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STABLE PROCESS

> Ford > 2,let X := (X; : t > 0), with probabilities P = (Py,x € R”’), be a
d-dimensional isotropic stable process of index a € (0, 2).

> Equivalently, this means (X, P) is a d-dimensional Lévy process with characteristic
exponent (up to a multiplicative constant)

v(h) =10|*, 6eR.
> Equivalently X is a Lévy process for which there is an o € (0,2) and which
q y yPp

satisfies:
under Py, thelaw of (¢X.— oy, t > 0) is equal to Py,

forc > 0and x € RY\ {0}.
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Ford > 2,let X := (X; : t > 0), with probabilities P = (Py,x € ]Rd), be a
d-dimensional isotropic stable process of index a € (0, 2).

Equivalently, this means (X, P) is a d-dimensional Lévy process with characteristic
exponent (up to a multiplicative constant)

W) =16]*, 6eR’

Equivalently X is a Lévy process for which there is an a € (0,2) and which
satisfies:
under Py, thelaw of (¢X.— oy, t > 0) is equal to Py,

forc > 0and x € RY\ {0}.

As a self-similar Markov process, X can be represented by the Lamperti-Kiu
transformation
Xt = eg‘P(t)@(P(t), t>0,

where (&, ©) is a Markov additive process on R x Q with probabilities
I)log [x],arg(x)> X € Rda

and .
o(t) = inf{s > 0: / e“Sudy > t}.
0
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HARMONIC FUNCTIONS ON THE CONE

> Lipchitz cone, I' = {x € R? : x # 0, arg(x) € Q},
> Exit time from the conei.e. kp = inf{s > 0: Xs ¢ I'}.

> Bafiuelos and Bogdan (2004): There exists M : RY — R such that
> M(x) =O0forallx ¢ I.
> M is locally bounded on R?
P Thereisa 8 = B(I", @) € (0, ), such that

M(x) = [x|"M(x/[d]) = |1°M(arg(x),  x#0.
> Up to a multiplicative constant, M is the unique such that
M(x) = Ee[M(Xr)1(rycnp)), X €RY
where B is any open bounded domain and 73 = inf{t > 0 : X; ¢ B}.
> Barfiuelos and Bogdan (2004) and Bogdan, Palmowski, Wang (2018): We have

P >t
lim sup 7::(&1“_[3/) =C,
920 e (p=1/ay| <o M(X)EF/

where C > 0 is a constant.
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Theorem

(i) Foranyt > 0,andx € T,
PY(A) = lim Py (Alkr > t+5s), A€ F,
defines a family of conservative probabilities on the space of cadlag paths such that

deg| M(X})
dPy |, = Lit<rr) M(x)’

t>0,andx €T. (1)

In particular, the right-hand side of (1) is a martingale.
(Note: this is nothing but an Esscher transform!)

(i) Let P<:= (P{,x € T"). The process (X, P), is a self-similar Markov process.
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ENTRANCE LAW

Letpf (x,y), x,y € I', t > 0, be the semigroup of X killed on exiting the cone I".
Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

T
o pr (%)
my) = rim, Py(kp > Hth/e’ nyelt>0, @

and (n(y)dy, t > 0), serves as an entrance law to (X, PT), in the sense that

mes(s) = [ mEpLxyds, yeTsezo,
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ENTRANCE LAW

Letpf (x,y), x,y € I', t > 0, be the semigroup of X killed on exiting the cone I".
Theorem (Bogdan, Palmowski, Wang (2018))

The following limit exits,

T
o pr (%)
my) = rim, Py(kp > Hth/e’ nyelt>0, @

and (n(y)dy, t > 0), serves as an entrance law to (X, PT), in the sense that

n4s(y) = /F m(x)pt (x,y)dx,  y€T,st>0.

> Also easy to show that, in the sense of weak convergence,

. M
Py (X: € dy) 1= rim, Mg%

Py(X: € dy, t < kr) = CM(y)n(y)dy.

