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STABLE PROCESS

> Ford >2,let X := (X; : t > 0), with probabilities P = (Py,x € R?), be a
d-dimensional isotropic stable process of index a € (0, 2).
> Equivalently, this means (X, P) is a d-dimensional Lévy process with characteristic
exponent (up to a multiplicative constant)
W) =16]*, O6eR’

> Equivalently X is a Lévy process for which there is an o € (0, 2) and which
satisfies:
under Py, the law of (¢X.— o, t > 0) is equal to Py,

forc > 0and x € RY\ {0}.
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>

»

Ford > 2,let X := (X; : t > 0), with probabilities P = (Px,x € ]R”’), be a
d-dimensional isotropic stable process of index a € (0, 2).

Equivalently, this means (X, P) is a d-dimensional Lévy process with characteristic
exponent (up to a multiplicative constant)

W) =16]*, O6eR’

Equivalently X is a Lévy process for which there is an a € (0,2) and which
satisfies:
under Py, the law of (¢X.— o, t > 0) is equal to Py,

forc > 0and x € RY\ {0}.

As a self-similar Markov process, X can be represented by the Lamperti-Kiu
transformation
Xt = eg‘P(t)@(P(t), t>0,

where (&, ©) is a Markov additive process on R x Q with probabilities
I)log [x],arg(x)> X € Rda

and .
p(t) =inf{s > 0: / e®Sudy > t}.
0
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HARMONIC FUNCTIONS ON THE CONE

> Lipchitz cone, T = {x € R? : x # 0, arg(x) € Q},
> Exit time from the conei.e. kp = inf{s > 0: Xs ¢ '}

> Banuelos and Bogdan (2004): There exists M : R? — R such that
> M(x) =0forallx ¢ T.
> M is locally bounded on RY
P Thereisa 8 = B(I", «) € (0, ), such that

M() = [xM(x/[x]) = |x|°M(arg(x)),  x#0.
> Up to a multiplicative constant, M is the unique such that
M(x) = EM(Xrp)l(rg<npy)s ¥ € R,
where B is any open bounded domain and 73 = inf{t > 0 : X; ¢ B}.

> Bafiuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

. ]P’X(K,[‘ > t)
lim sup e =S
ﬂ_)OxEF, |t=1/ x| <a M(x)t

where C > 0 is a constant.
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Theorem

(i) Foranyt > 0,andx € T,
PY(A) ::ng Py (A|kr > t+5s), AeF,
defines a family of conservative probabilities on the space of cadlag paths such that

deg| M(X})
dPy |, = Lit<nr) M(x)

t>0,andx €T.

In particular, the right-hand side above is a martingale.
(Note: this is nothing but an Esscher transform for the underlying MAP!)

(ii) Let P9 := (Py,x € I) . The process (X, P<), is a self-similar Markov process.
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ENTRANCE LAW

Letp! (x,y), x,y € ', t > 0, be the semigroup of X killed on exiting the cone I".
Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

I
R p (x,y)
= U s e PV D0 g

and (n;(y)dy, t > 0), serves as an entrance law to (X, PL), in the sense that

nis(y) = /Fnt(x)pf(x, y)dx, yel,st>0.
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ENTRANCE LAW

Letp! (x,y), x,y € ', t > 0, be the semigroup of X killed on exiting the cone I".
Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

I
R p (x,y)
)= U s g P D0 g

and (n;(y)dy, t > 0), serves as an entrance law to (X, PL), in the sense that

nis(y) = /Fnt(x)pf(x, y)dx, yel,st>0.

> Also easy to show that, in the sense of weak convergence,

P§(X; € dy) := h}go ME ;

P(X; € dy, t < wr) = CM(y)n:(y)dy.

> Can the process ‘start from the apex of the cone’ in a stronger sense?
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CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem

The limit P := limr 5,0 P¥ is well defined on the Skorokhod space, so that,

(X, (P{,x € T'U{0})) is both Feller and self-similar which enters continuously at the origin,
after which it never returns.

