Stable process in a cone Andreas Kyprianou

based on joint work with Victor Rivero and Weerapat Satitkanitkul (a.k.a. Pite)

1/17

STABLE PROCESS

- For $d \ge 2$, let $X := (X_t : t \ge 0)$, with probabilities $\mathbb{P} = (\mathbb{P}_x, x \in \mathbb{R}^d)$, be a *d*-dimensional isotropic stable process of index $\alpha \in (0, 2)$.
- ▶ Equivalently, this means (*X*, ℙ) is a *d*-dimensional Lévy process with characteristic exponent (up to a multiplicative constant)

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}^d.$$

Equivalently *X* is a Lévy process for which there is an $\alpha \in (0, 2)$ and which satisfies:

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} ,

for c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$.

As a self-similar Markov process, X can be represented by the Lamperti-Kiu transformation

 $X_t = \mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}, \qquad t \ge 0,$

where (ξ, Θ) is a Markov additive process on $\mathbb{R} \times \Omega$ with probabilities

$$\mathbf{P}_{\log|x|,\arg(x)}, \qquad x \in \mathbb{R}^d,$$

and

$$\varphi(t) = \inf\{s > 0 : \int_0^s \mathrm{e}^{\alpha \xi_u} \mathrm{d}u > t\}.$$

2/17 ▲□▶ ▲쿱▶ ▲콜▶ ▲콜▶ 콜 - ∽੧<>>

STABLE PROCESS

- For $d \ge 2$, let $X := (X_t : t \ge 0)$, with probabilities $\mathbb{P} = (\mathbb{P}_x, x \in \mathbb{R}^d)$, be a *d*-dimensional isotropic stable process of index $\alpha \in (0, 2)$.
- ▶ Equivalently, this means (*X*, ℙ) is a *d*-dimensional Lévy process with characteristic exponent (up to a multiplicative constant)

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}^d.$$

Equivalently *X* is a Lévy process for which there is an $\alpha \in (0, 2)$ and which satisfies:

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} ,

for c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$.

As a self-similar Markov process, X can be represented by the Lamperti-Kiu transformation

$$X_t = \mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}, \qquad t \ge 0,$$

where (ξ, Θ) is a Markov additive process on $\mathbb{R} \times \Omega$ with probabilities

$$\mathbf{P}_{\log|x|,\arg(x)}, \qquad x \in \mathbb{R}^d,$$

and

$$\varphi(t) = \inf\{s > 0 : \int_0^s e^{\alpha \xi_u} du > t\}$$

2/17

HARMONIC FUNCTIONS ON THE CONE

- Lipchitz cone, $\Gamma = \{x \in \mathbb{R}^d : x \neq 0, \arg(x) \in \Omega\},\$
- Exit time from the cone i.e. $\kappa_{\Gamma} = \inf\{s > 0 : X_s \notin \Gamma\}.$

Bañuelos and Bogdan (2004): There exists
$$M : \mathbb{R}^d \to \mathbb{R}$$
 such that

- M(x) = 0 for all $x \notin \Gamma$.
- *M* is locally bounded on \mathbb{R}^d
- There is a $\beta = \beta(\Gamma, \alpha) \in (0, \alpha)$, such that

$$M(x) = |x|^{\beta} M(x/|x|) = |x|^{\beta} M(\arg(x)), \qquad x \neq 0.$$

Up to a multiplicative constant, M is the unique such that

$$M(x) = \mathbb{E}_{x}[M(X_{\tau_{B}})\mathbf{1}_{(\tau_{B} < \kappa_{\Gamma})}], \qquad x \in \mathbb{R}^{d},$$

where *B* is any open bounded domain and $\tau_B = \inf\{t > 0 : X_t \notin B\}$.

Bañuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

$$\lim_{a \to 0} \sup_{x \in \Gamma, \ |t^{-1/\alpha}x| \le a} \frac{\mathbb{P}_x(\kappa_{\Gamma} > t)}{M(x)t^{-\beta/\alpha}} = C,$$

・ロト・日本・モート モー うへの

where C > 0 is a constant.

Theorem

(i) For any t > 0, and $x \in \Gamma$,

$$\mathbb{P}_{x}^{\triangleleft}(A) := \lim_{s \to \infty} \mathbb{P}_{x} \left(A \left| \kappa_{\Gamma} > t + s \right), \qquad A \in \mathcal{F}_{t},$$

defines a family of conservative probabilities on the space of càdlàg paths such that

$$\frac{\mathrm{d}\mathbb{P}_x^d}{\mathrm{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} := \mathbf{1}_{(t < \kappa_{\Gamma})} \frac{M(X_t)}{M(x)}, \qquad t \ge 0, \text{ and } x \in \Gamma.$$

In particular, the right-hand side above is a martingale. (Note: this is nothing but an Esscher transform for the underlying MAP!)
(ii) Let P^d := (P^d_x, x ∈ Γ). The process (X, P^d), is a self-similar Markov process.

> 4/17 < □ ▷ < 륜 ▷ < 분 ▷ < 분 ▷ 분 - 위 < 은

ENTRANCE LAW

Let $p_t^{\Gamma}(x, y), x, y \in \Gamma, t \ge 0$, be the semigroup of X killed on exiting the cone Γ . Theorem (Bogdan, Palmowski, Wang (2018)) *The following limit exits*,

$$n_t(y) := \lim_{\Gamma \ni x \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}_x(\kappa_{\Gamma} > t) t^{\beta/\alpha}}, \qquad x, y \in \Gamma, t > 0,$$
(1)

and $(n_t(y)dy, t > 0)$, serves as an entrance law to (X, \mathbb{P}^{Γ}) , in the sense that

$$n_{t+s}(y) = \int_{\Gamma} n_t(x) p_s^{\Gamma}(x, y) \mathrm{d}x, \qquad y \in \Gamma, s, t \ge 0.$$

Also easy to show that, in the sense of weak convergence,

$$\mathbb{P}_0^{\triangleleft}(X_t \in \mathrm{d}y) := \lim_{\Gamma \ni x \to 0} \frac{M(y)}{M(x)} \mathbb{P}_x(X_t \in \mathrm{d}y, \ t < \kappa_{\Gamma}) = CM(y)n_t(y)\mathrm{d}y.$$

Can the process 'start from the apex of the cone' in a stronger sense?

