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Analytical properties of scale functions for spectrally negative Lévy processes

Scale functions

Spectrally negative Lévy processes and scale functions

Suppose that X = {Xt : t ≥ 0} is a general spectrally negative Lévy
process.

Use Px to denote the law of X when X0 = x > 0 with associated
expectation operator Ex .

Let us define the Laplace exponent ψ on [0,∞) by

E0(e
βXt ) = eψ(β)t .

Then for q ≥ 0 we may define the q-scale function W (q) : R → [0,∞) by
W (q)(x) = 0 for x < 0 and on (0,∞) it is the unique right continuous
function such that for β > Φ(q)Z ∞

0

e−βxW (q)(x)dx =
1

ψ(β)− q
.

Notation! W := W (q).

Note, formally we need to prove that scale functions exist - they do!
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Scale functions

Why are scale functions important?

They appear in virtually all fluctuation identities for spectrally negative
Lévy processes.

For example, resolvent in a strip: for any a > 0, x , y ∈ [0, a], q ≥ 0Z ∞

0

e−qtPx (Xt ∈ dy , t < τ+
a ∧ τ−0 )dt

=


W (q)(x)W (q)(a − y)

W (q)(a)
−W (q)(x − y)

ff
dy .

where

τ+
a = inf{t > 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0}.

Or another example is: for a > 0, x ∈ [0, a],

Ex (e−qτ−0 1{τ−0 <τ
+
a }) = Z (q)(x)−W (q)(x)

Z (q)(a)

W (q)(a)

where

Z (q)(x) = 1 + q

Z x

0

W (q)(y)dy .
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Scale functions

Why are scale functions important?

They appear in virtually all fluctuation identities for spectrally negative
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Scale functions

A ‘basis’ of fundamental solutions to the ‘generator equation’

It is not difficult to check that for t ≥ 0 and a ∈ (0,∞]

e−q(t∧τ−0 ∧τ+
a )W (q)(X

t∧τ−0 ∧τ+
a

) and e−q(t∧τ−0 ∧τ+
a )Z (q)(X

t∧τ−0 ∧τ+
a

)

are martingales.

Suppose that Γ is the infinitessimal generator of X . Then another way of
expressing these martingale properties is by writing (in a loose sense)

(Γ− q)W (q)(x) = 0 and (Γ− q)Z (q)(x) = 0

on (0, a)

As many known fluctuation identites turn out to be linear combinations of
W (q) and Z (q), this suggest that potentially a small ‘theory’ would be
possible in which these functions play the role of a fundamental basis of
solutions to the equation

(Γ− q)u(x) = 0 on (0, a).

Before even pursuing that objective, one needs to ask whether
(Γ− q)W (q)(x) makes sense mathematically.
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Scale functions

How smooth is W (q)? Where to start looking?

Enough to answer the question for q = 0 and E(X1) = ψ′(0+) ≥ 0 as all
other cases can be reduced to this case via the relation

W (q)(x) = eΦ(q)xWΦ(q)(x)

where WΦ(q) plays the role of W after an exponential change of measure
under which X drifts to +∞.

Two key theories that will help analyse the issue of smoothness:

Excursion theory
Renewal theory
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Scale functions

How smooth is W (q)? Where to start looking?

Enough to answer the question for q = 0 and E(X1) = ψ′(0+) ≥ 0 as all
other cases can be reduced to this case via the relation

W (q)(x) = eΦ(q)xWΦ(q)(x)

where WΦ(q) plays the role of W after an exponential change of measure
under which X drifts to +∞.

Two key theories that will help analyse the issue of smoothness:

Excursion theory
Renewal theory



5/ 11

Analytical properties of scale functions for spectrally negative Lévy processes
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Scale functions

The connection with excursion theory

It is known that

W (x) = W (a) exp


−

Z a

x

ν(ε > t)dt

ff
where ν(·) is the intensity measure associated with the Poisson point
process of excursions and ε is the canonical excursion and ε is its
maximum value.

