Stable process in a cone Andreas Kyprianou

based on joint work with Victor Rivero and Weerapat Satitkanitkul (a.k.a. Pite)

1/11

(日)(國)(王)(王)(王)

STABLE PROCESS

- For $d \ge 2$, let $X := (X_t : t \ge 0)$, with probabilities $\mathbb{P} = (\mathbb{P}_x, x \in \mathbb{R}^d)$, be a *d*-dimensional isotropic stable process of index $\alpha \in (0, 2)$.
- ▶ Equivalently, this means (*X*, ℙ) is a *d*-dimensional Lévy process with characteristic exponent (up to a multiplicative constant)

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}^d.$$

Equivalently *X* is a Lévy process for which there is an $\alpha \in (0, 2)$ and which satisfies:

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} ,

for c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$.

As a self-similar Markov process, X can be represented by the Lamperti-Kiu transformation

$$X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}, \qquad t \ge 0,$$

where (ξ, Θ) is a Markov additive process on $\mathbb{R} \times \Omega$ with probabilities

$$\mathbf{P}_{\log|x|,\arg(x)}, \qquad x \in \mathbb{R}^d,$$

and

$$\varphi(t) = \inf\{s > 0 : \int_0^s e^{\alpha \xi_u} du > t\}.$$

2/11

STABLE PROCESS

- For $d \ge 2$, let $X := (X_t : t \ge 0)$, with probabilities $\mathbb{P} = (\mathbb{P}_x, x \in \mathbb{R}^d)$, be a *d*-dimensional isotropic stable process of index $\alpha \in (0, 2)$.
- ▶ Equivalently, this means (*X*, ℙ) is a *d*-dimensional Lévy process with characteristic exponent (up to a multiplicative constant)

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}^d.$$

Equivalently *X* is a Lévy process for which there is an $\alpha \in (0, 2)$ and which satisfies:

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} ,

for c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$.

As a self-similar Markov process, X can be represented by the Lamperti-Kiu transformation

$$X_t = \mathrm{e}^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}, \qquad t \ge 0,$$

where (ξ, Θ) is a Markov additive process on $\mathbb{R} \times \Omega$ with probabilities

$$\mathbf{P}_{\log|x|,\arg(x)}, \qquad x \in \mathbb{R}^d,$$

and

$$\varphi(t) = \inf\{s > 0 : \int_0^s \mathrm{e}^{\alpha \xi_u} \mathrm{d}u > t\}.$$

2/11 ▲□▶ ▲쿱▶ ▲콜▶ ▲콜▶ 글 ∽੧<>>

HARMONIC FUNCTIONS ON THE CONE

- Lipchitz cone, $\Gamma = \{x \in \mathbb{R}^d : x \neq 0, \arg(x) \in \Omega\},\$
- Exit time from the cone i.e. $\kappa_{\Gamma} = \inf\{s > 0 : X_s \notin \Gamma\}.$

Bañuelos and Bogdan (2004): There exists
$$M : \mathbb{R}^d \to \mathbb{R}$$
 such that

- M(x) = 0 for all $x \notin \Gamma$.
- *M* is locally bounded on \mathbb{R}^d
- There is a $\beta = \beta(\Gamma, \alpha) \in (0, \alpha)$, such that

$$M(x) = |x|^{\beta} M(x/|x|) = |x|^{\beta} M(\arg(x)), \qquad x \neq 0.$$

Up to a multiplicative constant, M is the unique such that

$$M(x) = \mathbb{E}_{x}[M(X_{\tau_{B}})\mathbf{1}_{(\tau_{B} < \kappa_{\Gamma})}], \qquad x \in \mathbb{R}^{d},$$

where *B* is any open bounded domain and $\tau_B = \inf\{t > 0 : X_t \notin B\}$.

Bañuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

$$\lim_{a \to 0} \sup_{x \in \Gamma, \ |t^{-1/\alpha}x| \le a} \frac{\mathbb{P}_x(\kappa_{\Gamma} > t)}{M(x)t^{-\beta/\alpha}} = C,$$

where C > 0 is a constant.

