Andreas E. Kyprianou¹

Department of Mathematical Sciences, University of Bath

¹Joint work with Terence Chan and Mladen Savov

Analytical properties of scale functions for spectrally negative Lévy processes

Spectrally negative Lévy processes and scale functions

Suppose that $X = \{X_t : t \ge 0\}$ is a general spectrally negative Lévy process.

Analytical properties of scale functions for spectrally negative Lévy processes

Spectrally negative Lévy processes and scale functions

Suppose that $X = \{X_t : t \ge 0\}$ is a general spectrally negative Lévy process.

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

• Use \mathbb{P}_x to denote the law of X when $X_0 = x > 0$ with associated expectation operator \mathbb{E}_x .

Analytical properties of scale functions for spectrally negative Lévy processes

Spectrally negative Lévy processes and scale functions

- Suppose that $X = \{X_t : t \ge 0\}$ is a general spectrally negative Lévy process.
- Use \mathbb{P}_x to denote the law of X when $X_0 = x > 0$ with associated expectation operator \mathbb{E}_x .
- \blacksquare Let us define the Laplace exponent ψ on $[0,\infty)$ by

$$\mathbb{E}_0(e^{\beta X_t}) = e^{\psi(\beta)t}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

Analytical properties of scale functions for spectrally negative Lévy processes

Spectrally negative Lévy processes and scale functions

- Suppose that $X = \{X_t : t \ge 0\}$ is a general spectrally negative Lévy process.
- Use \mathbb{P}_x to denote the law of X when $X_0 = x > 0$ with associated expectation operator \mathbb{E}_x .
- \blacksquare Let us define the Laplace exponent ψ on $[0,\infty)$ by

$$\mathbb{E}_0(e^{\beta X_t}) = e^{\psi(\beta)t}.$$

Then for $q \ge 0$ we may define the *q*-scale function $W^{(q)} : \mathbb{R} \to [0,\infty)$ by $W^{(q)}(x) = 0$ for x < 0 and on $(0,\infty)$ it is the unique right continuous function such that for $\beta > \Phi(q)$

$$\int_0^\infty e^{-\beta x} W^{(q)}(x) dx = \frac{1}{\psi(\beta) - q}$$

2/11

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りのぐ

Analytical properties of scale functions for spectrally negative Lévy processes

Spectrally negative Lévy processes and scale functions

- Suppose that $X = \{X_t : t \ge 0\}$ is a general spectrally negative Lévy process.
- Use \mathbb{P}_x to denote the law of X when $X_0 = x > 0$ with associated expectation operator \mathbb{E}_x .
- \blacksquare Let us define the Laplace exponent ψ on $[0,\infty)$ by

$$\mathbb{E}_0(e^{\beta X_t}) = e^{\psi(\beta)t}.$$

Then for $q \ge 0$ we may define the *q*-scale function $W^{(q)} : \mathbb{R} \to [0,\infty)$ by $W^{(q)}(x) = 0$ for x < 0 and on $(0,\infty)$ it is the unique right continuous function such that for $\beta > \Phi(q)$

$$\int_0^\infty e^{-\beta x} W^{(q)}(x) dx = \frac{1}{\psi(\beta) - q}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• Notation! $W := W^{(q)}$.

Analytical properties of scale functions for spectrally negative Lévy processes

Spectrally negative Lévy processes and scale functions

- Suppose that $X = \{X_t : t \ge 0\}$ is a general spectrally negative Lévy process.
- Use \mathbb{P}_x to denote the law of X when $X_0 = x > 0$ with associated expectation operator \mathbb{E}_x .
- \blacksquare Let us define the Laplace exponent ψ on $[0,\infty)$ by

$$\mathbb{E}_0(e^{\beta X_t}) = e^{\psi(\beta)t}.$$

Then for $q \ge 0$ we may define the *q*-scale function $W^{(q)} : \mathbb{R} \to [0,\infty)$ by $W^{(q)}(x) = 0$ for x < 0 and on $(0,\infty)$ it is the unique right continuous function such that for $\beta > \Phi(q)$

$$\int_0^\infty e^{-\beta x} W^{(q)}(x) dx = \frac{1}{\psi(\beta) - q}$$

- Notation! $W := W^{(q)}$.
- Note, formally we need to prove that scale functions exist they do!