6/17



HEURISTIC OF PROOF

> Step1: construct the process condition to absorb continuously at the apex of the
cone:

Theorem
For A € F;, on the space of cadlag paths with a cemetery state,

PE(A, t < k{0 .= lim Pe(A, £ < rp A P18 < kr),

is well defined as a stochastic process which is continuously absorbed at the apex of T', where
KO —inf{t > 0: |X;| = 0} and 7,7 = inf{s > 0 : |Xs| < a}. Moreover, for A € Fi,

H(X:) -

]ID?(A, t< k{o}) = E, 1<AJ<NF)W 5 =

where
H(x) = [x|**M(x/[x|*) = [x|*~ P~ M(arg(x)).
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H(X:) -

]P)E(A, t< k{o}) = E, 1<AJ<NF)W 5 =

where
H(x) = [x|**M(x/[x|*) = [x|*~ P~ M(arg(x)).

> Step 2: Check that (X, P”) is dual to (X, P9) in the Hunt-Nagasawa sense that

X_yto1y_s for t < k1% under P*

has the same Markov transitions as (X, P<) (this gives us continuous entrance at 0
of P9).
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HEURISTIC OF PROOF

> Step1: construct the process condition to absorb continuously at the apex of the
cone:

Theorem
For A € F;, on the space of cadlag paths with a cemetery state,

PE(A, t < k{0 .= lim Pe(A, £ < rp A P18 < kr),

is well defined as a stochastic process which is continuously absorbed at the apex of T', where
KO = inf{t > 0: |X;| = 0} and 7,° = inf{s > 0 : |Xs| < a}. Moreover, for A € Fi,

H(X:) -

]P)E(A, t< k{o}) = E, l(Avt<NF)W 5 =

where
H(x) = [x|**M(x/[x|*) = [x|*~ P~ M(arg(x)).

> Step 2: Check that (X, P”) is dual to (X, P9) in the Hunt-Nagasawa sense that

X (4 d0}y - for t < k1% under P*
has the same Markov transitions as (X, P<) (this gives us continuous entrance at 0
of P9).
> Step 3: Control the convergence of (X,P¥) asT" 3 Xy — 0 by controlling an
appropriate functional e.g. Xﬁ@, where 7,7 = inf{t > 0: [X;| > 1}. 7/17



WHERE IS THE WORK?

> Step 1 needs
Px(Ta@ < Kr)
m ——— 5
r'3a—0 H(x)ad+B—e

where, H(x) = |x|*#~IM(arg(x)).

=Ce€(0,00),
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WHERE IS THE WORK?

> Step 1 needs
IP)X(T:;69 < Kr)
m ——F
r3a—0 H(x)ad+B—o
where, H(x) = |x|*~ =M (arg(x)).

> Which in turn needs the stability (distributional convergence) as a — 0 of the
distribution of (X_a, P9).

=Ce (0,00),

> This is the same as the stability asz — —occ of ({_-,©_-) under P, where
z z

7, =inf{t > 0:& < z}, where ((§, ©), P9) is the MAP representation of (X, P<).
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WHERE IS THE WORK?

> For Step 2:

Theorem
Consider again the transformation of space via the sphere inversion Kx = x/|x|?, x € R%,

(i) The process (KX, (1), t > 0) under PY, x € T, is equal in law to (X;, t < k{(’}) under P%,x € T,
where

S
n(t) =inf{s > 0: / X, 2%du > t},  t>0. 2)
0

and k1% = inf{t > 0: X, = 0}.
(i) Under P, the time reversed process

X = X(k—t)—>» t <k,

is a homogenous strong Markov process whose transitions agree with those of (X, P%), x € T, where k
is an L-time of (X, P{), x € I' U {0}.
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WHERE IS THE WORK?

> For Step 2:

Theorem
Consider again the transformation of space via the sphere inversion Kx = x/|x|?, x € R%,

(i) The process (KX, (1), t > 0) under PY, x € T, is equal in law to (X;, t < k{o}) under P%,x € T,
where

S
n(t) = inf{s > 0: / X, 2%du > t},  t>0. 2)
0

and k1% = inf{t > 0: X, = 0}.
Under P§, the time reversed process

(ii

X = X(k—t)y—» t< k,

is a homogenous strong Markov process whose transitions agree with those of (X, P%), x € T, where k
is an L-time of (X, P{), x € I' U {0}.

> Hence stability of X L@ asa— 0 translates to the the stability (distributional
convergence) as @ — oo of the distribution of X 0 where

72 = inf{t > 0: |X;| > a}. This is the same as the stability as z — 400 of
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WHERE IS THE WORK?