Theorem

(i) For any t > 0, and $x \in \Gamma$,

 $\mathbb{P}_{x}^{\triangleleft}(A) := \lim_{s \to \infty} \mathbb{P}_{x}\left(A \left| \kappa_{\Gamma} > t + s\right), \qquad A \in \mathcal{F}_{t},$

defines a family of conservative probabilities on the space of càdlàg paths such that

$$\frac{\mathbb{d}\mathbb{P}_{x}^{d}}{\mathbb{d}\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} := \mathbf{1}_{(t < \kappa_{\Gamma})} \frac{M(X_{t})}{M(x)}, \qquad t \ge 0, \text{ and } x \in \Gamma.$$
(1)

4/11

In particular, the right-hand side of (1) *is a martingale.* (Note: this is nothing but an Esscher transform!)

(ii) Let $\mathbb{P}^{\triangleleft} := (\mathbb{P}_x^{\triangleleft}, x \in \Gamma)$. The process $(X, \mathbb{P}^{\triangleleft})$, is a self-similar Markov process.

ENTRANCE LAW

Let $p_t^{\Gamma}(x, y), x, y \in \Gamma, t \ge 0$, be the semigroup of *X* killed on exiting the cone Γ . Theorem (Bogdan, Palmowski, Wang (2018)) *The following limit exits*,

$$n_t(y) := \lim_{\Gamma \ni x \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}_x(\kappa_{\Gamma} > t)t^{\beta/\alpha}}, \qquad x, y \in \Gamma, t > 0,$$
(2)

and $(n_t(y)dy, t > 0)$, serves as an entrance law to (X, \mathbb{P}^{Γ}) , in the sense that

$$n_{t+s}(y) = \int_{\Gamma} n_t(x) p_s^{\Gamma}(x, y) \mathrm{d}x, \qquad y \in \Gamma, s, t \ge 0.$$

Also easy to show that, in the sense of weak convergence,

$$\mathbb{P}_0^{\triangleleft}(X_t \in \mathrm{d}y) := \lim_{\Gamma \ni x \to 0} \frac{M(y)}{M(x)} \mathbb{P}_x(X_t \in \mathrm{d}y, \ t < \kappa_{\Gamma}) = CM(y)n_t(y)\mathrm{d}y.$$

Can the process 'start from the apex of the cone' in a stronger sense?

ENTRANCE LAW

Let $p_t^{\Gamma}(x, y), x, y \in \Gamma, t \ge 0$, be the semigroup of *X* killed on exiting the cone Γ . Theorem (Bogdan, Palmowski, Wang (2018)) *The following limit exits*,

$$n_t(y) := \lim_{\Gamma \ni x \to 0} \frac{p_t^{\Gamma}(x, y)}{\mathbb{P}_x(\kappa_{\Gamma} > t)t^{\beta/\alpha}}, \qquad x, y \in \Gamma, t > 0,$$
(2)

and $(n_t(y)dy, t > 0)$, serves as an entrance law to (X, \mathbb{P}^{Γ}) , in the sense that

$$n_{t+s}(y) = \int_{\Gamma} n_t(x) p_s^{\Gamma}(x, y) \mathrm{d}x, \qquad y \in \Gamma, s, t \ge 0.$$

Also easy to show that, in the sense of weak convergence,

$$\mathbb{P}_0^{\triangleleft}(X_t \in \mathrm{d} y) := \lim_{\Gamma \ni x \to 0} \frac{M(y)}{M(x)} \mathbb{P}_x(X_t \in \mathrm{d} y, t < \kappa_{\Gamma}) = CM(y)n_t(y)\mathrm{d} y.$$

Can the process 'start from the apex of the cone' in a stronger sense?

CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem

The limit $\mathbb{P}_0^d := \lim_{\Gamma \ni x \to 0} \mathbb{P}_x^d$ is well defined on the Skorokhod space, so that, $(X, (\mathbb{P}_x^d, x \in \Gamma \cup \{0\}))$ is both Feller and self-similar which enters continuously at the origin, after which it never returns.

