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Stable process in a cone
Andreas Kyprianou

based on joint work with Victor Rivero and Weerapat Satitkanitkul (a.k.a. Pite)
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STABLE PROCESS

I For d ≥ 2, let X := (Xt : t ≥ 0), with probabilities P = (Px, x ∈ Rd), be a
d-dimensional isotropic stable process of index α ∈ (0, 2).

I Equivalently, this means (X,P) is a d-dimensional Lévy process with characteristic
exponent (up to a multiplicative constant)

Ψ(θ) = |θ|α, θ ∈ Rd.

I Equivalently X is a Lévy process for which there is an α ∈ (0, 2) and which
satisfies:

under Px, the law of (cXc−αt, t ≥ 0) is equal to Pcx,

for c > 0 and x ∈ Rd \ {0}.
I As a self-similar Markov process, X can be represented by the Lamperti-Kiu

transformation
Xt = eξϕ(t)Θϕ(t), t ≥ 0,

where (ξ,Θ) is a Markov additive process on R× Ω with probabilities

Plog |x|,arg(x), x ∈ Rd,

and

ϕ(t) = inf{s > 0 :

∫ s

0
eαξu du > t}.
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HARMONIC FUNCTIONS ON THE CONE

I Lipchitz cone, Γ = {x ∈ Rd : x 6= 0, arg(x) ∈ Ω},
I Exit time from the cone i.e. κΓ = inf{s > 0 : Xs /∈ Γ}.
I Bañuelos and Bogdan (2004): There exists M : Rd → R such that

I M(x) = 0 for all x 6∈ Γ.
I M is locally bounded on Rd

I There is a β = β(Γ, α) ∈ (0, α), such that

M(x) = |x|βM(x/|x|) = |x|βM(arg(x)), x 6= 0.

I Up to a multiplicative constant, M is the unique such that

M(x) = Ex[M(XτB )1(τB<κΓ)], x ∈ Rd
,

where B is any open bounded domain and τB = inf{t > 0 : Xt 6∈ B}.
I Bañuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

lim
a→0

sup
x∈Γ, |t−1/αx|≤a

Px(κΓ > t)
M(x)t−β/α

= C,

where C > 0 is a constant.
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Theorem

(i) For any t > 0, and x ∈ Γ,

P/x (A) := lim
s→∞

Px (A |κΓ > t + s) , A ∈ Ft,

defines a family of conservative probabilities on the space of càdlàg paths such that

dP/x
dPx

∣∣∣∣
Ft

:= 1(t<κΓ)
M(Xt)

M(x)
, t ≥ 0, and x ∈ Γ.

In particular, the right-hand side above is a martingale.
(Note: this is nothing but an Esscher transform for the underlying MAP!)

(ii) Let P/ := (P/x , x ∈ Γ) . The process (X,P/), is a self-similar Markov process.
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ENTRANCE LAW

Let pΓ
t (x, y), x, y ∈ Γ, t ≥ 0, be the semigroup of X killed on exiting the cone Γ.

Theorem (Bogdan, Palmowski, Wang (2018))
The following limit exits,

nt(y) := lim
Γ3x→0

pΓ
t (x, y)

Px(κΓ > t)tβ/α
, x, y ∈ Γ, t > 0, (1)

and (nt(y)dy, t > 0), serves as an entrance law to (X,PΓ), in the sense that

nt+s(y) =

∫
Γ

nt(x)pΓ
s (x, y)dx, y ∈ Γ, s, t ≥ 0.

I Also easy to show that, in the sense of weak convergence,

P/0 (Xt ∈ dy) := lim
Γ3x→0

M(y)

M(x)
Px(Xt ∈ dy, t < κΓ) = CM(y)nt(y)dy.