> So the main difficulty in the proof all boils down showing the stability of

|X7_ﬂe| = eXp(ng-gga) and arg(XTae) =0 +

Tlogn

as a — oo, where

72 =inf{t > 0: |X;| > a} and T{gg” =inf{t > 0:& > loga}.
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MAPS ARE LIKE LEVY PROCESSES

> The radial first passage occurs in the range of
‘1 oy, for t such that £ — & = 0

where &, = sup, <tu.
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MAPS ARE LIKE LEVY PROCESSES

> The radial first passage occurs in the range of

‘1 oy, for t such that £ — & = 0

where £, = sup,<; &u-

> (Just like the story of the Wiener-Hopf factorisation for Lévy processes) there is a
MAP (H;",©;"), t > 0, such that H;" has non-decreasing paths (a MAP
subordinator) such that

range(th+ @?’ :t>0) =range(ef©;: & — & =0,t > 0)
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WE NEED SOME M AP EXCURSION THEORY

> Distributional convergence of
XTae /a a— oo
agrees with that of

H —b
e @;-; b =loga — oo,

where
Ty = inf{t > 0: H;" > b}
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> We are almost back to renewal theory, were it not for the MAP nature of
(HT,07T).
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WE NEED SOME M AP EXCURSION THEORY

> Distributional convergence of
XTae /a a— 0o

agrees with that of

+_
e b@ﬂ b =loga — oo,
where
Ty = inf{t > 0: H;" > b}
> We are almost back to renewal theory, were it not for the MAP nature of
(HT,07T).
> BIG PROBLEM: We have very little understanding of how these two processes

(the new radial maxima and the angular positioning at new radial maxima) are
corollated!
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MARKOV ADDITIVE RENEWAL THEORY TO THE RESCUE

>

>

Classical work of Gerold Alsmeyer (and others before him) hold the key to the
convergence of (H;fb —b, @}:) asb — oo

Formally speaking, we can write

b
B3 olf (1 -0, = [ [ Up(az, a0 (F(e(0) - (021, 0°()sc() > bz )

where -
Uy (dz,do) = / P 4 (H € dz,© € df)dt,
0

forz > 0and 6 € ©, and (Ng, 0 € Q) is a family of excursion measures on the
canonical space of MAP excursions ((e(t), ©¢(t)),t < ).
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MARKOV ADDITIVE RENEWAL THEORY TO THE RESCUE

>

>

>

Classical work of Gerold Alsmeyer (and others before him) hold the key to the
convergence of (H;fb —b, @71:) asb — oo

Formally speaking, we can write

b
B3 olf (1 -0, = [ [ Up(az, a0 (F(e(0) - (021, 0°()sc() > bz )

where -
Uy (dz,do) = / P 4 (H € dz,© € df)dt,
0

forz > 0and 0 € Q, and (N§, 6 € Q) is a family of excursion measures on the
canonical space of MAP excursions ((e(t), ©¢(t)),t < ).

Just as with classical renewal theory we can take limits of the above convolution
and expect

Jim B [0, ~ 0,08 = [ [ n(ao)an (f(e() - r 0 (0ielc) > 1),

PROVIDING: 37 (df) := limi—o P , (8, € d6)
NOTE: When reading this slide, just ignore the crap in purple.
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MAKING IT AN EASIER QUESTION

> Under P, define the following sequence of stopping times,
Ty :=inf{t > T,_1 : [X¢| > e[X, |}, n>1,

with Ty = 0, and

n
X
Sp = ZAk Ay = log X7, | and Z, = arg(Xt,), n>1.
k=1
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> Note in particular that
Xr, = \x|eS"En, n>1.

and that ((S;, Z,),n > 0), is a Markov additive renewal process.
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MAKING IT AN EASIER QUESTION

> Under P, define the following sequence of stopping times,
Ty :=inf{t > T,_1 : [X¢| > e[X, |}, n>1,

with Ty = 0, and

n
X
Sp = ZA" Ay = log X7, | and Z, = arg(Xt,), n>1.
k=1

> Note in particular that
Xr, = |x[e*" =y, n>1

and that ((S;, Z,),n > 0), is a Markov additive renewal process.
> Defining V(dr,do) := 3772 P3(Sy € dr,E, € dO), r€R, ¢ € Q,

— log |x|
5 [x,0)| = [ [ Vasgeo @r.d0)G(- 10g 5] - r.0),

where, for ¢ € Qandy > 0, G(y,0) := E:—ye {f(Xﬁe)l(TleSTS_y) .