6/11 《 ㅁ ▷ 《 큔 ▷ 《 흔 ▷ 《 흔 ▷ 이 � ೕ

HEURISTIC OF PROOF

Step1: construct the process condition to absorb continuously at the apex of the cone:

Theorem

For $A \in \mathcal{F}_t$ *, on the space of càdlàg paths with a cemetery state,*

$$\mathbb{P}_{x}^{\triangleright}(A, t < k^{\{0\}}) := \lim_{a \to 0} \mathbb{P}_{x}(A, t < \kappa_{\Gamma} \wedge \tau_{a}^{\oplus} | \tau_{a}^{\oplus} < \kappa_{\Gamma}),$$

is well defined as a stochastic process which is continuously absorbed at the apex of Γ , where $k^{\{0\}} = \inf\{t > 0 : |X_t| = 0\}$ and $\tau_a^{\oplus} = \inf\{s > 0 : |X_s| < a\}$. Moreover, for $A \in \mathcal{F}_t$,

$$\mathbb{P}_x^{\triangleright}(A, t < k^{\{0\}}) = \mathbb{E}_x \left[\mathbf{1}_{(A, t < \kappa_{\Gamma})} \frac{H(X_t)}{H(x)} \right], \qquad t \ge 0,$$

where

$$H(x) = |x|^{\alpha - d} M(x/|x|^2) = |x|^{\alpha - \beta - d} M(\arg(x)).$$

Step 2: Check that $(X, \mathbb{P}^{\triangleright})$ is dual to $(X, \mathbb{P}^{\triangleleft})$ in the Hunt-Nagasawa sense that

$$X_{(t-k^{\{0\}})-}, \text{ for } t < k^{\{0\}} \text{ under } \mathbb{P}^{\triangleright}$$

has the same Markov transitions as $(X, \mathbb{P}^{\triangleleft})$

Step 3: Control the convergence of $(X, \mathbb{P}^{\triangleleft})$ as $\Gamma \ni X_0 \to 0$ by controlling an appropriate functional e.g. $X_{\tau_1^{\ominus}}$, where $\tau_1^{\ominus} = \inf\{t > 0 : |X_t| > 1\}$.

HEURISTIC OF PROOF

Step1: construct the process condition to absorb continuously at the apex of the cone:

Theorem

For $A \in \mathcal{F}_t$ *, on the space of càdlàg paths with a cemetery state,*

$$\mathbb{P}_{x}^{\triangleright}(A, t < k^{\{0\}}) := \lim_{a \to 0} \mathbb{P}_{x}(A, t < \kappa_{\Gamma} \wedge \tau_{a}^{\oplus} | \tau_{a}^{\oplus} < \kappa_{\Gamma}),$$

is well defined as a stochastic process which is continuously absorbed at the apex of Γ , where $k^{\{0\}} = \inf\{t > 0 : |X_t| = 0\}$ and $\tau_a^{\oplus} = \inf\{s > 0 : |X_s| < a\}$. Moreover, for $A \in \mathcal{F}_t$,

$$\mathbb{P}_x^{\triangleright}(A, t < k^{\{0\}}) = \mathbb{E}_x \left[\mathbf{1}_{(A, t < \kappa_{\Gamma})} \frac{H(X_t)}{H(x)} \right], \qquad t \ge 0,$$

where

$$H(x) = |x|^{\alpha - d} M(x/|x|^2) = |x|^{\alpha - \beta - d} M(\arg(x)).$$

▶ Step 2: Check that $(X, \mathbb{P}^{\triangleright})$ is dual to $(X, \mathbb{P}^{\triangleleft})$ in the Hunt-Nagasawa sense that

$$X_{(t-k^{\{0\}})-}, \text{ for } t < k^{\{0\}} \text{ under } \mathbb{P}^{\triangleright}$$

has the same Markov transitions as $(X, \mathbb{P}^{\triangleleft})$

Step 3: Control the convergence of (X, \mathbb{P}^d) as $\Gamma \ni X_0 \to 0$ by controlling an appropriate functional e.g. $X_{\tau_1^{\ominus}}$, where $\tau_1^{\ominus} = \inf\{t > 0 : |X_t| > 1\}$.

