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Abstract Given a Lévy process ξ , we find necessary and sufficient conditions for
almost sure finiteness of the perpetual integral

∫ ∞
0 f (ξs)ds, where f is a positive

locally integrable function. If μ = E[ξ1] ∈ (0,∞) and ξ has local times we prove the
0–1 law

P

( ∫ ∞

0
f (ξs) ds < ∞

)
∈ {0, 1}

with the exact characterization

P

( ∫ ∞

0
f (ξs) ds < ∞

)
= 0 ⇐⇒

∫ ∞
f (x) dx = ∞.

The proof uses spatially stationary Lévy processes, local time calculations, Jeulin’s
lemma and the Hewitt–Savage 0–1 law.
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Main Result

The study of perpetual integrals
∫

f (Xs)ds with finite or infinite horizon for diffusion
processes X has a long history partially because of their use in the analysis of stochastic
differential equations and insurance, financial mathematics as the present value of a
continuous stream of perpetuities.

The main result of the present article is a characterization of finiteness for perpetual
integrals of Lévy processes:

Theorem 1 Suppose that ξ is a Lévy process that has strictly positive mean μ < ∞,
local times and is not a compound Poisson process. If f is a measurable locally
integrable positive function, then the following 0–1 law holds:

P

( ∫ ∞

0
f (ξs) ds < ∞

)
= 1 ⇐⇒

∫ ∞
f (x) dx < ∞ (T1)

and

P

( ∫ ∞

0
f (ξs) ds < ∞

)
= 0 ⇐⇒

∫ ∞
f (x) dx = ∞. (T2)

Let us briefly compare the theorem with the existing literature:

(i) If ξ is a Brownian motion with positive drift, then results were obtained through
the Ray-Knight theorem, Jeulin’s lemma and Khashminkii’s lemma by Salminen
and Yor [10,11].

(ii) For spectrally negative ξ , i.e., ξ only jumps downwards, the equivalence was
obtained in Khoshnevisan et al. [11], see also Example 3.9 of Schilling and
Voncracek [8]. The spectrally negative case also turns out to be easier in our
proof.

(iii) If f is (ultimately) decreasing, results for general Lévy processes have been
proved in Erickson and Maller [5]. In this case, the result stated in Theorem 1
follows easily from the law of large numbers by estimating 2μt > ξt > 1

2μt for
t big enough. The very same argument also shows that for μ = +∞ the integral
test (T) fails in general.

Remark 2 It is not clearwhether or not the assumption that ξ has local time is necessary
for (T) to hold. For (ultimately) decreasing f , the existence of local time is clearly not
needed, whereas we have no conjecture for general f .

Proof of Theorem 1

Before going into the proof, let us fix some notation and facts that will be needed later
on. For additional background on the theory of Lévy processes, we refer for instance
to [1] or [7]. The law of ξ issued from x ∈ R will be denoted by P

x , abbreviating
P = P

0, and the characteristic exponent is defined as

�(λ) := − logE
[
exp(iλξ1)

]
, λ ∈ R.
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We recall from Theorem V.1 of [1] that ξ has local times
(
Lt (x)

)
t≥0,x∈R if and only

if

∫ ∞

−∞
R

(
1

1 + �(r)

)

dr < ∞. (1)

This means that, for any bounded measurable function f : R → [0,∞), the occupa-
tion time formula

∫ t

0
f (ξs) ds =

∫

R

f (x)Lt (x) dx, t ≥ 0,

holds almost surely. An additional consequence of (1) is that points are non-polar.
More precisely, a Theorem of Kesten and Bretagnolle states that P(τx < ∞) > 0
for all x > 0, where τx = inf{t : ξt = x}. See for instance Theorem 7.12 of [7].
Our assumption of a finite and strictly positive mean implies that ξ is transient, hence,
∫ ε

−ε
R( 1

ψ(r)
) dr < ∞ and, consequently, (1) implies

∫ ∞
−∞ R

(
1

�(r)

)
dr < ∞. In that

case, Theorem II.16 of [1] implies that the potential measure

U (dx) =
∫ ∞

0
P
(
ξs ∈ dx

)
ds

has a bounded density u(x) with respect to the Lebesgue measure.
We start with the easy direction of Theorem 1:

Proof of Theorem 1, Sufficiency of Integral Test Suppose that
∫
R

f (x)dx < ∞. It fol-
lows from the assumption μ ∈ (0,∞) that ξ is transient. Since ξ is furthermore
assumed to have a local time we can use the existence and boundedness of the poten-
tial density to obtain

E

[ ∫ ∞

0
f (ξs) ds

]
=

∫

R

f (x)

∫ ∞

0
P(ξs ∈ dx) ds

=
∫

R

f (x)u(x) dx ≤ sup
x∈R

u(x)

∫

R

f (x) dx < ∞.

Finiteness of the expectation implies almost sure finiteness of
∫ ∞
0 f (ξs) ds, thus, the

sufficiency of the integral test for almost sure finiteness of the perpetual integral is
proved. 	