ENTRANCE LAW

Let $p_t^{\Gamma}(x, y), x, y \in \Gamma, t \ge 0$, be the semigroup of X killed on exiting the cone Γ . Theorem (Bogdan, Palmowski, Wang (2018)) *The following limit exits*,

$$n_t(y) := \lim_{\Gamma \ni x \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}_x(\kappa_{\Gamma} > t)t^{\beta/\alpha}}, \qquad x, y \in \Gamma, t > 0,$$
(1)

and $(n_t(y)dy, t > 0)$, serves as an entrance law to (X, \mathbb{P}^{Γ}) , in the sense that

$$n_{t+s}(y) = \int_{\Gamma} n_t(x) p_s^{\Gamma}(x, y) \mathrm{d}x, \qquad y \in \Gamma, s, t \ge 0.$$

Also easy to show that, in the sense of weak convergence,

$$\mathbb{P}_0^{\triangleleft}(X_t \in \mathrm{d} y) := \lim_{\Gamma \ni x \to 0} \frac{M(y)}{M(x)} \mathbb{P}_x(X_t \in \mathrm{d} y, \ t < \kappa_{\Gamma}) = CM(y)n_t(y)\mathrm{d} y.$$

Can the process 'start from the apex of the cone' in a stronger sense?

5/17 ロト 4 급 + 4 로 + 트 - 한 역 ()

CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem

The limit $\mathbb{P}_0^d := \lim_{\Gamma \ni x \to 0} \mathbb{P}_x^d$ is well defined on the Skorokhod space, so that, $(X, (\mathbb{P}_x^d, x \in \Gamma \cup \{0\}))$ is both Feller and self-similar which enters continuously at the origin, after which it never returns.

6/17 《 디 ▷ 《 쿱 ▷ 《 클 ▷ 《 클 ▷ 의 < 은

HEURISTIC OF PROOF

Step1: construct the process condition to absorb continuously at the apex of the cone:

Theorem

For $A \in \mathcal{F}_t$ *, on the space of càdlàg paths with a cemetery state,*

$$\mathbb{P}_{x}^{\triangleright}(A, t < k^{\{0\}}) := \lim_{a \to 0} \mathbb{P}_{x}(A, t < \kappa_{\Gamma} \wedge \tau_{a}^{\oplus} | \tau_{a}^{\oplus} < \kappa_{\Gamma}),$$

is well defined as a stochastic process which is continuously absorbed at the apex of Γ , where $k^{\{0\}} = \inf\{t > 0 : |X_t| = 0\}$ and $\tau_a^{\oplus} = \inf\{s > 0 : |X_s| < a\}$. Moreover, for $A \in \mathcal{F}_t$,

$$\mathbb{P}_x^{\triangleright}(A, t < k^{\{0\}}) = \mathbb{E}_x \left[\mathbf{1}_{(A, t < \kappa_{\Gamma})} \frac{H(X_t)}{H(x)} \right], \qquad t \ge 0,$$

where

$$H(x) = |x|^{\alpha - d} M(x/|x|^2) = |x|^{\alpha - \beta - d} M(\arg(x)).$$

Step 2: Check that $(X, \mathbb{P}^{\triangleright})$ is dual to $(X, \mathbb{P}^{\triangleleft})$ in the Hunt-Nagasawa sense that

 $X_{(t-\mathrm{k}^{\{0\}})-}, \text{ for } t < \mathrm{k}^{\{0\}} \text{ under } \mathbb{P}^{\mathbb{D}}$

has the same Markov transitions as $(X, \mathbb{P}^{\triangleleft})$ (this gives us continuous entrance at 0 of $\mathbb{P}^{\triangleleft}$).

▶ Step 3: Control the convergence of $(X, \mathbb{P}^{\triangleleft})$ as $\Gamma \ni X_0 \to 0$ by controlling an appropriate functional e.g. $X_{\tau_1^{\ominus}}$, where $\tau_1^{\ominus} = \inf\{t > 0 : |X_t| > 1\}$. $\tau_1^{\Box} \to \tau_2^{\Box} \to \tau_2^{\Box} \to \tau_2^{\Box} \to \tau_2^{\Box} \to \tau_2^{\Box}$

HEURISTIC OF PROOF

Step1: construct the process condition to absorb continuously at the apex of the cone:

Theorem

For $A \in \mathcal{F}_t$ *, on the space of càdlàg paths with a cemetery state,*

$$\mathbb{P}_{x}^{\triangleright}(A, t < k^{\{0\}}) := \lim_{a \to 0} \mathbb{P}_{x}(A, t < \kappa_{\Gamma} \wedge \tau_{a}^{\oplus} | \tau_{a}^{\oplus} < \kappa_{\Gamma}),$$

is well defined as a stochastic process which is continuously absorbed at the apex of Γ , where $k^{\{0\}} = \inf\{t > 0 : |X_t| = 0\}$ and $\tau_a^{\oplus} = \inf\{s > 0 : |X_s| < a\}$. Moreover, for $A \in \mathcal{F}_t$,

$$\mathbb{P}_x^{\triangleright}(A, t < k^{\{0\}}) = \mathbb{E}_x \left[\mathbf{1}_{(A, t < \kappa_{\Gamma})} \frac{H(X_t)}{H(x)} \right], \qquad t \ge 0,$$

where

$$H(x) = |x|^{\alpha - d} M(x/|x|^2) = |x|^{\alpha - \beta - d} M(\arg(x)).$$

Step 2: Check that $(X, \mathbb{P}^{\triangleright})$ is dual to $(X, \mathbb{P}^{\triangleleft})$ in the Hunt-Nagasawa sense that

