\theta \geq 0$, the limit $\lim_{r \uparrow \infty} \Psi(r, \theta) = \Psi_{\infty}(\theta)$ is finite and the convergence holds uniformly in θ on any bounded, closed subset of \mathbb{R}_+ . For any $\theta \geq 0$, we have

$$\Psi_{\infty}(\theta) = 2\operatorname{sgn}(\psi(\theta)) \ \sqrt{\int_{\lambda^*}^{\theta} \psi(\lambda) \ d\lambda},$$

with $\lambda^* = 0$ in the (sub)critical case.

$$\frac{\partial}{\partial r} \Psi(r,\theta) + \frac{1}{2} \frac{\partial}{\partial \theta} \Psi^{2}(r,\theta) + \frac{d-1}{r} \Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^{*}) = 0,$$

Lemma

For each $\theta \geq 0$, the limit $\lim_{r \uparrow \infty} \Psi(r, \theta) = \Psi_{\infty}(\theta)$ is finite and the convergence holds uniformly in θ on any bounded, closed subset of \mathbb{R}_+ . For any $\theta \geq 0$, we have

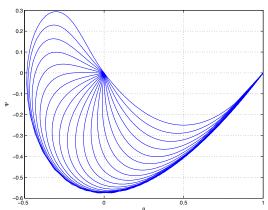
$$\Psi_{\infty}(\theta) = 2\operatorname{sgn}(\psi(\theta)) \ \sqrt{\int_{\lambda^*}^{\theta} \psi(\lambda) \ d\lambda},$$

with $\lambda^* = 0$ in the (sub)critical case.

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \frac{1}{2}\frac{\partial}{\partial \theta}\Psi^{2}(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$

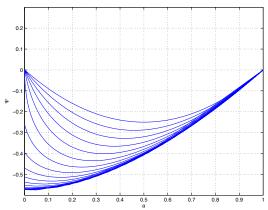
$$\Psi(r,\lambda^{*}) = 0,$$

$$\frac{\partial}{\partial r}\Psi(r,\theta) + \Psi(r,\theta)\frac{\partial}{\partial \theta}\Psi(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^*) = 0,$$

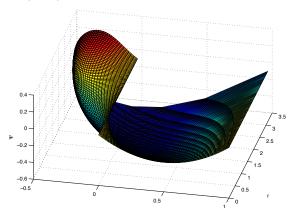


$$\frac{\partial}{\partial r} \Psi(r,\theta) + \Psi(r,\theta) \frac{\partial}{\partial \theta} \Psi(r,\theta) + \frac{d-1}{r} \Psi(r,\theta) = 2\psi(\theta)$$

$$\Psi(r,\lambda^*) = 0,$$



$$\frac{\partial}{\partial r}\Psi(r,\theta) + \Psi(r,\theta)\frac{\partial}{\partial \theta}\Psi(r,\theta) + \frac{d-1}{r}\Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^*) = 0,$$



Asymptotic behaviour of Z

Lemma

Denote by $((Z_s^\infty, s \ge 0), P^\infty)$ the standard CSBP associated with the limiting branching mechanism Ψ_∞ , with unit initial mass at time 0. Then, for any s > 0, $\theta \ge 0$,

$$\lim_{r\to\infty} E_{r,1}[\mathrm{e}^{-\theta Z_{r+s}}] = E^{\infty}[\mathrm{e}^{-\theta Z_{s}^{\infty}}].$$

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy: $\{||X_t|| \to 0\} \not\Rightarrow \{S \text{ is compact}\}.$
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda+2)^{\alpha} + 2^{\alpha} \text{ for } \alpha \in (0,1). \text{ This branching mechanism respects } \int_{-\infty}^{\infty} 1/\psi(\lambda) \mathrm{d}\lambda = \infty \text{ (extinguishing) but } \int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ \mathrm{d}\theta)^{1/2} \mathrm{d}\lambda = \infty \text{ (no compact support)}.$
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy: $\{||X_t|| \to 0\} \not\Rightarrow \{S \text{ is compact}\}.$
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda+2)^{\alpha} + 2^{\alpha} \text{ for } \alpha \in (0,1). \text{ This branching mechanism respects } \int_{-\infty}^{\infty} 1/\psi(\lambda) \mathrm{d}\lambda = \infty \text{ (extinguishing) but } \int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ \mathrm{d}\theta)^{1/2} \mathrm{d}\lambda = \infty \text{ (no compact support)}.$
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Sheu's condition is Grey's condition

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy: $\{||X_t|| \to 0\} \not\Rightarrow \{S \text{ is compact}\}.$
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda+2)^\alpha + 2^\alpha \text{ for } \alpha \in (0,1). \text{ This branching mechanism respects } \int_0^\infty 1/\psi(\lambda) \mathrm{d}\lambda = \infty \text{ (extinguishing) but } \int_0^\infty 1/(\int_{\lambda^*}^\lambda \psi(\theta) \ \mathrm{d}\theta)^{1/2} \mathrm{d}\lambda = \infty \text{ (no compact support)}.$
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Sheu's condition is Grey's condition

$$\int^{\infty} \frac{1}{\sqrt{\int_{\lambda^*}^{\lambda} \psi(\theta) \; \mathsf{d}\theta}} \; \mathsf{d}\lambda = \int^{\infty} \frac{1}{\Psi^{\infty}(\lambda)} \mathsf{d}\lambda.$$