I Can the process ‘start from the apex of the cone’ in a stronger sense?
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CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem
The limit P/0 := limΓ3x→0 P/x is well defined on the Skorokhod space, so that,
(X, (P/x , x ∈ Γ ∪ {0})) is both Feller and self-similar which enters continuously at the origin,
after which it never returns.
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HEURISTIC OF PROOF
I Step1: construct the process condition to absorb continuously at the apex of the

cone:

Theorem
For A ∈ Ft, on the space of càdlàg paths with a cemetery state,

P.x (A, t < k{0}) := lim
a→0

Px(A, t < κΓ ∧ τ⊕a |τ⊕a < κΓ),

is well defined as a stochastic process which is continuously absorbed at the apex of Γ, where
k{0} = inf{t > 0 : |Xt| = 0} and τ⊕a = inf{s > 0 : |Xs| < a}. Moreover, for A ∈ Ft,

P.x (A, t < k{0}) = Ex

[
1(A, t<κΓ)

H(Xt)

H(x)

]
, t ≥ 0,

where
H(x) = |x|α−dM(x/|x|2) = |x|α−β−dM(arg(x)).

I Step 2: Check that (X,P.) is dual to (X,P/) in the Hunt-Nagasawa sense that

X(t−k{0})−, for t < k{0} under P.

has the same Markov transitions as (X,P/) (this gives us continuous entrance at 0
of P/).

I Step 3: Control the convergence of (X,P/) as Γ 3 X0 → 0 by controlling an
appropriate functional e.g. X

τ	1
, where τ	1 = inf{t > 0 : |Xt| > 1}.
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WHERE IS THE WORK?

I Step 1 needs

lim
Γ3a→0

Px(τ⊕a < κΓ)

H(x)ad+β−α = C ∈ (0,∞),

where, H(x) = |x|α−β−dM(arg(x)).
I Which in turn needs the stability (distributional convergence) as a→ 0 of the

distribution of (X
τ⊕a
,P/).

I This is the same as the stability as z→ −∞ of (ξ
τ−z
,Θ

τ−z
) under P/, where

τ−z = inf{t > 0 : ξt < z}, where ((ξ,Θ),P/) is the MAP representation of (X,P/).
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WHERE IS THE WORK?

I For Step 2:

Theorem
Consider again the transformation of space via the sphere inversion Kx = x/|x|2, x ∈ Rd.

(i) The process (KXη(t), t ≥ 0) under P/x , x ∈ Γ, is equal in law to (Xt, t < k{0}) under P.x , x ∈ Γ,
where

η(t) = inf{s > 0 :

∫ s

0
|Xu|−2αdu > t}, t ≥ 0. (2)

and k{0} = inf{t > 0 : Xt = 0}.
(ii) Under P/0 , the time reversed process

←
X t := X(k−t)−, t ≤ k,

is a homogenous strong Markov process whose transitions agree with those of (X, P.x ), x ∈ Γ, where k
is an L-time of (X, P/x ), x ∈ Γ ∪ {0}.

I Hence stability of X
τ⊕a

as a→ 0 translates to the the stability (distributional
convergence) as a→∞ of the distribution of X

τ	a
where

τ	a = inf{t > 0 : |Xt| > a}. This is the same as the stability as z→ +∞ of
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WHERE IS THE WORK?

I So the main difficulty in the proof all boils down showing the stability of

|X
τ	a
| = exp(ξ

τ+
log a

) and arg(X
τ	a

) = Θ
τ+
log a

as a→∞, where

τ	a = inf{t > 0 : |Xt| > a} and τ+
log a = inf{t > 0 : ξt > log a}.
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MAPS ARE LIKE LÉVY PROCESSES

I The radial first passage occurs in the range of

eξt Θt, for t such that ξt − ξt = 0

where ξt = supu≤t ξu.
I (Just like the story of the Wiener-Hopf factorisation for Lévy processes) there is a

MAP (H+
t ,Θ

+
t ), t ≥ 0, such that H+

t has non-decreasing paths (a MAP
subordinator) such that

range(eH+
t Θ+

t : t ≥ 0) = range(eξt Θt : ξt − ξt = 0, t ≥ 0)
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WE NEED SOME MAP EXCURSION THEORY

I Distributional convergence of

X
τ	a
/a a→∞

agrees with that of

e
H+

Tb
−b

Θ+
Tb

b = log a→∞,

where
Tb = inf{t > 0 : H+

t > b}
I We are almost back to renewal theory, were it not for the MAP nature of

(H+,Θ+).
I BIG PROBLEM: We have very little understanding of how these two processes

(the new radial maxima and the angular positioning at new radial maxima) are
corollated!
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MARKOV ADDITIVE RENEWAL THEORY TO THE RESCUE

I Classical work of Gerold Alsmeyer (and others before him) hold the key to the
convergence of (H+