2/11 ペロト 4 同 ト 4 ヨ ト - ヨ - ののの

Scale functions

Why are scale functions important?

 They appear in virtually all fluctuation identities for spectrally negative Lévy processes.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Analytical properties of scale functions for spectrally negative Lévy processes

Why are scale functions important?

- They appear in virtually all fluctuation identities for spectrally negative Lévy processes.
- For example, resolvent in a strip: for any a > 0, $x, y \in [0, a]$, $q \ge 0$

$$\int_0^\infty e^{-qt} \mathbb{P}_x(X_t \in dy, \ t < \tau_a^+ \land \tau_0^-) dt$$
$$= \left\{ \frac{W^{(q)}(x) W^{(q)}(a-y)}{W^{(q)}(a)} - W^{(q)}(x-y) \right\} dy.$$

where

$$\tau_a^+ = \inf\{t > 0 : X_t > a\}$$
 and $\tau_0^- = \inf\{t > 0 : X_t < 0\}.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

Analytical properties of scale functions for spectrally negative Lévy processes

Why are scale functions important?

- They appear in virtually all fluctuation identities for spectrally negative Lévy processes.
- For example, resolvent in a strip: for any a > 0, $x, y \in [0, a]$, $q \ge 0$

$$\int_0^\infty e^{-qt} \mathbb{P}_x(X_t \in dy, \ t < \tau_a^+ \wedge \tau_0^-) dt$$
$$= \left\{ \frac{W^{(q)}(x) W^{(q)}(a-y)}{W^{(q)}(a)} - W^{(q)}(x-y) \right\} dy.$$

where

$$\tau_a^+ = \inf\{t > 0 : X_t > a\} \text{ and } \tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

• Or another example is: for a > 0, $x \in [0, a]$,

$$\mathbb{E}_{x}(e^{-q\tau_{0}^{-}}\mathbf{1}_{\{\tau_{0}^{-}<\tau_{a}^{+}\}}) = Z^{(q)}(x) - W^{(q)}(x)\frac{Z^{(q)}(a)}{W^{(q)}(a)}$$

where

$$Z^{(q)}(x) = 1 + q \int_0^x W^{(q)}(y) dy.$$

A 'basis' of fundamental solutions to the 'generator equation'

A 'basis' of fundamental solutions to the 'generator equation'

It is not difficult to check that for $t \ge 0$ and $a \in (0,\infty]$

$$e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}W^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+}) \text{ and } e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}Z^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+})$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

are martingales.

A 'basis' of fundamental solutions to the 'generator equation'

It is not difficult to check that for $t \geq 0$ and $a \in (0,\infty]$

$$e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}W^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+}) \text{ and } e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}Z^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+})$$

are martingales.

Suppose that Γ is the infinitessimal generator of X. Then another way of expressing these martingale properties is by writing (in a loose sense)

$$(\Gamma - q) W^{(q)}(x) = 0$$
 and $(\Gamma - q) Z^{(q)}(x) = 0$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

on (0, a)

A 'basis' of fundamental solutions to the 'generator equation'

It is not difficult to check that for $t \geq 0$ and $a \in (0,\infty]$

$$e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}W^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+}) \text{ and } e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}Z^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+})$$

are martingales.

Suppose that Γ is the infinitessimal generator of X. Then another way of expressing these martingale properties is by writing (in a loose sense)

$$(\Gamma - q) W^{(q)}(x) = 0$$
 and $(\Gamma - q) Z^{(q)}(x) = 0$

on (0, a)

• As many known fluctuation identites turn out to be linear combinations of $W^{(q)}$ and $Z^{(q)}$, this suggest that potentially a small 'theory' would be possible in which these functions play the role of a fundamental basis of solutions to the equation

$$(\Gamma - q)u(x) = 0 \text{ on } (0, a).$$

11 / 11

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A 'basis' of fundamental solutions to the 'generator equation'

It is not difficult to check that for $t \ge 0$ and $a \in (0,\infty]$

$$e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}W^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+}) \text{ and } e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}Z^{(q)}(X_{t\wedge\tau_0^-\wedge\tau_a^+})$$

are martingales.