- There is no hierarchy: $\{||X_t|| \to 0\} \not\Rightarrow \{S \text{ is compact}\}.$
- Take e.g. the supercritical branching mechanism $\psi(\lambda) = \lambda (\lambda+2)^\alpha + 2^\alpha \text{ for } \alpha \in (0,1). \text{ This branching mechanism respects } \int_{-\infty}^{\infty} 1/\psi(\lambda) \mathrm{d}\lambda = \infty \text{ (extinguishing) but } \int_{-\infty}^{\infty} 1/(\int_{\lambda^*}^{\lambda} \psi(\theta) \ \mathrm{d}\theta)^{1/2} \mathrm{d}\lambda = \infty \text{ (no compact support)}.$
- In principle it could happen that ψ is such that we have a process that becomes extinct but which is not compactly supported.

Martingales

On the one hand, using the semi-group equations,

$$M_s^{\lambda} = e^{-\lambda^* Z_s} - \int_r^s \Psi(v, \lambda^*) Z_v e^{-\lambda^* Z_v} \mathbf{1}_{\{Z_v < \infty\}} dv, \quad s \ge r,$$

is a martingale.

• On the other hand $\exp\{-\lambda^*||X_t||\}$, $t \ge 0$ is a martingale since

$$\mathbf{E}_{\mu}\left[\mathbf{1}_{\{||X_u||\to 0\}}\ \Big|\sigma\big(||X_s||,s\leq t\big)\right]=\mathrm{e}^{-\lambda^*||X_t||},\qquad t\geq 0,$$

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_{\nu}|| \to 0\}} \mid \sigma(||X_{D_{\nu}}||, r \le \nu \le s)] = e^{-\lambda^* ||X_{D_{s}}||} = e^{-\lambda^* Z_{s}},$$

• Comparing tells us that $\Psi(r, \lambda^*) = 0$ for all r > 0.

On the one hand, using the semi-group equations,

$$M_s^{\lambda} = e^{-\lambda^* Z_s} - \int_r^s \Psi(v, \lambda^*) Z_v e^{-\lambda^* Z_v} \mathbf{1}_{\{Z_v < \infty\}} dv, \quad s \ge r,$$

is a martingale.

• On the other hand $\exp\{-\lambda^*||X_t||\}$, $t \ge 0$ is a martingale since

$$\mathbf{E}_{\mu}\left[\mathbf{1}_{\{||X_{u}||\rightarrow 0\}}\ \left|\sigma(||X_{s}||,s\leq t)\right]=\mathrm{e}^{-\lambda^{*}||X_{t}||},\qquad t\geq 0,$$

and hence so is

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_{u}||\to 0\}} \mid \sigma(||X_{D_{v}}||, r \le v \le s)] = e^{-\lambda^{*}||X_{D_{s}}||} = e^{-\lambda^{*}Z_{s}},$$

• Comparing tells us that $\Psi(r, \lambda^*) = 0$ for all r > 0.

• On the one hand, using the semi-group equations,

$$M_s^{\lambda} = e^{-\lambda^* Z_s} - \int_r^s \Psi(v, \lambda^*) Z_v e^{-\lambda^* Z_v} \mathbf{1}_{\{Z_v < \infty\}} dv, \quad s \ge r,$$

is a martingale.

ullet On the other hand $\exp\{-\lambda^*||X_t||\}$, $t\geq 0$ is a martingale since

$$\mathbf{E}_{\mu}\left[\mathbf{1}_{\{||X_{u}||\rightarrow 0\}}\ \left|\sigma(||X_{s}||,s\leq t)\right]=\mathrm{e}^{-\lambda^{*}||X_{t}||},\qquad t\geq 0,$$

and hence so is

$$\mathbf{E}_{\mu}[\mathbf{1}_{\{||X_{\nu}||\to 0\}} \mid \sigma(||X_{D_{\nu}}||, r \le \nu \le s)] = e^{-\lambda^*||X_{D_s}||} = e^{-\lambda^*Z_s},$$

• Comparing tells us that $\Psi(r, \lambda^*) = 0$ for all r > 0.