Hence
W ′(x+)−W ′(x−) = ν(ε = x)

(which immediately implies that for unbounded variation processes
W ∈ C 1(0,∞)).
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Scale functions

The connection with excursion theory

For processes with bounded variation paths (then necessarily Xt = δt − St

where δ > 0 and S is a driftless subordinator):

ν(ε > t) =
1

δ
Π(−∞,−t) +

1

δ

Z
[−t,0]

Π(dz )

„
1− W (t + z )

W (t)

«
showing W ∈ C 1(0,∞) ⇔ Π has no atoms.

In the presence of a Gaussian component (σ 6= 0):

ν(ε passes x continuously) =
σ2

2

„
W ′(x)2

W (x)
−W ′′(x)

«
showing that W ∈ C 2(0,∞).
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Scale functions

The connection with renewal theory

An important observation which helps us understand what kind of answer
we might expect comes from the Wiener-Hopf factorization:

ψ(β) = βφ(β)

where φ is the Laplace exponent of the descending ladder height process
and hence an integration by parts givesZ

[0,∞)

e−βxW (dx) =
1

φ(β)
.

This means that W can be seen as the renewal function of a (killed)
subordinator, say H , which has Laplace exponent φ, from which it can be
calculated that its jump measure is given by Π(−∞,−x)dx , its drift is
given σ2/2 and its killing rate E(X1) > 0. Here, renewal function means

W (dx) =

Z ∞

0

P(Ht ∈ dx)dt .
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Scale functions

The connection with renewal theory

Then appealing to the formula

1 = P(H
τ+
x

= x) + P(H
τ+
x
> x)

using Kesten’s classical result for the probability of continuous crossing for
a subordinator and Kesten-Horowitz-Bertoin formula for overshoots of
subordinators one derrives that

1 =
σ2

2
W ′(x) +

Z x

0

W ′(x − y){Π(y) + E(X1)}dy

where Π(x) =
R ∞
x

Π(−∞,−y)dy .

This can be seen as a renewal equation of the form f = 1 + f ∗ g for
appropriate f and g . But only when σ 6= 0, otherwise it takes the form
f = f ∗ g .

When X has bounded variation paths (Xt = δt − St) it a direct inverse of
the Laplace transform for W also gives us

δW (x) = 1 +

Z x

0

W (x − y)Π(−∞,−y)dy

which is again a renewal function of the form f = 1 + f ∗ g .
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When X has bounded variation paths (Xt = δt − St) it a direct inverse of
the Laplace transform for W also gives us

δW (x) = 1 +

Z x

0

W (x − y)Π(−∞,−y)dy

which is again a renewal function of the form f = 1 + f ∗ g .
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Some more results

Suppose that σ 6= 0 and

inf{β ≥ 0 :

Z
|x |<1

|x |βΠ(dx) <∞} ∈ [0, 2).

Then for k = 0, 1, 2, · · · W ∈ C k+3(0,∞) if and only if Π ∈ C k (0,∞).

Suppose that X has paths of bounded variation and −Π has a derivative π
such that π(x) ≤ Cx−1−α in the neighbourhood of the origin for some
α < 1 and C > 0. Then for k = 0, 1, 2, · · · W ∈ C k+3(0,∞) if and only
if Π ∈ C k (0,∞).
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Doney’s conjecture for scale functions

For k = 0, 1, 2, · · ·

If σ 6= 0 (X has a Gaussian component) then

W ∈ C k+3(0,∞) ⇔ Π ∈ C k (0,∞)

If σ = 0 and
R
(−1,0)

|x |Π(dx) = ∞ then

W ∈ C k+2(0,∞) ⇔ Π ∈ C k (0,∞)

If σ = 0 and
R
(−1,0)

|x |Π(dx) <∞ then

W ∈ C k+1(0,∞) ⇔ Π ∈ C k (0,∞)
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