 $X_{(t-\Bbbk^{\{0\}})-}, \text{ for } t < \Bbbk^{\{0\}} \text{ under } \mathbb{P}^{\triangleright}$

has the same Markov transitions as $(X, \mathbb{P}^{\triangleleft})$ (this gives us continuous entrance at 0 of $\mathbb{P}^{\triangleleft}$).

▶ Step 3: Control the convergence of (X, \mathbb{P}^4) as $\Gamma \ni X_0 \to 0$ by controlling an appropriate functional e.g. $X_{\tau_1^{\ominus}}$, where $\tau_1^{\ominus} = \inf\{t > 0 : |X_t| > 1\}$.

HEURISTIC OF PROOF

Step1: construct the process condition to absorb continuously at the apex of the cone:

Theorem

For $A \in \mathcal{F}_t$ *, on the space of càdlàg paths with a cemetery state,*

$$\mathbb{P}_{x}^{\triangleright}(A, t < k^{\{0\}}) := \lim_{a \to 0} \mathbb{P}_{x}(A, t < \kappa_{\Gamma} \wedge \tau_{a}^{\oplus} | \tau_{a}^{\oplus} < \kappa_{\Gamma}),$$

is well defined as a stochastic process which is continuously absorbed at the apex of Γ , where $k^{\{0\}} = \inf\{t > 0 : |X_t| = 0\}$ and $\tau_a^{\oplus} = \inf\{s > 0 : |X_s| < a\}$. Moreover, for $A \in \mathcal{F}_t$,

$$\mathbb{P}_x^{\triangleright}(A, t < k^{\{0\}}) = \mathbb{E}_x \left[\mathbf{1}_{(A, t < \kappa_{\Gamma})} \frac{H(X_t)}{H(x)} \right], \qquad t \ge 0,$$

where

$$H(x) = |x|^{\alpha - d} M(x/|x|^2) = |x|^{\alpha - \beta - d} M(\arg(x)).$$

Step 2: Check that $(X, \mathbb{P}^{\triangleright})$ is dual to $(X, \mathbb{P}^{\triangleleft})$ in the Hunt-Nagasawa sense that

$$X_{(t-k^{\{0\}})-}, \text{ for } t < k^{\{0\}} \text{ under } \mathbb{P}^{\mathbb{P}}$$

has the same Markov transitions as $(X, \mathbb{P}^{\triangleleft})$ (this gives us continuous entrance at 0 of $\mathbb{P}^{\triangleleft}$).

▶ Step 3: Control the convergence of $(X, \mathbb{P}^{\triangleleft})$ as $\Gamma \ni X_0 \to 0$ by controlling an appropriate functional e.g. $X_{\tau_1^{\ominus}}$, where $\tau_1^{\ominus} = \inf\{t > 0 : |X_t| > 1\}$.

Step 1 needs

$$\lim_{\Gamma \ni a \to 0} \frac{\mathbb{P}_x(\tau_a^{\oplus} < \kappa_{\Gamma})}{H(x)a^{d+\beta-\alpha}} = C \in (0,\infty),$$

where, $H(x) = |x|^{\alpha - \beta - d} M(\arg(x)).$

- ▶ Which in turn needs the stability (distributional convergence) as $a \to 0$ of the distribution of $(X_{\tau^{\bigoplus}}, \mathbb{P}^{\triangleleft})$.
- ▶ This is the same as the stability as $z \to -\infty$ of $(\xi_{\tau_z^-}, \Theta_{\tau_z^-})$ under $\mathbf{P}^{\triangleleft}$, where $\tau_z^- = \inf\{t > 0 : \xi_t < z\}$, where $((\xi, \Theta), \mathbf{P}^{\triangleleft})$ is the MAP representation of $(X, \mathbb{P}^{\triangleleft})$

8/17

イロト イロト イヨト イヨト ヨー のへぐ

Step 1 needs

$$\lim_{\Gamma \ni a \to 0} \frac{\mathbb{P}_x(\tau_a^{\oplus} < \kappa_{\Gamma})}{H(x)a^{d+\beta-\alpha}} = C \in (0,\infty),$$

where, $H(x) = |x|^{\alpha - \beta - d} M(\arg(x)).$

- ▶ Which in turn needs the stability (distributional convergence) as $a \to 0$ of the distribution of $(X_{\tau, \oplus}, \mathbb{P}^{\triangleleft})$.
- ▶ This is the same as the stability as $z \to -\infty$ of $(\xi_{\tau_z^-}, \Theta_{\tau_z^-})$ under $\mathbb{P}^{\triangleleft}$, where $\tau_z^- = \inf\{t > 0 : \xi_t < z\}$, where $((\xi, \Theta), \mathbb{P}^{\triangleleft})$ is the MAP representation of $(X, \mathbb{P}^{\triangleleft})$

8/17

- コン・4回シュ ヨシュ ヨン・9 くの

Step 1 needs

$$\lim_{\Gamma \ni a \to 0} \frac{\mathbb{P}_x(\tau_a^{\oplus} < \kappa_{\Gamma})}{H(x)a^{d+\beta-\alpha}} = C \in (0,\infty),$$

where, $H(x) = |x|^{\alpha - \beta - d} M(\arg(x)).$

- Which in turn needs the stability (distributional convergence) as a → 0 of the distribution of (X_T⊕, ℙ^d).
- ▶ This is the same as the stability as $z \to -\infty$ of $(\xi_{\tau_z^-}, \Theta_{\tau_z^-})$ under $\mathbf{P}^{\triangleleft}$, where $\tau_z^- = \inf\{t > 0 : \xi_t < z\}$, where $((\xi, \Theta), \mathbf{P}^{\triangleleft})$ is the MAP representation of $(X, \mathbb{P}^{\triangleleft})$.