Ignore the purple crap again.
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MAKING IT AN EASIER QUESTION

> Under P, define the following sequence of stopping times,
Ty :=inf{t > T,_1 : [X¢| > e[X, |}, n>1,

with Ty = 0, and

n
X
Sp = ZA" Ay = log X7, | and Z, = arg(Xt,), n>1.
k=1

> Note in particular that
Xr, = |x[e5"Ey, n>1.

and that ((S;, Z,),n > 0), is a Markov additive renewal process.
> Defining V(dr,do) := 3772 P3(Sy € dr,E, € dO), r€R, ¢ € Q,

— log |x|
B 0| = [ [ Vargeo (@r.d0)G(= 1og s - r.0),

where, for ¢ € Qandy > 0, G(y, 0) := E {f(XT@)
1

e Y0 1(719§Te )

el =y
Ignore the purple crap again.

> Alsmeyer’s Markov additive renewal Theorem now only means we need to find
v(df) = limy—s 00 P6'¢(En € db). 14/17



WE NEED TO FIND v

> This only appears to have transferred the problem of the existence of 7 to the
existence of v
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WE NEED TO FIND v

> This only appears to have transferred the problem of the existence of 7 to the
existence of v

> We are going to use the theory of ‘Harris recurrence’ to check the condition that
there exists a probability measure, p(-) on B(2) (Borel sets in €2) such that, for
some \ > 0,

Pg(Z1 € E) > Ap(E), forall 0 € Q,E € B(Q),

which will give us our invariant distribution v.
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WE NEED TO FIND v

» The function

g(x; E) =By M(Xrle )l(arg(XTle )EE, ‘rle<nr) ?

for x € I such that |x| < 11is a regular harmonic function and note that, by scaling

8(0/e;E) = Eg [M(X1,) (=, cE, Ty<np)) > 0 €
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» The function

g(x; E) = Ex M(Xrle )l(arg(xﬁe )EE, ‘rle <kp) |’

for x € I such that |x| < 11is a regular harmonic function and note that, by scaling

8(0/e;E) = Eg [M(X1 ) (5 ek, Ty<rp)]» 0 €

> The function M(x) is similarly regular harmonic.

> Hence, fix 6y with [0p| = 1 so that M(6p/e) = 1 and then thanks to Bogdan’s
Harnack inequality we have, for x € T" such that [x| < 1/2,

- 8(x; E)
C'M(x) < m < CM(x)

for a universal constant C which does not depend on E, x or xg.
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» The function

g(x;E) = By M(X"'le)l(arg(x719)€E»T1e<"ﬁI‘) s

for x € I such that |x| < 11is a regular harmonic function and note that, by scaling

8(0/e;E) = Eg [M(X1,) (=, cE, Ty<np)) > 0 €

> The function M(x) is similarly regular harmonic.

> Hence, fix 6y with |0p| = 1 so that M(6p/e) = 1 and then thanks to Bogdan’s
Harnack inequality we have, for x € T" such that [x| < 1/2,

x; E)
cMe) < SEE < oy
8(0o/&;E)
for a universal constant C which does not depend on E, x or xg.
> Rearranging gives us for x = 6/e

% — PS(Z; € E) > C'g(6p/es E) =: Ap(E).
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>

>

The function

g(x;E) = By M(X"'le)l(arg(x719)€E»Tle<"“I‘) s

for x € I such that |x| < 11is a regular harmonic function and note that, by scaling

8(0/e;E) = Eg [M(X1,) (=, cE, Ty<np)) > 0 €

The function M(x) is similarly regular harmonic.

Hence, fix 6y with || = 1 so that M(0y/e) = 1 and then thanks to Bogdan's
Harnack inequality we have, for x € T" such that [x| < 1/2,

M) < SEE_ _ ope
0= ooy = M
for a universal constant C which does not depend on E, x or xg.

Rearranging gives us for x = /e

% — PS(Z; € E) > C'g(6p/es E) =: Ap(E).

‘Harris recurrence’ and the existence of v follows. We are done. 16/17



Thank you!
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