For the reverse direction, we use Jeulin’s lemma, here is a simple version:

Lemma 3 Suppose (Xx )x∈R are non-negative, non-trivial and identically distributed
random variables on some probability space (�,F , P). Then

P
( ∫

R

f (x)Xx dx < ∞
)

= 1 �⇒
∫

R

f (x) dx < ∞.
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Proof Since Xx are identically distributed, we may choose ε > 0 so that P(Xx >

ε) = δ > 0, for all x ∈ R. Since
∫
R

f (x)Xx dx is almost surely finite, there is some
r > 0 so that P(Ar ) > 1 − δ/2 with Ar = {∫

R
f (x)Xx dx < r}. Hence, we have

E
[
Xx1Ar

] ≥ εP({Xx > ε} ∩ Ar ) > εδ/2 > 0.

But then this implies that

r ≥ r P(Ar ) ≥ E
[ ∫

R

f (x)Xx dx 1Ar

]
=

∫

R

f (x)E[Xx1Ar ] dx ≥ εδ/2
∫

R

f (x) dx .

The proof is now complete. 	

Note that there are different versions of Jeulin’s lemma (see for instance [9]). Most

commonly, Jeulin’s lemma is stated with the assumption that P(
∫
R

f (x)Xx dx <

∞) > 0 with some additional assumptions on the variables (Xx )x∈R. Those extra
assumptions on (Xx )x∈R are not satisfied in our setting, but we will employ a 0–1 law
that allows us to work with P(

∫
R

f (x)Xx dx < ∞) = 1.
We would like to apply Jeulin’s lemma via the occupation time formula

∫ ∞

0
f (ξs) ds = lim

t↑∞

∫ t

0
f (ξs) ds = lim

t↑∞

∫ ∞

0
f (x)Lt (x) dx =

∫ ∞

0
f (x)L∞(x) dx

with L∞(x) := limt↑∞ Lt (x) playing the role of Xx , x ∈ R. However, this is not quite
in the right format as the distribution of L∞(x) depends on x . An exception to this is
when ξ is spectrally negative, in which case the laws L∞(x) are independent of x by
the strongMarkov property. Tomake this ideawork in the general framework, wework
with a randomized point of issue for ξ instead. We chose a particularly convenient
initial distribution motivated by a result from fluctuation theory (see Lemma 3 of [2]).
Our assumption E[ξ1] < ∞ implies that

P
(
ξTz − z ∈ dy

) z→∞�⇒ ρ(dy), (2)

where Tz = inf{t ≥ 0 : ξt ≥ z} and the existence of the non-degenerate weak limit ρ,
called the stationary overshoot distribution, is a classical result coming from renewal
theory. As a stationary overshoot, ρ has the property that

P
ρ
(
ξTa − a ∈ dy

) :=
∫

P
x(ξTa − a ∈ dy

)
ρ(dx) = ρ(dy), ∀a > 0,

and hence spatial stationarity holds due to the strong Markov property; i.e., under Pρ ,

(ξ
(a)
t )t≥0 := (ξTa+t − a)t≥0 (3)

has law P
ρ for all a > 0. The stationarity property (3) will be the key to applying

Jeulin’s lemma.
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Lemma 4 For any x > 0 we have

P
ρ(L∞(x) ∈ dy) = P

ρ(L∞(1) ∈ dy).

Proof First note that Pρ(Tx < ∞) = 1 for all x > 0 and L ·(x) only starts to increase
at some time at or after Tx . We therefore have that

P
ρ(L∞(x) ∈ dy) =

∫ ∞

0
P

z(L∞(x) ∈ dy)Pρ(ξTx ∈ dz)

=
∫ ∞

0
P

z+x (L∞(x) ∈ dy)Pρ(ξTx − x ∈ dz)

=
∫ ∞

0
P

z+x (L∞(x) ∈ dy)ρ(dz)

=
∫ ∞

0
P

z(L∞(0) ∈ dy)ρ(dz),

where we have used the strong Markov property, the spatial stationarity of Pρ and
spatial homogeneity of ξ . Since the righthand side is independent of x the proof is
complete. 	


Next, we use the Hewitt–Savage 0–1 law (see [4]) in order to implement our weaker
version of Jeulin’s lemma. If X0, X1, ... denotes a sequence of random variables
taking values in some measurable space, then an event A ∈ σ(X0, X1, ...) is called
exchangeable if it is invariant under finite permutations (i.e., only finitelymany indices
are changed) of the sequence X0, X1, .... The Hewitt–Savage 0–1 law states that any
exchangeable event of an iid sequence has probability 0 or 1.

Lemma 5 If f is a measurable locally integrable positive function, then P
( ∫ ∞

0 f (ξs)

ds < ∞) ∈ {0, 1}.
Proof The idea of the proof is to write � := {∫ ∞

0 f (ξs)ds < ∞} as an exchangeable
eventwith respect to the iid increments of ξ on intervals [n, n+1] so thatP(�) ∈ {0, 1}.
LetD denote the RCLL functions w : [0, 1] → R. If ξ is the given Lévy process, then
define the increment processes as

(ξn
t )t∈[0,1] = (ξn+t − ξn)t∈[0,1].