HEURISTIC OF PROOF

Step1: construct the process condition to absorb continuously at the apex of the cone:

Theorem

For $A \in \mathcal{F}_t$ *, on the space of càdlàg paths with a cemetery state,*

$$\mathbb{P}_{x}^{\triangleright}(A, t < k^{\{0\}}) := \lim_{a \to 0} \mathbb{P}_{x}(A, t < \kappa_{\Gamma} \wedge \tau_{a}^{\oplus} | \tau_{a}^{\oplus} < \kappa_{\Gamma}),$$

is well defined as a stochastic process which is continuously absorbed at the apex of Γ , where $k^{\{0\}} = \inf\{t > 0 : |X_t| = 0\}$ and $\tau_a^{\oplus} = \inf\{s > 0 : |X_s| < a\}$. Moreover, for $A \in \mathcal{F}_t$,

$$\mathbb{P}_x^{\triangleright}(A, t < k^{\{0\}}) = \mathbb{E}_x \left[\mathbf{1}_{(A, t < \kappa_{\Gamma})} \frac{H(X_t)}{H(x)} \right], \qquad t \ge 0,$$

where

$$H(x) = |x|^{\alpha - d} M(x/|x|^2) = |x|^{\alpha - \beta - d} M(\arg(x)).$$

▶ Step 2: Check that $(X, \mathbb{P}^{\triangleright})$ is dual to $(X, \mathbb{P}^{\triangleleft})$ in the Hunt-Nagasawa sense that

$$X_{(t-k^{\{0\}})-}, \text{ for } t < k^{\{0\}} \text{ under } \mathbb{P}^{\triangleright}$$

has the same Markov transitions as $(X, \mathbb{P}^{\triangleleft})$

▶ Step 3: Control the convergence of $(X, \mathbb{P}^{\triangleleft})$ as $\Gamma \ni X_0 \to 0$ by controlling an appropriate functional e.g. $X_{\tau_1^{\ominus}}$, where $\tau_1^{\ominus} = \inf\{t > 0 : |X_t| > 1\}$.

Step 1 needs

$$\lim_{\Gamma \ni a \to 0} \frac{\mathbb{P}_{x}(\tau_{a}^{\oplus} < \kappa_{\Gamma})}{H(x)a^{d+\beta-\alpha}} = C \in (0,\infty),$$

where, $H(x) = |x|^{\alpha - \beta - d} M(\arg(x))$.

- ▶ Which in turn needs the stability (distributional convergence) as $a \to 0$ of the distribution of $(X_{\tau_{\infty}^{\oplus}}, \mathbb{P}^{\triangleleft})$.
- ▶ This is the same as the stability as $z \to -\infty$ of $(\xi_{\tau_z^-}, \Theta_{\tau_z^-})$ under $\mathbf{P}^{\triangleleft}$, where $\tau_z^- = \inf\{t > 0 : \xi_t < z\}$, where $((\xi, \Theta), \mathbf{P}^{\triangleleft})$ is the MAP representation of $(X, \mathbb{P}^{\triangleleft})$

8/11

・ロト・日本・モン・モン・モー めんぐ

Step 1 needs

$$\lim_{\Gamma \ni a \to 0} \frac{\mathbb{P}_{x}(\tau_{a}^{\oplus} < \kappa_{\Gamma})}{H(x)a^{d+\beta-\alpha}} = C \in (0,\infty),$$

where, $H(x) = |x|^{\alpha - \beta - d} M(\arg(x))$.

- ▶ Which in turn needs the stability (distributional convergence) as $a \to 0$ of the distribution of $(X_{\tau, \oplus}, \mathbb{P}^{\triangleleft})$.
- ▶ This is the same as the stability as $z \to -\infty$ of $(\xi_{\tau_z^-}, \Theta_{\tau_z^-})$ under $\mathbb{P}^{\triangleleft}$, where $\tau_z^- = \inf\{t > 0 : \xi_t < z\}$, where $((\xi, \Theta), \mathbb{P}^{\triangleleft})$ is the MAP representation of $(X, \mathbb{P}^{\triangleleft})$