8/17

・ロト・日本・モート モー うへの

► For Step 2:

Theorem

Consider again the transformation of space via the sphere inversion $Kx = x/|x|^2$, $x \in \mathbb{R}^d$.

(i) The process $(KX_{\eta(t)}, t \ge 0)$ under $\mathbb{P}_x^{\triangleleft}, x \in \Gamma$, is equal in law to $(X_t, t < k^{\{0\}})$ under $\mathbb{P}_x^{\triangleright}, x \in \Gamma$, where

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(2)

and $k^{\{0\}} = \inf\{t > 0 : X_t = 0\}.$

(ii) Under $\mathbb{P}_0^{\triangleleft}$, the time reversed process

$$\overleftarrow{X}_t := X_{(k-t)-}, \qquad t \le k,$$

is a homogenous strong Markov process whose transitions agree with those of $(X, \mathbb{P}_x^{\triangleright}), x \in \Gamma$, where k is an L-time of $(X, \mathbb{P}_x^{\triangleleft}), x \in \Gamma \cup \{0\}$.

▶ Hence stability of $X_{\tau_a^{\oplus}}$ as $a \to 0$ translates to the the stability (distributional convergence) as $a \to \infty$ of the distribution of $X_{\tau_a^{\ominus}}$ where $\tau_a^{\ominus} = \inf\{t > 0 : |X_t| > a\}$. This is the same as the stability as $z \to +\infty$ of

► For Step 2:

Theorem

Consider again the transformation of space via the sphere inversion $Kx = x/|x|^2$, $x \in \mathbb{R}^d$.

(i) The process $(KX_{\eta(t)}, t \ge 0)$ under $\mathbb{P}_x^{\triangleleft}, x \in \Gamma$, is equal in law to $(X_t, t < k^{\{0\}})$ under $\mathbb{P}_x^{\triangleright}, x \in \Gamma$, where

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(2)

and $k^{\{0\}} = \inf\{t > 0 : X_t = 0\}.$

(ii) Under $\mathbb{P}_0^{\triangleleft}$, the time reversed process

$$\overleftarrow{X}_t := X_{(k-t)-}, \qquad t \le k,$$

is a homogenous strong Markov process whose transitions agree with those of $(X, \mathbb{P}_x^{\triangleright}), x \in \Gamma$, where k is an L-time of $(X, \mathbb{P}_x^{\triangleleft}), x \in \Gamma \cup \{0\}$.

▶ Hence stability of $X_{\tau_a^{\oplus}}$ as $a \to 0$ translates to the the stability (distributional convergence) as $a \to \infty$ of the distribution of $X_{\tau_a^{\ominus}}$ where $\tau_a^{\ominus} = \inf\{t > 0 : |X_t| > a\}$. This is the same as the stability as $z \to +\infty$ of

So the main difficulty in the proof all boils down showing the stability of

$$\begin{split} |X_{\tau_a^{\ominus}}| &= \exp(\xi_{\tau_{\log a}^+}) \quad \text{ and } \quad \arg(X_{\tau_a^{\ominus}}) = \Theta_{\tau_{\log a}^+} \\ \text{ as } a \to \infty, \text{ where } \\ \tau_a^{\ominus} &= \inf\{t > 0 : |X_t| > a\} \quad \text{ and } \quad \tau_{\log a}^+ = \inf\{t > 0 : \xi_t > \log a\}. \end{split}$$

10/17 《 □ ▷ 《 쿱 ▷ 《 壴 ▷ 《 壴 ▷ 즷 즉 @

MAPS ARE LIKE LÉVY PROCESSES

The radial first passage occurs in the range of

 $e^{\xi_t}\Theta_t$, for *t* such that $\overline{\xi}_t - \xi_t = 0$

where $\overline{\xi}_t = \sup_{u \leq t} \xi_u$.

I (Just like the story of the Wiener-Hopf factorisation for Lévy processes) there is a MAP (H⁺_t, Θ⁺_t), t ≥ 0, such that H⁺_t has non-decreasing paths (a MAP subordinator) such that

 $\operatorname{range}(\mathbf{e}^{H_t^+}\Theta_t^+:t\geq 0) = \operatorname{range}(\mathbf{e}^{\xi_t}\Theta_t:\overline{\xi}_t-\xi_t=0,t\geq 0)$

11/17 《 □ ▷ 《 쿱 ▷ 《 壴 ▷ 《 壴 ▷ 즷 < ⓒ

MAPS ARE LIKE LÉVY PROCESSES

The radial first passage occurs in the range of

 $e^{\xi_t}\Theta_t$, for *t* such that $\overline{\xi}_t - \xi_t = 0$

where $\overline{\xi}_t = \sup_{u \leq t} \xi_u$.