Suppose that Γ is the infinitessimal generator of X. Then another way of expressing these martingale properties is by writing (in a loose sense)

$$(\Gamma - q) W^{(q)}(x) = 0$$
 and $(\Gamma - q) Z^{(q)}(x) = 0$

on (0, a)

• As many known fluctuation identites turn out to be linear combinations of $W^{(q)}$ and $Z^{(q)}$, this suggest that potentially a small 'theory' would be possible in which these functions play the role of a fundamental basis of solutions to the equation

$$(\Gamma - q)u(x) = 0 \text{ on } (0, a).$$

Before even pursuing that objective, one needs to ask whether $(\Gamma - q) W^{(q)}(x)$ makes sense mathematically.

How smooth is $W^{(q)}$? Where to start looking?

-Scale functions

How smooth is $W^{(q)}$? Where to start looking?

• Enough to answer the question for q = 0 and $\mathbb{E}(X_1) = \psi'(0+) \ge 0$ as all other cases can be reduced to this case via the relation

$$W^{(q)}(x) = e^{\Phi(q)x} W_{\Phi(q)}(x)$$

where $W_{\Phi(q)}$ plays the role of W after an exponential change of measure under which X drifts to $+\infty$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

-Scale functions

How smooth is $W^{(q)}$? Where to start looking?

• Enough to answer the question for q = 0 and $\mathbb{E}(X_1) = \psi'(0+) \ge 0$ as all other cases can be reduced to this case via the relation

$$W^{(q)}(x) = e^{\Phi(q)x} W_{\Phi(q)}(x)$$

where $W_{\Phi(q)}$ plays the role of W after an exponential change of measure under which X drifts to $+\infty$.

Two key theories that will help analyse the issue of smoothness:

Scale functions

How smooth is $W^{(q)}$? Where to start looking?

• Enough to answer the question for q = 0 and $\mathbb{E}(X_1) = \psi'(0+) \ge 0$ as all other cases can be reduced to this case via the relation

$$W^{(q)}(x) = e^{\Phi(q)x} W_{\Phi(q)}(x)$$

where $W_{\Phi(q)}$ plays the role of W after an exponential change of measure under which X drifts to $+\infty$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- Two key theories that will help analyse the issue of smoothness:
 - Excursion theory

Scale functions

How smooth is $W^{(q)}$? Where to start looking?

• Enough to answer the question for q = 0 and $\mathbb{E}(X_1) = \psi'(0+) \ge 0$ as all other cases can be reduced to this case via the relation

$$W^{(q)}(x) = e^{\Phi(q)x} W_{\Phi(q)}(x)$$

where $W_{\Phi(q)}$ plays the role of W after an exponential change of measure under which X drifts to $+\infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- Two key theories that will help analyse the issue of smoothness:
 - Excursion theory
 - Renewal theory

The connection with excursion theory

The connection with excursion theory

It is known that

$$W(x) = W(a) \exp\left\{-\int_{x}^{a} \nu(\overline{\epsilon} > t) dt\right\}$$

where $\nu(\cdot)$ is the intensity measure associated with the Poisson point process of excursions and ϵ is the canonical excursion and $\overline{\epsilon}$ is its maximum value.

The connection with excursion theory

It is known that

$$W(x) = W(a) \exp\left\{-\int_{x}^{a} \nu(\overline{\epsilon} > t) dt\right\}$$

where $\nu(\cdot)$ is the intensity measure associated with the Poisson point process of excursions and ϵ is the canonical excursion and $\overline{\epsilon}$ is its maximum value.

Hence

$$W'(x+) - W'(x-) = \nu(\overline{\epsilon} = x)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

(which immediately implies that for unbounded variation processes $W \in C^1(0,\infty)$).