> Can the process ‘start from the apex of the cone’ in a stronger sense?
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CONTINUOUS ENTRANCE AT THE APEX OF THE CONE

Theorem

The limit P := limr 5,0 P¥ is well defined on the Skorokhod space, so that,

(X, (P{,x € T'U{0})) is both Feller and self-similar which enters continuously at the origin,
after which it never returns.
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HEURISTIC OF PROOF

> Stepl: construct the process condition to absorb continuously at the apex of the
cone:

Theorem
For A € F;, on the space of cadlag paths with a cemetery state,

PE(A, t < k{0 .= lim Pe(A, £ < rp A P18 < kr),

is well defined as a stochastic process which is continuously absorbed at the apex of T', where
KO —inf{t > 0: |X;| = 0} and 7, = inf{s > 0 : |Xs| < a}. Moreover, for A € F;,

H(X:) -

]P?(A, t< k{o}) = E, 1<AJ<NF)W B =

where
H(x) = [x|**M(x/[x]?) = [x|* =P~ M(arg(x)).
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> Step 2: Check that (X, P”) is dual to (X, P9) in the Hunt-Nagasawa sense that
X_yto1y—s for t < k1% under P*

has the same Markov transitions as (X, P9)
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HEURISTIC OF PROOF

> Stepl: construct the process condition to absorb continuously at the apex of the
cone:

Theorem
For A € F;, on the space of cadlag paths with a cemetery state,
PE(A, t < k{0 .= lim P (4, ¢ < s A P18 < kr),
a—

is well defined as a stochastic process which is continuously absorbed at the apex of T', where
KO =inf{t > 0:|X;| = 0} and 7,7 = inf{s > 0 : |Xs| < a}. Moreover, for A € Fi,

H(X:) -

]P?(A, t< k{o}) = E, 1<AJ<NF)W B =

where
H(x) = [x|**M(x/[x]?) = [x|* =P~ M(arg(x)).

> Step 2: Check that (X, P”) is dual to (X, P9) in the Hunt-Nagasawa sense that

X_yto1y—s for t < k1% under P*

has the same Markov transitions as (X, P9)
> Step 3: Control the convergence of (X,P9) asI" 3 Xy — 0 by controlling an
appropriate functional e.g. X_rle, where 77 = inf{t > 0: |X;| > 1}.
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WHERE IS THE WORK?

> Step 1 needs
Px(Tuz@ < Kl")
lim ——————
300 H(x)ad+B-o

where, H(x) = |x|*~#~M(arg(x)).

=C € (0,00),
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WHERE IS THE WORK?

> Step 1 needs
Py(7 < k1)
lim —ae 12U
3450 H(x)al+8-o € € (0,00),
where, H(x) = |x|*~#~M(arg(x)).

> Which in turn needs the stability (distributional convergence) as a — 0 of the
distribution of (X_a , P).

> This is the same as the stability asz — —oo of ({_—,©_-) under P, where

7. =inf{t > 0:& < z}, where ((§, ©), P9) is the MAP representation of (X, P<).
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WHERE IS THE WORK?

> For Step 2:
Theorem
Consider again the transformation of space via the sphere inversion Kx = x/|x|?, x € R%,

(i) The process (KX, (1), t > 0) under PY, x € T, is equal in law to (X;, t < k{o}) under P, x € T,
where

S
n(t) = inf{s > 0 / X, 2%du > t}, >0, 3)
0

and K% = inf{t > 0: X, = 0}.
(i) Under Py, the time reversed process

-
Xt =Xx—n—> t< k,

is a homogenous strong Markov process whose transitions agree with those of (X, PY), x € T, where k
is an L-time of (X, Py ), x € I' U {0}.
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(i) The process (KX, (1), t > 0) under PY, x € T, is equal in law to (X;, t < k{o}) under P, x € T,
where

S
n(t) = inf{s > 0 / X, 2%du > t}, >0, 3)
0

and K% = inf{t > 0: X, = 0}.

(i) Under ]p0<1, the time reversed process

P
Xt = Xx—t)—» t <k,

is a homogenous strong Markov process whose transitions agree with those of (X, PY), x € T, where k
is an L-time of (X, Py ), x € I' U {0}.

> Hence stability of X_¢ asa — 0 translates to the the stability (distributional
a
convergence) as a — oo of the distribution of X o where
a

72 = inf{t > 0 : |X¢| > a}. This is the same as the stability as z — +oo of
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WHERE IS THE WORK?

> So the main difficulty in the proof all boils down a more advanced form of the
following theorem:

Theorem
Under P9, the modulator process ©7F of the descending ladder MAP of (€, ©) has a stationary
distribution. That is

79T (dh) = Jim PI,(6] €df), OeQreR,

exists as a non-degenerate distributional weak limit.
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Thank you!
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