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Refracted Lévy processes

Spectrally negative Lévy processes and scale functions

Basic data

• X = {Xt : t ≥ 0} with probabilities {Px : x ∈ R} will always denote
a spectrally negative Lévy process (i.e. Π(0,∞) = 0 and −X is not
a subordinator).

• For θ ≥ 0 we may work with the Laplace exponent

ψ(θ) := log E0(eθX1).

• For each q ≥ 0, the, so-called, q-scale function W (q) : R 7→ [0,∞)
is defined by W (q)(x ) = 0 for x < 0 and otherwise is continuous
satisfying ∫ ∞

0

e−βxW (q)(x )dx =
1

ψ(β)− q

for all β sufficiently large.

• For convenience we shall write W for W (0).
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Spectrally negative Lévy processes and scale functions

Basic data

• X = {Xt : t ≥ 0} with probabilities {Px : x ∈ R} will always denote
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Refracted Lévy processes

Spectrally negative Lévy processes and scale functions

Sample fluctuation identities

For example, if τ−0 = inf{t > 0 : Xt < 0} and τ+
a = inf{t > 0 : Xt > a}

then

• The oldest one in the book (Takács 1966, Zolotarev 1964) (the ‘ruin
probability’ - in fact the Pollaczek-Khintchine formula in disguise)

Px (τ−0 <∞) = 1− (E0(X1) ∨ 0)W (x )

for x ≥ 0.

• Resolvent in a strip: For any a > 0, x , y ∈ [0, a], q ≥ 0∫ ∞

0

e−qtPx (Xt ∈ dy , t < τ+
a ∧ τ−0 )dt

=
{

W (q)(x )W (q)(a − y)
W (q)(a)

−W (q)(x − y)
}

dy .
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Refracted Lévy processes

De Finetti’s dividend control problem

Controlled Lévy risk processes

• Think of X as the wealth of an insurance company (X can be a
classical Cramér-Lundberg processes if you want).

• Suppose that ξ = {Lξ
t : t ≥ 0} is a stream of dividend payments or

‘dividend strategy’: left continuous, non-negative, non-decreasing
process adapted to the filtration generated by X .

• Define the aggregate process U ξ
t = Xt − Lξ

t when paying dividends
with strategy ξ and let

σξ = inf{t > 0 : U ξ
t < 0}

be the ruin time of the aggregate process.

• A strategy ξ is called admissible if Lξ
t+ − Lξ

t ≤ U ξ
t for t < σξ (i.e.

ruin of the aggregate process does not result as a consequence of a
dividend payment).
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Controlled Lévy risk processes

• Think of X as the wealth of an insurance company (X can be a
classical Cramér-Lundberg processes if you want).

• Suppose that ξ = {Lξ
t : t ≥ 0} is a stream of dividend payments or

‘dividend strategy’: left continuous, non-negative, non-decreasing
process adapted to the filtration generated by X .

• Define the aggregate process U ξ
t = Xt − Lξ

t when paying dividends
with strategy ξ and let

σξ = inf{t > 0 : U ξ
t < 0}

be the ruin time of the aggregate process.

• A strategy ξ is called admissible if Lξ
t+ − Lξ

t ≤ U ξ
t for t < σξ (i.e.

ruin of the aggregate process does not result as a consequence of a
dividend payment).



4/ 12

Refracted Lévy processes
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Refracted Lévy processes

De Finetti’s dividend control problem

De Finetti’s control problem

An ‘old’ actuarial problem of the ‘modern’ probabilistic age proposed by
de Finetti 1957: find the value function and matching dividend strategy
ξ∗ such that

v(x ) = sup
ξ

Ex

(∫ σξ

0

e−qtdLξ
t

)
= Ex

(∫ σξ∗

0

e−qtdLξ∗

t

)

where q > 0 and the supremum is taken over all admissible dividend
strategies.
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Refracted Lévy processes

De Finetti’s dividend control problem

Reflection strategies

It has been shown that the optimal strategy is of a ‘barrier type with
reflection’:

La
t = (a ∨ sup

s≤t
Xs)− a

for some optimal level a. These cases are:

1 (Gerber 1969) Cramér-Lundberg process with exponentially

distributed jumps Xt = ct −
∑Nt

i=1 ei ,

2 (Jeanblanc & Shiryaev 1995 and many others) Linear Brownian
motion: Xt = µt + σBt .