The connection with excursion theory

Scale functions

The connection with excursion theory

For processes with bounded variation paths (then necessarily $X_t = \delta t - S_t$ where $\delta > 0$ and S is a driftless subordinator):

$$\nu(\overline{\epsilon} > t) = \frac{1}{\delta} \Pi(-\infty, -t) + \frac{1}{\delta} \int_{[-t,0]} \Pi(dz) \left(1 - \frac{W(t+z)}{W(t)}\right)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

showing $W \in C^1(0,\infty) \Leftrightarrow \Pi$ has no atoms.

Scale functions

The connection with excursion theory

For processes with bounded variation paths (then necessarily $X_t = \delta t - S_t$ where $\delta > 0$ and S is a driftless subordinator):

$$\nu(\overline{\epsilon} > t) = \frac{1}{\delta} \Pi(-\infty, -t) + \frac{1}{\delta} \int_{[-t,0]} \Pi(dz) \left(1 - \frac{W(t+z)}{W(t)}\right)$$

showing $W \in C^1(0,\infty) \Leftrightarrow \Pi$ has no atoms.

In the presence of a Gaussian component ($\sigma \neq 0$):

$$\nu(\epsilon \text{ passes } x \text{ continuously}) = \frac{\sigma^2}{2} \left(\frac{W'(x)^2}{W(x)} - W''(x) \right)$$

*ロト * 母 ト * ヨ ト * ヨ ト * 日 * シ へ の

showing that $W \in C^2(0,\infty)$.

The connection with renewal theory

Scale functions

The connection with renewal theory

An important observation which helps us understand what kind of answer we might expect comes from the Wiener-Hopf factorization:

$$\psi(\beta) = \beta \phi(\beta)$$

where ϕ is the Laplace exponent of the descending ladder height process and hence an integration by parts gives

$$\int_{[0,\infty)} e^{-\beta x} W(dx) = \frac{1}{\phi(\beta)}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Scale functions

The connection with renewal theory

An important observation which helps us understand what kind of answer we might expect comes from the Wiener-Hopf factorization:

$$\psi(\beta) = \beta \phi(\beta)$$

where ϕ is the Laplace exponent of the descending ladder height process and hence an integration by parts gives

$$\int_{[0,\infty)} e^{-\beta x} W(dx) = \frac{1}{\phi(\beta)}.$$

This means that W can be seen as the renewal function of a (killed) subordinator, say H, which has Laplace exponent ϕ , from which it can be calculated that its jump measure is given by $\Pi(-\infty, -x)dx$, its drift is given $\sigma^2/2$ and its killing rate $\mathbb{E}(X_1) > 0$. Here, renewal function means

$$W(dx) = \int_0^\infty \mathbb{P}(H_t \in dx) dt$$

3/11

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

The connection with renewal theory

Scale functions

The connection with renewal theory

Then appealing to the formula

$$1 = \mathbb{P}(H_{\tau^+_x} = x) + \mathbb{P}(H_{\tau^+_x} > x)$$

using Kesten's classical result for the probability of continuous crossing for a subordinator and Kesten-Horowitz-Bertoin formula for overshoots of subordinators one derrives that

$$1 = \frac{\sigma^2}{2} W'(x) + \int_0^x W'(x-y) \{\overline{\overline{\Pi}}(y) + \mathbb{E}(X_1)\} dy$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

where $\overline{\overline{\Pi}}(x) = \int_x^\infty \Pi(-\infty, -y) dy.$

Scale functions

The connection with renewal theory

Then appealing to the formula

$$1 = \mathbb{P}(H_{\tau_x^+} = x) + \mathbb{P}(H_{\tau_x^+} > x)$$

using Kesten's classical result for the probability of continuous crossing for a subordinator and Kesten-Horowitz-Bertoin formula for overshoots of subordinators one derrives that

$$1 = \frac{\sigma^2}{2} W'(x) + \int_0^x W'(x-y) \{\overline{\overline{\Pi}}(y) + \mathbb{E}(X_1)\} dy$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

where $\overline{\overline{\Pi}}(x) = \int_x^\infty \Pi(-\infty, -y) dy.$

This can be seen as a renewal equation of the form f = 1 + f * g for appropriate f and g. But only when $\sigma \neq 0$, otherwise it takes the form f = f * g.