Branching mechanism PDE

• On the one hand: Let r > 0 and $\mu \in \mathcal{M}_F(\partial D_r)$ with $||\mu|| = a$. Then, for $s \ge r$, we have

$$E_{a,r}[e^{-\theta Z_s}] = e^{-u(r,s,\theta)a}, \quad \theta \ge 0,$$

where the Laplace functional $u(r, s, \theta)$ satisfies

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

ullet On the other hand: Recalling that the radial part of an \mathbb{R}^d -Brownian motion is a Bessel process, Dynkin's semigroup theory for branching Markov exit measures gives us

$$u(r,s, heta) = heta - \mathbb{E}_r^\mathsf{R} \int_0^{ au_s} \psi(u(R_\ell,s, heta)) \; \mathrm{d}\ell, \; 0 < r \leq s, \; heta \geq 0,$$

where (R, \mathbb{P}^R) is a *d*-dimensional Bessel process and $\tau_s := \inf\{l > 0 : R_l > s\}$ its first passage time above level *s*

Branching mechanism PDE

• On the one hand: Let r>0 and $\mu\in\mathcal{M}_F(\partial D_r)$ with $||\mu||=a$. Then, for $s\geq r$, we have

$$E_{a,r}[e^{-\theta Z_s}] = e^{-u(r,s,\theta)a}, \quad \theta \ge 0,$$

where the Laplace functional $u(r, s, \theta)$ satisfies

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

ullet On the other hand: Recalling that the radial part of an \mathbb{R}^d -Brownian motion is a Bessel process, Dynkin's semigroup theory for branching Markov exit measures gives us

$$u(r,s, heta) = heta - \mathbb{E}_r^\mathsf{R} \int_0^{ au_s} \psi(u(R_\ell,s, heta)) \; \mathrm{d}\ell, \; 0 < r \le s, \; heta \ge 0,$$

where (R, \mathbb{P}^R) is a d-dimensional Bessel process and $\tau_s := \inf\{l > 0 : R_l > s\}$ its first passage time above level s

• Define $\varphi(s) = \int_0^{r^2 s} R_\ell^{-2} d\ell$, $s \ge 0$, then

$$B_s = \log(r^{-1}R_{r^2\varphi^{-1}(s)}), \ s \ge 0,$$

is a one-dimensional Brownian motion with drift $\frac{d}{2} - 1$.

the Last semi-group equation can be developed into

$$u(r,s,\theta) = \theta - \mathbb{E}_{\log r} \int_0^{T_{\log s}} \psi(u(e^{B_l},s,\theta)) e^{2B_\ell} d\ell$$

$$= \mathbb{E}_{\log r} \sum_{\log r \le u \le \log s} \int_0^{\zeta^{(u)}} \psi(u(e^{u-e_u(l)},s,\theta)) e^{2(u-e_u(\ell))} d\ell$$

$$= \theta - 2 \int_r^s v^{1-d} \int_0^v \psi(u(z,s,\theta)) z^{d-1} dz dv.$$

• Define $\varphi(s) = \int_0^{r^2 s} R_\ell^{-2} d\ell$, $s \ge 0$, then

$$B_s = \log(r^{-1}R_{r^2\varphi^{-1}(s)}), \ s \ge 0,$$

is a one-dimensional Brownian motion with drift $\frac{d}{2} - 1$.

the Last semi-group equation can be developed into

$$u(r,s,\theta) = \theta - \mathbb{E}_{\log r} \int_0^{T_{\log s}} \psi(u(e^{B_l},s,\theta)) e^{2B_\ell} d\ell$$

$$= \mathbb{E}_{\log r} \sum_{\log r \le u \le \log s} \int_0^{\zeta^{(u)}} \psi(u(e^{u-e_u(l)},s,\theta)) e^{2(u-e_u(\ell))} d\ell$$

$$= \theta - 2 \int_r^s v^{1-d} \int_0^v \psi(u(z,s,\theta)) z^{d-1} dz dv.$$

• Line up the two representations of the semi-group equation:

$$u(r,s,\theta) = \theta - 2 \int_{r}^{s} v^{1-d} \int_{0}^{v} \psi(u(z,s,\theta)) z^{d-1} dz dv.$$

and

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

• Fiddling with derivatives in s, r and θ , gives the desired PDE

$$\frac{\partial}{\partial r} \Psi(r, \theta) + \frac{1}{2} \frac{\partial}{\partial \theta} \Psi^{2}(r, \theta) + \frac{d-1}{r} \Psi(r, \theta) = 2\psi(\theta)$$
$$\Psi(r, \lambda^{*}) = 0,$$

for
$$r > 0, \ \theta \in (0, \infty)$$

Branching mechanism PDE

• Line up the two representations of the semi-group equation:

$$u(r,s,\theta) = \theta - 2 \int_{r}^{s} v^{1-d} \int_{0}^{v} \psi(u(z,s,\theta)) z^{d-1} dz dv.$$

and

$$u(r,s,\theta) = \theta - \int_r^s \Psi(z,u(z,s,\theta)) dz,$$

• Fiddling with derivatives in s, r and θ , gives the desired PDE

$$\frac{\partial}{\partial r} \Psi(r,\theta) + \frac{1}{2} \frac{\partial}{\partial \theta} \Psi^{2}(r,\theta) + \frac{d-1}{r} \Psi(r,\theta) = 2\psi(\theta)$$
$$\Psi(r,\lambda^{*}) = 0,$$

for
$$r > 0$$
, $\theta \in (0, \infty)$.

Thankyou