3 (Loeffen 2008) Any spectrally negative Lévy process whose jump
measure has a completely monotone density.

4 (K. Rivero and Song 2008) Any spectrally negative Lévy process
whose jump measure has a log-convex density.
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Refracted Lévy processes

De Finetti’s dividend control problem

Reflection strategies

It has been shown that the optimal strategy is of a ‘barrier type with
reflection’:

La
t = (a ∨ sup

s≤t
Xs)− a

for some optimal level a. These cases are:

1 (Gerber 1969) Cramér-Lundberg process with exponentially

distributed jumps Xt = ct −
∑Nt

i=1 ei ,

2 (Jeanblanc & Shiryaev 1995 and many others) Linear Brownian
motion: Xt = µt + σBt .

3 (Loeffen 2008) Any spectrally negative Lévy process whose jump
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measure has a completely monotone density.

4 (K. Rivero and Song 2008) Any spectrally negative Lévy process
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Refracted Lévy processes

Adaptation of de Finetti’s control problem

Restricted class of control strategies

• Many variations on this theme have been examined for the case of
diffusions (Jeanblanc & Shiryaev 1995, Elena Boguslavskaya’s Ph.D.
thesis 2005) as well as the Cramér-Lundberg case with exponential
jumps (Gerber & Shiu 2006) including the following:

• The class of admissible strategies is further restricted to the case
that

U φ
t = Xt − Lφ

t = Xt −
∫ t

0

φ(U φ
s )ds (1)

where φ is measurable and uniformly bounded by, say, δ > 0. Should
now think of φ as the control.

• Immediate problem: (1) can be a stochastic differential equation of
the degenerate type. Does it even have a unique weak solution?
(possible bad cases: X has no Gaussian component).

• Could one at least investigate (1) for the optimal strategies that
have appeared in the aforementioned articles?
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Refracted Lévy processes

Adaptation of de Finetti’s control problem

Refraction strategies (Loeffen and K. 2008)

• A refraction strategy refers to the control φ(x ) = δ1(x>b) for some
threshold level b ≥ 0. Thus the controlled process would need to
solve the stochastic differential equation

Ut = Xt − δ

∫ t

0

1(Us>b)ds.

• When X has a Gaussian part then classical theory gives us a unique
strong solution.

• When X has paths of bounded variation, then solution can be
constructed pathwise.

• When X has unbounded variation, no Gaussian part, solution can be
strongly approximated by solutions from the bounded variation case:

sup
s∈[0,1]

|Xs −X (n)
s | → 0 ⇒ sup

s∈[0,1]

|U ∗
s −U (n)

s | → 0

as n ↑ ∞ for some stochastic process U ∗ (which is a limit point in
the (D [0, 1], || · ||∞) Banach space.
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Refracted Lévy processes

Adaptation of de Finetti’s control problem

When is U ∗ a refracted process?

• Since

U ∗
t = Xt − δ lim

n↑∞

∫ t

0

1
(U

(n)
s >b)

ds

we have that U ∗ is a refracted process as soon as one can prove
that Px (U ∗

s = b) = 0 for Lebesgue almost every s > 0.

• Do this by noting that for η, q > 0:

{U ∗
t = b} ⊆ {U (n)

t ∈ (b − η, b + η) e.v.}R ∞
0

e−qtPx (U ∗
t = b)dt ≤

R ∞
0

e−qt lim infn Px (U
(n)
t ∈ (b − η, b + η))dtR ∞

0
e−qtPx (U ∗

t = b)dt

≤ lim supη↓0 lim infn
R ∞
0

e−qtPx (U
(n)
t ∈ (b − η, b + η))dt

• Amazingly this can be done because a expression for the resolvent
can be found semi-explicitly in terms of scale functions.
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Refracted Lévy processes

Adaptation of de Finetti’s control problem

When is U ∗ a refracted process?