• (Just like the story of the Wiener-Hopf factorisation for Lévy processes) there is a MAP $(H_t^+, \Theta_t^+), t \ge 0$, such that H_t^+ has non-decreasing paths (a MAP subordinator) such that

$$\operatorname{range}(\mathbf{e}^{H_t^+}\Theta_t^+:t\geq 0) = \operatorname{range}(\mathbf{e}^{\xi_t}\Theta_t:\overline{\xi}_t-\xi_t=0,t\geq 0)$$

11/17 《 ロ > 《 큔 > 《 흔 > 《 흔 > 《 흔 > 《 흔 > 《 흔

WE NEED SOME MAP EXCURSION THEORY

Distributional convergence of

$$X_{\tau_a^{\ominus}}/a \qquad a \to \infty$$

agrees with that of

$$e^{H_{T_b}^+ - b} \Theta_{T_b}^+ \qquad b = \log a \to \infty,$$

where

$$T_b = \inf\{t > 0 : H_t^+ > b\}$$

ヘロト 不聞と 不良と 不良とう 良い

- We are almost back to renewal theory, were it not for the MAP nature of (H^+, Θ^+) .
- BIG PROBLEM: We have very little understanding of how these two processes (the new radial maxima and the angular positioning at new radial maxima) are corollated!

WE NEED SOME MAP EXCURSION THEORY

Distributional convergence of

$$X_{\tau_a^{\ominus}}/a \qquad a \to \infty$$

agrees with that of

$$e^{H_{T_b}^+ - b} \Theta_{T_b}^+ \qquad b = \log a \to \infty,$$

where

$$T_b = \inf\{t > 0 : H_t^+ > b\}$$

うちん 川田 マイビットビット 白

- We are almost back to renewal theory, were it not for the MAP nature of (H^+, Θ^+) .
- BIG PROBLEM: We have very little understanding of how these two processes (the new radial maxima and the angular positioning at new radial maxima) are corollated!

WE NEED SOME MAP EXCURSION THEORY

Distributional convergence of

$$X_{\tau_a^{\ominus}}/a \qquad a \to \infty$$

agrees with that of

$$e^{H_{T_b}^+ - b} \Theta_{T_b}^+ \qquad b = \log a \to \infty,$$

where

$$T_b = \inf\{t > 0 : H_t^+ > b\}$$

- コン・4回シュ ヨシュ ヨン・9 くの

- We are almost back to renewal theory, were it not for the MAP nature of (H^+, Θ^+) .
- BIG PROBLEM: We have very little understanding of how these two processes (the new radial maxima and the angular positioning at new radial maxima) are corollated!

MARKOV ADDITIVE RENEWAL THEORY TO THE RESCUE

- Classical work of Gerold Alsmeyer (and others before him) hold the key to the convergence of $(H_{T_h}^+ b, \Theta_{T_h}^+)$ as $b \to \infty$
- Formally speaking, we can write

$$\mathbf{E}_{0,\phi}^{\triangleleft}[f(H_{T_{b}}^{+}-b,\Theta_{T_{b}}^{+})] = \int_{0}^{b} \int_{\Omega} U_{\phi}(\mathrm{d}z,\mathrm{d}\theta) \mathbb{N}_{\theta}^{\triangleleft} \left(f(\epsilon(\zeta)-(b-z),\Theta^{\epsilon}(\zeta));\epsilon(\zeta) > b-z \right)$$

where

$$U_{\phi}(\mathrm{d} z,\mathrm{d} \theta) = \int_0^{\infty} \mathbf{P}_{0,\phi}^{\triangleleft}(H_t^+ \in \mathrm{d} z,\Theta_t^+ \in \mathrm{d} \theta)\mathrm{d} t,$$

for $z \ge 0$ and $\theta \in \Omega$, and $(\mathbb{N}_q^{\triangleleft}, \theta \in \Omega)$ is a family of excursion measures on the canonical space of MAP excursions $((\epsilon(t), \Theta^{\epsilon}(t)), t \le \zeta)$.

 Just as with classical renewal theory we can take limits of the above convolution and expect

$$\lim_{b\to\infty} \mathbb{E}_{0,\phi}^{\triangleleft}[f(H_{T_b}^+ - b, \Theta_{T_b}^+)] = \int_0^\infty \int_\Omega \pi(d\theta) dr \mathbb{N}_{\theta}^{\triangleleft} \bigg(f(\epsilon(\zeta) - r, \Theta^{\epsilon}(\zeta)); \epsilon(\zeta) > r \bigg),$$

PROVIDING: $\exists \pi(d\theta) := \lim_{t \to \infty} \mathbf{P}_{0,\phi}^{q}(\Theta_{t}^{+} \in d\theta)$ NOTE: When reading this slide, just ignore the crap in purple.

MARKOV ADDITIVE RENEWAL THEORY TO THE RESCUE

- Classical work of Gerold Alsmeyer (and others before him) hold the key to the convergence of $(H_{T_{v}}^{+} b, \Theta_{T_{v}}^{+})$ as $b \to \infty$
- Formally speaking, we can write

$$\mathbf{E}_{0,\phi}^{\triangleleft}[f(H_{T_{b}}^{+}-b,\Theta_{T_{b}}^{+})] = \int_{0}^{b} \int_{\Omega} U_{\phi}(\mathrm{d}z,\mathrm{d}\theta) \mathbb{N}_{\theta}^{\triangleleft} \left(f(\epsilon(\zeta)-(b-z),\Theta^{\epsilon}(\zeta));\epsilon(\zeta) > b-z \right)$$

where

$$U_{\phi}(\mathrm{d} z,\mathrm{d} \theta) = \int_0^{\infty} \mathbf{P}_{0,\phi}^{\triangleleft}(H_t^+ \in \mathrm{d} z,\Theta_t^+ \in \mathrm{d} \theta)\mathrm{d} t,$$

for $z \ge 0$ and $\theta \in \Omega$, and $(\mathbb{N}_{\theta}^{\triangleleft}, \theta \in \Omega)$ is a family of excursion measures on the canonical space of MAP excursions $((\epsilon(t), \Theta^{\epsilon}(t)), t \le \zeta)$.