Tb
− b,Θ+

Tb
) as b→∞

I Formally speaking, we can write

E/0,φ[f (H+
Tb
−b,Θ+

Tb
)] =

∫ b

0

∫
Ω

Uφ(dz,dθ)N/θ

(
f (ε(ζ)−(b−z),Θε(ζ)); ε(ζ) > b−z

)
where

Uφ(dz,dθ) =

∫ ∞
0

P/0,φ(H+
t ∈ dz,Θ+

t ∈ dθ)dt,

for z ≥ 0 and θ ∈ Ω, and (N/θ , θ ∈ Ω) is a family of excursion measures on the
canonical space of MAP excursions ((ε(t),Θε(t)), t ≤ ζ).

I Just as with classical renewal theory we can take limits of the above convolution
and expect

lim
b→∞

E/0,φ[f (H+
Tb
− b,Θ+

Tb
)] =

∫ ∞
0

∫
Ω
π(dθ)drN/θ

(
f (ε(ζ)− r,Θε(ζ)); ε(ζ) > r

)
,

PROVIDING: ∃π(dθ) := limt→∞ P/0,φ(Θ+
t ∈ dθ)

NOTE: When reading this slide, just ignore the crap in purple.
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MAKING IT AN EASIER QUESTION
I Under P/x , define the following sequence of stopping times,

Tn := inf{t > Tn−1 : |Xt| > e|XTn−1 |}, n ≥ 1,

with T0 = 0, and

Sn =
n∑

k=1

Ak An = log
|XTn |
|XTn−1 |

and Ξn = arg(XTn ), n ≥ 1.

I Note in particular that
XTn = |x|eSn Ξn, n ≥ 1.

and that ((Sn,Ξn), n ≥ 0), is a Markov additive renewal process.
I Defining Vφ(dr,dθ) :=

∑∞
n=0 P/φ(Sn ∈ dr,Ξn ∈ dθ), r ∈ R, φ ∈ Ω,

E/x
[

f (X
τ	1

)

]
=

∫ − log |x|

0

∫
Ω

Varg(x)(dr,dθ)G(− log |x| − r, θ),

where, for φ ∈ Ω and y ≥ 0, G(y, θ) := E/
e−yθ

[
f (X

τ	1
)1

(τ	1 ≤τ
	
e1−y )

]
.

Ignore the purple crap again.
I Alsmeyer’s Markov additive renewal Theorem now only means we need to find
υ(dθ) = limn→∞ P/0,φ(Ξn ∈ dθ).
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WE NEED TO FIND υ

I This only appears to have transferred the problem of the existence of π to the
existence of υ

I We are going to use the theory of ‘Harris recurrence’ to check the condition that
there exists a probability measure, ρ(·) on B(Ω) (Borel sets in Ω) such that, for
some λ > 0,

P/θ(Ξ1 ∈ E) ≥ λρ(E), for all θ ∈ Ω,E ∈ B(Ω),

which will give us our invariant distribution υ.



15/ 17

WE NEED TO FIND υ

I This only appears to have transferred the problem of the existence of π to the
existence of υ

I We are going to use the theory of ‘Harris recurrence’ to check the condition that
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WE NEED TO FIND υ

I The function

g(x; E) := Ex

[
M(X

τ	1
)1

(arg(X
τ
	
1

)∈E, τ	1 <κΓ)

]
,

for x ∈ Γ such that |x| < 1 is a regular harmonic function and note that, by scaling

g(θ/e; E) = Eθ
[
M(XT1 )1(Ξ1∈E, T1<κΓ)

]
, θ ∈ Ω.

I The function M(x) is similarly regular harmonic.
I Hence, fix θ0 with |θ0| = 1 so that M(θ0/e) = 1 and then thanks to Bogdan’s

Harnack inequality we have, for x ∈ Γ such that |x| < 1/2,

C−1M(x) ≤
g(x; E)

g(θ0/e; E)
≤ CM(x)

for a universal constant C which does not depend on E, x or x0.
I Rearranging gives us for x = θ/e

g(θ/e; E)

M(θ/e)
= P/θ(Ξ1 ∈ E) ≥ C−1g(θ0/e; E) =: λρ(E).

I ‘Harris recurrence’ and the existence of υ follows. We are done.
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Thank you!