• Since

U ∗
t = Xt − δ lim

n↑∞

∫ t

0

1
(U

(n)
s >b)

ds

we have that U ∗ is a refracted process as soon as one can prove
that Px (U ∗

s = b) = 0 for Lebesgue almost every s > 0.

• Do this by noting that for η, q > 0:

{U ∗
t = b} ⊆ {U (n)

t ∈ (b − η, b + η) e.v.}

R ∞
0

e−qtPx (U ∗
t = b)dt ≤

R ∞
0

e−qt lim infn Px (U
(n)
t ∈ (b − η, b + η))dtR ∞

0
e−qtPx (U ∗

t = b)dt

≤ lim supη↓0 lim infn
R ∞
0

e−qtPx (U
(n)
t ∈ (b − η, b + η))dt

• Amazingly this can be done because a expression for the resolvent
can be found semi-explicitly in terms of scale functions.



9/ 12

Refracted Lévy processes
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U ∗
t = Xt − δ lim

n↑∞

∫ t

0

1
(U

(n)
s >b)

ds

we have that U ∗ is a refracted process as soon as one can prove
that Px (U ∗

s = b) = 0 for Lebesgue almost every s > 0.

• Do this by noting that for η, q > 0:

{U ∗
t = b} ⊆ {U (n)

t ∈ (b − η, b + η) e.v.}R ∞
0

e−qtPx (U ∗
t = b)dt ≤

R ∞
0

e−qt lim infn Px (U
(n)
t ∈ (b − η, b + η))dtR ∞

0
e−qtPx (U ∗

t = b)dt

≤ lim supη↓0 lim infn
R ∞
0

e−qtPx (U
(n)
t ∈ (b − η, b + η))dt

• Amazingly this can be done because a expression for the resolvent
can be found semi-explicitly in terms of scale functions.
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Resolvent

• Suppose that X has paths of bounded variation and R(q)(x , ·) is the
resolvent measure of U under Px .

• For x , b ∈ R, Borel B and q > 0,

Ex

„Z ∞

0
e−qt1{Ut∈B}ds

«
=

Z
B∩[b,∞)

( „
eΦ(q)(x−b) + δΦ(q)e−Φ(q)b1{x≥b}

Z x

b
eΦ(q)z W(q)(x − z )dz

«

·
ϕ(q) − Φ(q)

δΦ(q)
e−ϕ(q)(y−b) − W(q)(x − y)

)
dy

+

Z
B∩(−∞,b)

( „
eΦ(q)(x−b) + δΦ(q)e−Φ(q)b1{x≥b}

Z x

b
eΦ(q)z W(q)(x − z )dz

«
·
ϕ(q) − Φ(q)

Φ(q)
eϕ(q)b

Z ∞

b
e−ϕ(q)zW (q)′(z − y)dz

−
„

W (q)(x − y) + δ1{x≥b}

Z x

b
W(q)(x − z )W (q)′(z − y)dz

« )
dy.
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Uniqueness

We have established existence of a strong solution for all driving
spectrally negative Lévy processes X .

Uniqueness: Suppose that U (1) and U (2) are two strong solutions.
Then writing

∆t = U (1)
t −U (2)

t = −δ
∫ t

0

(1{U (1)
s >b} − 1{U (2)

s >b})ds,

it follows from classical calculus that

∆2
t = −2δ

∫ t

0

∆s(1{U (1)
s >b} − 1{U (2)

s >b})ds.

Now note that thanks to the fact that 1{x>b} is an increasing
function, it follows from the above representation that, for all t ≥ 0,
∆2

t ≤ 0 and hence ∆t = 0 almost surely.
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Sample identities for U

Some nice identities fall out of this analysis. Suppose that

κ−0 := inf{t > 0 : Ut < 0}.

For q ≥ 0 and x ≥ 0

Ex

(∫ κ−0

0

e−qtδ1{Ut>b}ds

)

= −δ
∫ (x−b)∨0

0

W(q)(z )dz

+
W (q)(x ) + δ1{x≥b}

∫ x

b
W(q)(x − y)W (q)′(y)dy

ϕ(q)
∫∞
0

e−ϕ(q)yW (q)′(y + b)dy
.
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