Just as with classical renewal theory we can take limits of the above convolution and expect

$$\lim_{b\to\infty} \mathsf{E}_{0,\phi}^{\triangleleft}[f(H_{T_b}^+ - b, \Theta_{T_b}^+)] = \int_0^\infty \int_\Omega \pi(\mathsf{d}\theta) \mathsf{d}r \mathbb{N}_{\theta}^{\triangleleft} \bigg(f(\epsilon(\zeta) - r, \Theta^{\epsilon}(\zeta)); \epsilon(\zeta) > r \bigg),$$

PROVIDING: $\exists \pi(d\theta) := \lim_{t \to \infty} \mathbf{P}_{0,\phi}^{\triangleleft}(\Theta_t^+ \in d\theta)$ NOTE: When reading this slide, just ignore the crap in purple.

3/17

• Under $\mathbb{P}_x^{\triangleleft}$, define the following sequence of stopping times,

$$T_n := \inf\{t > T_{n-1} : |X_t| > e|X_{T_{n-1}}|\}, \qquad n \ge 1,$$

with $T_0 = 0$, and

$$S_n = \sum_{k=1}^n A_k$$
 $A_n = \log \frac{|X_{T_n}|}{|X_{T_{n-1}}|}$ and $\Xi_n = \arg(X_{T_n}), \quad n \ge 1.$

Note in particular that

$$X_{T_n} = |x| \mathrm{e}^{S_n} \Xi_n, \qquad n \ge 1.$$

and that $((S_n, \Xi_n), n \ge 0)$, is a Markov additive renewal process.

• Defining $V_{\phi}(\mathrm{d}r,\mathrm{d}\theta) := \sum_{n=0}^{\infty} \mathbb{P}_{\phi}^{\triangleleft}(S_n \in \mathrm{d}r, \Xi_n \in \mathrm{d}\theta), r \in \mathbb{R}, \phi \in \Omega$,

$$\mathbb{E}_{x}^{\triangleleft}\left[f(X_{\tau_{1}^{\ominus}})\right] = \int_{0}^{-\log|x|} \int_{\Omega} V_{\arg(x)}(\mathrm{d}r, \mathrm{d}\theta) G(-\log|x| - r, \theta),$$

where, for $\phi \in \Omega$ and $y \ge 0$, $G(y, \theta) := \mathbb{E}_{e^{-y}\theta}^{\triangleleft} \left[f(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\tau_1^{\ominus} \le \tau_{e^{1-y}}^{\ominus})} \right]$. Ignore the purple crap again.

► Alsmeyer's Markov additive renewal Theorem now only means we need to find $v(d\theta) = \lim_{n\to\infty} \mathbf{P}_{0,\phi}^{\triangleleft}(\Xi_n \in d\theta).$ (14/17)

• Under $\mathbb{P}_x^{\triangleleft}$, define the following sequence of stopping times,

$$T_n := \inf\{t > T_{n-1} : |X_t| > e|X_{T_{n-1}}|\}, \qquad n \ge 1,$$

with $T_0 = 0$, and

$$S_n = \sum_{k=1}^n A_k$$
 $A_n = \log \frac{|X_{T_n}|}{|X_{T_{n-1}}|}$ and $\Xi_n = \arg(X_{T_n}), \quad n \ge 1.$

Note in particular that

$$X_{T_n} = |x| \mathrm{e}^{S_n} \Xi_n, \qquad n \ge 1.$$

and that $((S_n, \Xi_n), n \ge 0)$, is a Markov additive renewal process.

• Defining $V_{\phi}(\mathrm{d}r,\mathrm{d}\theta) := \sum_{n=0}^{\infty} \mathbb{P}_{\phi}^{\triangleleft}(S_n \in \mathrm{d}r, \Xi_n \in \mathrm{d}\theta), r \in \mathbb{R}, \phi \in \Omega$,

$$\mathbb{E}_{x}^{\triangleleft}\left[f(X_{\tau_{1}^{\ominus}})\right] = \int_{0}^{-\log|x|} \int_{\Omega} V_{\arg(x)}(\mathrm{d}r, \mathrm{d}\theta) G(-\log|x| - r, \theta),$$

where, for $\phi \in \Omega$ and $y \ge 0$, $G(y, \theta) := \mathbb{E}_{e^{-y}\theta}^{\triangleleft} \left[f(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\tau_1^{\ominus} \le \tau_{e^{1-y}}^{\ominus})} \right]$. Ignore the purple crap again.

Alsmeyer's Markov additive renewal Theorem now only means we need to find $v(d\theta) = \lim_{n \to \infty} \mathbf{P}^{q}_{0,\phi}(\Xi_n \in d\theta).$

• Under $\mathbb{P}_x^{\triangleleft}$, define the following sequence of stopping times,

$$T_n := \inf\{t > T_{n-1} : |X_t| > e|X_{T_{n-1}}|\}, \qquad n \ge 1,$$

with $T_0 = 0$, and

$$S_n = \sum_{k=1}^n A_k$$
 $A_n = \log \frac{|X_{T_n}|}{|X_{T_{n-1}}|}$ and $\Xi_n = \arg(X_{T_n}), \quad n \ge 1.$

Note in particular that

$$X_{T_n} = |x| \mathrm{e}^{S_n} \Xi_n, \qquad n \ge 1.$$

and that $((S_n, \Xi_n), n \ge 0)$, is a Markov additive renewal process.

