# Self-similar Markov processes Problems

§Exercise Set 1

- 1. Suppose that *X* is a stable process in any dimension (including the case of a Brownian motion). Show that |X| is a positive self-similar Markov process.
- 2. Suppose that *B* is a one-dimensional Brownian motion. Prove that

$$\frac{B_t}{x}\mathbf{1}_{(\underline{B}_t>0)}, \qquad t\geq 0,$$

is a martingale, where  $B_t = \inf_{s < t} B_s$ .

- 3. Suppose that *X* is a stable process with two-sided jumps
  - Show that the range of the ascending ladder process H, say range (H) has the property that it is equal in law to  $c \times range(H)$ .
  - ▶ Hence show that, up to a multiplicative constant, the Laplace exponent of *H* satisfies  $k(\lambda) = \lambda^{\alpha_1}$  for  $\alpha_1 \in (0,1)$  (and hence the ascending ladder height process is a stable subordinator).
  - Use the fact that, up to a multiplicative constant

$$\Psi(z) = |\theta|^{\alpha} \left( e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)} \right) = \hat{\kappa}(iz) \kappa(-iz)$$

to deduce that

$$\kappa(\theta) = \theta^{\alpha\rho}$$
 and  $\hat{\kappa}(\theta) = \theta^{\alpha\hat{\rho}}$ .

and that  $0 < \alpha \rho, \alpha \hat{\rho} < 1$ 

What kind of process corresponds to the case that  $\alpha \rho = 1$ ?

- 4. Suppose that  $(X, P_x)$ , x > 0 is a positive self-similar Markov process and let  $\zeta = \inf\{t > 0 : X_t = 0\}$  be the lifetime of X. Show that  $P_x(\zeta < \infty)$  does not depend on X and is either X for all X > 0 or X for all X > 0.
- 5. Suppose that X is a symmetric stable process in dimension one (in particular  $\rho=1/2$ ) and that the underlying Lévy process for  $|X_t|\mathbf{1}_{\{t<\tau^{\{0\}}\}}$ , where  $\tau^{\{0\}}=\inf\{t>0:X_t=0\}$ , is written  $\xi$ . (Note the indicator is only needed when  $\alpha\in(1,2)$  as otherwise X does not hit the origin.) Show that (up to a multiplicative constant) its characteristic exponent is given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+1))}{\Gamma(\frac{1}{2}(iz+1-\alpha))}, \qquad z \in \mathbb{R}.$$

[Hint!] Think about what happens after X first crosses the origin and apply the Markov property as well as symmetry. You will need to use the law of the overshoot of X below the origin given a few slides back.

6. Use the previous exercise to deduce that the MAP exponent underlying a stable process with two sided jumps is given by

$$\left[ \begin{array}{ll} -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \\ \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{array} \right],$$

for  $\operatorname{Re}(z) \in (-1, \alpha)$ .

## **Exercises Set 2**

1. Use the fact that the radial part of a *d*-dimensional ( $d \ge 2$ ) isotropic stable process has MAP  $(\xi, \Theta)$ , for which the first component is a Lévy process with characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i}z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i}z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i}z + d))}{\Gamma(\frac{1}{2}(\mathrm{i}z + d - \alpha))}, \qquad z \in \mathbb{R}.$$

to deduce the following facts:

▶ Irrespective of its point of issue, we have  $\lim_{t\to\infty} |X_t| = \infty$  almost surely.

1. Use the fact that the radial part of a d-dimensional ( $d \ge 2$ ) isotropic stable process has MAP ( $\xi, \Theta$ ), for which the first component is a Lévy process with characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i}z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i}z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i}z + d))}{\Gamma(\frac{1}{2}(\mathrm{i}z + d - \alpha))}, \qquad z \in \mathbb{R}.$$

to deduce the following facts:

- ▶ Irrespective of its point of issue, we have  $\lim_{t\to\infty} |X_t| = \infty$  almost surely.
- ▶ By considering the roots of  $\Psi$  show that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale.

$$|X_t|^{\alpha-d}, \quad t \geq 0,$$

is a martingale.

2. Remaining in *d*-dimensions ( $d \ge 2$ ), recalling that

$$\frac{\mathrm{d}\mathbb{P}_{x}^{\circ}}{\mathrm{d}\mathbb{P}_{x}}\bigg|_{\mathcal{F}_{t}} = \frac{|X_{t}|^{\alpha - d}}{|x|^{\alpha - d}}, \qquad t \ge 0, x \ne 0,$$

show that under  $\mathbb{P}^{\circ}$ , X is absorbed continuously at the origin in an almost surely finite time.



#### 3. Recall the following theorem

#### Theorem

Define the function

$$g(x,y) = \pi^{-(d/2+1)} \Gamma(d/2) \sin(\pi\alpha/2) \frac{|1 - |x|^2|^{\alpha/2}}{|1 - |y|^2|^{\alpha/2}} |x - y|^{-d}$$

for  $x, y \in \mathbb{R}^d \backslash \mathbb{S}_{d-1}$ . Let

$$\tau^{\oplus} := \inf\{t > 0 : |X_t| < 1\} \text{ and } \tau_a^{\ominus} := \inf\{t > 0 : |X_t| > 1\}.$$

(i) Suppose that |x| < 1, then

$$\mathbb{P}_x(X_{\tau\ominus} \in dy) = g(x, y)dy, \qquad |y| \ge 1.$$

(ii) Suppose that |x| > 1, then

$$\mathbb{P}_x(X_{\tau^{\oplus}} \in \mathrm{d}y, \, \tau^{\oplus} < \infty) = g(x, y)\mathrm{d}y, \qquad |y| \le 1.$$