The Lévy property implies that the sequence ξ0, ξ1, ... is iid on D. Furthermore, note
that ξ can be reconstructed from the ξn through

ξr = ξn
r−n +

n−1∑

i=0

ξ i
1 ∀r ∈ [n, n + 1).

Using that g1 : (wt )t∈[0,1) �→ (w1)t∈[0,1), g2 : (w,w′)t∈[0,1) �→ (wt + w′
t )t∈[0,1)

and g3 : (wt )t∈[0,1) �→ ∫ 1
0 f (ws)ds are measurable mappings, we have that there are

measurable mappings gn : Dn → R satisfying
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∫ 1

0
f
(
ξn

r +
n−1∑

i=0

ξ i
1

)
dr = gn(ξ0, ..., ξn).

As a consequence, we find that

{ ∫ ∞

0
f (ξs) ds < ∞

}
=

{ ∞∑

n=0

∫ n+1

n
f (ξs) ds < ∞

}

=
{ ∞∑

n=0

∫ 1

0
f
(
ξn

r +
n−1∑

i=0

ξ i
1

)
dr < ∞

}

=
{ ∞∑

n=0

gn(ξ0, ..., ξn) < ∞
}

∈ σ(ξ0, ξ1, ...).

Since clearly � is exchangeable for ξ0, ξ1, ... the Hewitt–Savage 0–1 law implies the
claim. 	

Lemma 6 Suppose P(

∫ ∞
0 f (ξs)ds < ∞) = 1, then P

ρ(
∫ ∞
0 f (ξs)ds < ∞) = 1.

Proof The statement is obvious if ξ is a subordinator, so we assume this is not the
case.

Next we show that Px (
∫ ∞
0 f (ξs)ds < ∞) = 1 for any x > 0. To see this, we

use the strong Markov property at τ0 = inf{t : ξt = 0} which is finite with positive
probability since points in R are non-polar:

P
x
( ∫ ∞

0
f (ξs) ds < ∞

)
≥ P

x
( ∫ ∞

τ0

f (ξs) ds < ∞, τ0 < ∞
)

= P
x
( ∫ ∞

0
f (ξs+τ0 − ξτ0) ds < ∞, τ0 < ∞

)

= P
0
( ∫ ∞

0
f (ξs) ds < ∞

)
P

x (τ0 < ∞)

> 0.

But then the 0–1 law of Lemma 5 implies that Px
( ∫ ∞

0 f (ξs) ds < ∞
)

= 1. Finally,

we obtain

P
ρ
( ∫ ∞

0
f (ξs) ds < ∞

)
=

∫

R

P
x
( ∫ ∞

0
f (ξs) ds < ∞

)
ρ(dx) =

∫

R

ρ(dx) = 1

and the proof is complete. 	

Now we are ready to prove the more delicate part of Theorem 1.
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Proof of Theorem 1, Necessity of Integral Test Suppose P(
∫ ∞
0 f (ξs) ds < ∞) >

0, which then implies P(
∫ ∞
0 f (ξs) ds < ∞) = 1 by Lemma 5 and hence,

P
ρ(

∫ ∞
0 f (ξs) ds < ∞) = 1 by Lemma 6. Using the occupation time formula, we

get

∫ ∞

0
f (ξs) ds = lim

t→∞

∫ t

0
f (ξs) ds

= lim
t→∞

∫

R

f (x)Lt (x) dx =
∫

R

f (x)L∞(x) dx P
ρ-a.s.

In Lemma 4, we proved that L∞(x) is independent of x under Pρ so that Jeulin’s
Lemma implies

∫
R

f (x)dx < ∞. 	

Acknowledgments The authors thank Jean Bertoin for several discussions on the topic and suggesting the
use of the Hewitt–Savage 0–1 law. The careful reading and comments of an anonymous referee are warmly
acknowledged.

References

1. Bertoin, J.: “Lévy processes.” Cambridge Tracts in Mathematics 121. Cambridge University Press,
Cambridge (1996)

2. Bertoin, J., Savov,M.: Some applications of duality for Lévy processes in a half-line. Bull. Lond.Math.
Soc. 43, 97–110 (2011)

3. Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding.
Scand. Actuar. J. 1–2 39–79, (1990)

4. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–
501 (1955)

5. Erickson, K., Maller, R.: Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy
integrals. In: Morel, J-M., Takens, F., Teissier, B. (eds.) Séminaire de Probabilités XXXVIII, pp.
70–94. Springer, Germany (2005)

6. Khoshnevisan, D., Salminen, P., Yor, M.: A note on as finiteness of perpetual integral functionals of
diffusions. Electr. Comm. Probab. 11, 108–117 (2006)

7. Kyprianou, A.: Fluctuations of Lévy Processes with Applications. Springer, Berlin (2013)
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