▶ Defining $V_{\phi}(\mathrm{d}r,\mathrm{d}\theta) := \sum_{n=0}^{\infty} \mathbb{P}_{\phi}^{\triangleleft}(S_n \in \mathrm{d}r, \Xi_n \in \mathrm{d}\theta), r \in \mathbb{R}, \phi \in \Omega,$

$$\mathbb{E}_{x}^{\triangleleft}\left[f(\mathbf{X}_{\tau_{1}^{\ominus}})\right] = \int_{0}^{-\log|x|} \int_{\Omega} V_{\arg(x)}(\mathrm{d}r, \mathrm{d}\theta) G(-\log|x| - r, \theta),$$

where, for $\phi \in \Omega$ and $y \ge 0$, $G(y, \theta) := \mathbb{E}_{e^{-y}\theta}^{\triangleleft} \left[f(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\tau_1^{\ominus} \le \tau_{e^{1-y}}^{\ominus})} \right]$. Ignore the purple crap again.

Alsmeyer's Markov additive renewal Theorem now only means we need to find $v(d\theta) = \lim_{n \to \infty} \mathbf{P}^{d}_{0,\phi}(\Xi_n \in d\theta).$ $u(d\theta) = \lim_{n \to \infty} \mathbf{P}^{d}_{0,\phi}(\Xi_n \in d\theta).$ $u(d\theta) = \lim_{n \to \infty} \mathbf{P}^{d}_{0,\phi}(\Xi_n \in d\theta).$

• Under $\mathbb{P}_x^{\triangleleft}$, define the following sequence of stopping times,

$$T_n := \inf\{t > T_{n-1} : |X_t| > e|X_{T_{n-1}}|\}, \qquad n \ge 1,$$

with $T_0 = 0$, and

$$S_n = \sum_{k=1}^n A_k$$
 $A_n = \log \frac{|X_{T_n}|}{|X_{T_{n-1}}|}$ and $\Xi_n = \arg(X_{T_n}), \quad n \ge 1.$

Note in particular that

$$X_{T_n} = |x| \mathrm{e}^{S_n} \Xi_n, \qquad n \ge 1.$$

and that $((S_n, \Xi_n), n \ge 0)$, is a Markov additive renewal process.

▶ Defining $V_{\phi}(\mathrm{d}r,\mathrm{d}\theta) := \sum_{n=0}^{\infty} \mathbb{P}_{\phi}^{\triangleleft}(S_n \in \mathrm{d}r, \Xi_n \in \mathrm{d}\theta), r \in \mathbb{R}, \phi \in \Omega,$

$$\mathbb{E}_{x}^{\triangleleft}\left[f(\mathbf{X}_{\tau_{1}^{\ominus}})\right] = \int_{0}^{-\log|x|} \int_{\Omega} V_{\arg(x)}(\mathrm{d}r, \mathrm{d}\theta) G(-\log|x| - r, \theta),$$

where, for $\phi \in \Omega$ and $y \ge 0$, $G(y, \theta) := \mathbb{E}_{e^{-y}\theta}^{\triangleleft} \left[f(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\tau_1^{\ominus} \le \tau_{e^{1-y}}^{\ominus})} \right]$. Ignore the purple crap again.

Alsmeyer's Markov additive renewal Theorem now only means we need to find $v(d\theta) = \lim_{n \to \infty} \mathbf{P}_{0,\phi}^{d}(\Xi_{n} \in d\theta).$

14/17

We need to find v

\blacktriangleright This only appears to have transferred the problem of the existence of π to the existence of v

We are going to use the theory of 'Harris recurrence' to check the condition that there exists a probability measure, $\rho(\cdot)$ on $\mathcal{B}(\Omega)$ (Borel sets in Ω) such that, for some $\lambda > 0$,

 $\mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \geq \lambda \rho(E), \text{ for all } \theta \in \Omega, E \in \mathcal{B}(\Omega),$

15/17

イロト イロト イヨト イヨト ヨー のへぐ

which will give us our invariant distribution v.

We need to find v

- This only appears to have transferred the problem of the existence of π to the existence of v
- We are going to use the theory of 'Harris recurrence' to check the condition that there exists a probability measure, $\rho(\cdot)$ on $\mathcal{B}(\Omega)$ (Borel sets in Ω) such that, for some $\lambda > 0$,

 $\mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \geq \lambda \rho(E), \text{ for all } \theta \in \Omega, E \in \mathcal{B}(\Omega),$

15/17

- コン・4回シュ ヨシュ ヨン・9 くの

which will give us our invariant distribution v.

We need to find v

The function

$$g(x; E) := \mathbb{E}_x \left[M(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\arg(X_{\tau_1^{\ominus}}) \in E, \tau_1^{\ominus} < \kappa_{\Gamma})} \right],$$

for $x \in \Gamma$ such that |x| < 1 is a regular harmonic function and note that, by scaling

$$g(\theta/\mathbf{e}; E) = \mathbb{E}_{\theta} \left[M(X_{T_1}) \mathbf{1}_{(\Xi_1 \in E, T_1 < \kappa_{\Gamma})} \right], \qquad \theta \in \Omega.$$

• The function M(x) is similarly regular harmonic.

► Hence, fix θ_0 with $|\theta_0| = 1$ so that $M(\theta_0/e) = 1$ and then thanks to Bogdan's Harnack inequality we have, for $x \in \Gamma$ such that |x| < 1/2,

$$C^{-1}M(x) \le \frac{g(x;E)}{g(\theta_0/e;E)} \le CM(x)$$

for a universal constant C which does not depend on E, x or x_0 .