8/11

- コン・4回シュ ヨシュ ヨン・9 くの

Step 1 needs

$$\lim_{\Gamma \ni a \to 0} \frac{\mathbb{P}_x(\tau_a^{\oplus} < \kappa_{\Gamma})}{H(x)a^{d+\beta-\alpha}} = C \in (0,\infty),$$

where, $H(x) = |x|^{\alpha - \beta - d} M(\arg(x)).$

- Which in turn needs the stability (distributional convergence) as a → 0 of the distribution of (X_T⊕, ℙ^d).
- ▶ This is the same as the stability as $z \to -\infty$ of $(\xi_{\tau_z^-}, \Theta_{\tau_z^-})$ under $\mathbf{P}^{\triangleleft}$, where $\tau_z^- = \inf\{t > 0 : \xi_t < z\}$, where $((\xi, \Theta), \mathbf{P}^{\triangleleft})$ is the MAP representation of $(X, \mathbb{P}^{\triangleleft})$.

8/11

► For Step 2:

Theorem

Consider again the transformation of space via the sphere inversion $Kx = x/|x|^2$, $x \in \mathbb{R}^d$.

(i) The process $(KX_{\eta(t)}, t \ge 0)$ under $\mathbb{P}_x^{\triangleleft}, x \in \Gamma$, is equal in law to $(X_t, t < k^{\{0\}})$ under $\mathbb{P}_x^{\triangleright}, x \in \Gamma$, where

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

and $k^{\{0\}} = \inf\{t > 0 : X_t = 0\}.$

(ii) Under $\mathbb{P}_0^{\triangleleft}$, the time reversed process

$$\overleftarrow{\mathbf{X}}_t := \mathbf{X}_{(k-t)-}, \qquad t \le k,$$

is a homogenous strong Markov process whose transitions agree with those of $(X, \mathbb{P}_x^{\triangleright}), x \in \Gamma$, where k is an L-time of $(X, \mathbb{P}_x^{\triangleleft}), x \in \Gamma \cup \{0\}$.

▶ Hence stability of $X_{\tau_a^{\oplus}}$ as $a \to 0$ translates to the the stability (distributional convergence) as $a \to \infty$ of the distribution of $X_{\tau_a^{\ominus}}$ where $\tau_a^{\ominus} = \inf\{t > 0 : |X_t| > a\}$. This is the same as the stability as $z \to +\infty$ of

► For Step 2:

Theorem

Consider again the transformation of space via the sphere inversion $Kx = x/|x|^2$, $x \in \mathbb{R}^d$.

(i) The process $(KX_{\eta(t)}, t \ge 0)$ under $\mathbb{P}_x^{\triangleleft}, x \in \Gamma$, is equal in law to $(X_t, t < k^{\{0\}})$ under $\mathbb{P}_x^{\triangleright}, x \in \Gamma$, where

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

and $k^{\{0\}} = \inf\{t > 0 : X_t = 0\}.$

(ii) Under $\mathbb{P}_0^{\triangleleft}$, the time reversed process

$$\overleftarrow{X}_t := X_{(k-t)-}, \qquad t \le k,$$

is a homogenous strong Markov process whose transitions agree with those of $(X, \mathbb{P}_x^{\triangleright}), x \in \Gamma$, where k is an L-time of $(X, \mathbb{P}_x^{\triangleleft}), x \in \Gamma \cup \{0\}$.

▶ Hence stability of $X_{\tau_a^{\oplus}}$ as $a \to 0$ translates to the the stability (distributional convergence) as $a \to \infty$ of the distribution of $X_{\tau_a^{\ominus}}$ where $\tau_a^{\ominus} = \inf\{t > 0 : |X_t| > a\}$. This is the same as the stability as $z \to +\infty$ of

So the main difficulty in the proof all boils down a more advanced form of the following theorem:

Theorem

Under $\mathbf{P}^{\triangleleft}$, *the modulator process* Θ^+ *of the descending ladder MAP of* (ξ, Θ) *has a stationary distribution. That is*

$$\pi^{\triangleleft,+}(\mathrm{d}\theta) := \lim_{t \to \infty} \mathbf{P}_{x,\theta}^{\triangleleft}(\Theta_t^+ \in \mathrm{d}\theta), \qquad \theta \in \Omega, x \in \mathbb{R},$$

10/11

うちん 川田 マイビットビット 白

exists as a non-degenerate distributional weak limit.

Thank you!