Scale functions

The connection with renewal theory

Then appealing to the formula

$$1 = \mathbb{P}(H_{\tau^+_x} = x) + \mathbb{P}(H_{\tau^+_x} > x)$$

using Kesten's classical result for the probability of continuous crossing for a subordinator and Kesten-Horowitz-Bertoin formula for overshoots of subordinators one derrives that

$$1 = \frac{\sigma^2}{2} W'(x) + \int_0^x W'(x-y) \{\overline{\overline{\Pi}}(y) + \mathbb{E}(X_1)\} dy$$

where $\overline{\overline{\Pi}}(x) = \int_x^\infty \Pi(-\infty, -y) dy.$

- This can be seen as a renewal equation of the form f = 1 + f * g for appropriate f and g. But only when $\sigma \neq 0$, otherwise it takes the form f = f * g.
- When X has bounded variation paths $(X_t = \delta t S_t)$ it a direct inverse of the Laplace transform for W also gives us

$$\delta W(x) = 1 + \int_0^x W(x - y) \Pi(-\infty, -y) dy$$

which is again a renewal function of the form f = 1 + f * g.

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Scale functions

Some more results

Some more results

 \blacksquare Suppose that $\sigma \neq 0$ and

$$\inf\{\beta \ge 0: \int_{|x|<1} |x|^{\beta} \Pi(dx) < \infty\} \in [0,2).$$

Then for $k = 0, 1, 2, \cdots$ $W \in C^{k+3}(0, \infty)$ if and only if $\overline{\Pi} \in C^k(0, \infty)$.

Some more results

• Suppose that $\sigma \neq 0$ and

$$\inf\{\beta \ge 0 : \int_{|x|<1} |x|^{\beta} \Pi(dx) < \infty\} \in [0,2).$$

Then for $k = 0, 1, 2, \cdots$ $W \in C^{k+3}(0, \infty)$ if and only if $\overline{\Pi} \in C^k(0, \infty)$.

Suppose that X has paths of bounded variation and $-\overline{\Pi}$ has a derivative π such that $\pi(x) \leq Cx^{-1-\alpha}$ in the neighbourhood of the origin for some $\alpha < 1$ and C > 0. Then for $k = 0, 1, 2, \cdots$ $W \in C^{k+3}(0, \infty)$ if and only if $\overline{\Pi} \in C^k(0, \infty)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Doney's conjecture for scale functions

*ロト *昼 * * ミ * ミ * ミ * のへで

For $k = 0, 1, 2, \cdots$

Doney's conjecture for scale functions

For $k = 0, 1, 2, \cdots$

• If $\sigma \neq 0$ (X has a Gaussian component) then

$$W \in C^{k+3}(0,\infty) \Leftrightarrow \overline{\Pi} \in C^k(0,\infty)$$

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Doney's conjecture for scale functions

For $k = 0, 1, 2, \cdots$

• If $\sigma \neq 0$ (X has a Gaussian component) then

$$W \in C^{k+3}(0,\infty) \Leftrightarrow \overline{\Pi} \in C^k(0,\infty)$$

 \blacksquare If $\sigma=0$ and $\int_{(-1,0)}|x|\Pi(dx)=\infty$ then

 $W \in C^{k+2}(0,\infty) \Leftrightarrow \overline{\Pi} \in C^k(0,\infty)$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

Doney's conjecture for scale functions

For $k = 0, 1, 2, \cdots$ If $\sigma \neq 0$ (X has a Gaussian component) then $W \in C^{k+3}(0, \infty) \Leftrightarrow \overline{\Pi} \in C^k(0, \infty)$ If $\sigma = 0$ and $\int_{(-1,0)} |x|\Pi(dx) = \infty$ then $W \in C^{k+2}(0, \infty) \Leftrightarrow \overline{\Pi} \in C^k(0, \infty)$ If $\sigma = 0$ and $\int_{(-1,0)} |x|\Pi(dx) < \infty$ then $W \in C^{k+1}(0, \infty) \Leftrightarrow \overline{\Pi} \in C^k(0, \infty)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●