Rearranging gives us for $x = \theta/e$

$$\frac{g(\theta/\mathbf{e}; E)}{M(\theta/\mathbf{e})} = \mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \ge C^{-1}g(\theta_0/\mathbf{e}; E) =: \lambda \rho(E).$$

16/17

► 'Harris recurrence' and the existence of v follows. We are done.

▶ The function

$$g(x; E) := \mathbb{E}_x \left[M(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\arg(X_{\tau_1^{\ominus}}) \in E, \tau_1^{\ominus} < \kappa_{\Gamma})} \right],$$

for $x \in \Gamma$ such that |x| < 1 is a regular harmonic function and note that, by scaling

$$g(\theta/\mathbf{e}; E) = \mathbb{E}_{\theta} \left[M(X_{T_1}) \mathbf{1}_{(\Xi_1 \in E, T_1 < \kappa_{\Gamma})} \right], \quad \theta \in \Omega.$$

• The function M(x) is similarly regular harmonic.

$$C^{-1}M(x) \le \frac{g(x;E)}{g(\theta_0/e;E)} \le CM(x)$$

$$\frac{g(\theta/\mathbf{e}; E)}{M(\theta/\mathbf{e})} = \mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \ge C^{-1}g(\theta_0/\mathbf{e}; E) =: \lambda \rho(E).$$

16/17

・ロト・日本・日本・日本・日本・今日や

▶ The function

$$g(x; E) := \mathbb{E}_x \left[M(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\arg(X_{\tau_1^{\ominus}}) \in E, \tau_1^{\ominus} < \kappa_{\Gamma})} \right],$$

for $x \in \Gamma$ such that |x| < 1 is a regular harmonic function and note that, by scaling

$$g(\theta/\mathbf{e}; E) = \mathbb{E}_{\theta} \left[M(X_{T_1}) \mathbf{1}_{(\Xi_1 \in E, T_1 < \kappa_{\Gamma})} \right], \qquad \theta \in \Omega.$$

• The function M(x) is similarly regular harmonic.

• Hence, fix θ_0 with $|\theta_0| = 1$ so that $M(\theta_0/e) = 1$ and then thanks to Bogdan's Harnack inequality we have, for $x \in \Gamma$ such that |x| < 1/2,

$$C^{-1}M(x) \le \frac{g(x;E)}{g(\theta_0/\mathbf{e};E)} \le CM(x)$$

for a universal constant C which does not depend on E, x or x_0 .

$$\frac{g(\theta/\mathbf{e}; E)}{M(\theta/\mathbf{e})} = \mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \ge C^{-1}g(\theta_0/\mathbf{e}; E) =: \lambda \rho(E).$$

▶ The function

$$g(x; E) := \mathbb{E}_x \left[M(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\arg(X_{\tau_1^{\ominus}}) \in E, \tau_1^{\ominus} < \kappa_{\Gamma})} \right],$$

for $x \in \Gamma$ such that |x| < 1 is a regular harmonic function and note that, by scaling

$$g(\theta/\mathbf{e}; E) = \mathbb{E}_{\theta} \left[M(X_{T_1}) \mathbf{1}_{(\Xi_1 \in E, T_1 < \kappa_{\Gamma})} \right], \qquad \theta \in \Omega.$$

• The function M(x) is similarly regular harmonic.

• Hence, fix θ_0 with $|\theta_0| = 1$ so that $M(\theta_0/e) = 1$ and then thanks to Bogdan's Harnack inequality we have, for $x \in \Gamma$ such that |x| < 1/2,

$$C^{-1}M(x) \le \frac{g(x;E)}{g(\theta_0/\mathbf{e};E)} \le CM(x)$$

for a universal constant *C* which does not depend on *E*, *x* or x_0 .

• Rearranging gives us for $x = \theta/e$

$$\frac{g(\theta/\mathbf{e}; E)}{M(\theta/\mathbf{e})} = \mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \ge C^{-1}g(\theta_0/\mathbf{e}; E) =: \lambda\rho(E).$$

The function

$$g(x; E) := \mathbb{E}_x \left[M(X_{\tau_1^{\ominus}}) \mathbf{1}_{(\arg(X_{\tau_1^{\ominus}}) \in E, \tau_1^{\ominus} < \kappa_{\Gamma})} \right],$$

for $x \in \Gamma$ such that |x| < 1 is a regular harmonic function and note that, by scaling

$$g(\theta/\mathbf{e}; E) = \mathbb{E}_{\theta} \left[M(X_{T_1}) \mathbf{1}_{(\Xi_1 \in E, T_1 < \kappa_{\Gamma})} \right], \qquad \theta \in \Omega.$$

• The function M(x) is similarly regular harmonic.

• Hence, fix θ_0 with $|\theta_0| = 1$ so that $M(\theta_0/e) = 1$ and then thanks to Bogdan's Harnack inequality we have, for $x \in \Gamma$ such that |x| < 1/2,

$$C^{-1}M(x) \le \frac{g(x;E)}{g(\theta_0/\mathbf{e};E)} \le CM(x)$$

for a universal constant C which does not depend on E, x or x_0 .

Rearranging gives us for $x = \theta/e$

$$\frac{g(\theta/\mathbf{e}; E)}{M(\theta/\mathbf{e})} = \mathbb{P}_{\theta}^{\triangleleft}(\Xi_1 \in E) \ge C^{-1}g(\theta_0/\mathbf{e}; E) =: \lambda \rho(E).$$

16/17

 \blacktriangleright 'Harris recurrence' and the existence of v follows. We are done. ・ロト・(部)・・ヨト・ヨト ヨー のへで Thank you!

17/17