Problem	Tools	The censored process	Results
0000	000	00000	00000

Censored stable processes

Andreas E. Kyprianou¹ Juan-Carlos Pardo² Alex Watson¹

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

¹Unversity of Bath, UK. ²CIMAT, Mexico.

Problem	Tools	The censored process	Results
●000	000		00000
Stable processes	s		

Definition I

A Lévy process X is called α -stable if it satisfies the scaling property

$$\left(cX_{c^{-\alpha}t}\right)_{t\geq 0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=}X|_{\mathsf{P}_{cx}}, \quad c>0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Necessarily $\alpha \in (0, 2]$. $[\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

Problem	Tools	The censored process	Results
●000	000		00000
Stable processes	s		

Definition I

A Lévy process X is called α -stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

Necessarily $\alpha \in (0, 2]$. $[\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

Definition II

Let $\alpha,\,\rho$ be admissible parameters, X the Lévy process with Lévy density

$$c_+ x^{-(\alpha+1)} \mathbbm{1}_{(x>0)} + c_- |x|^{-(\alpha+1)} \mathbbm{1}_{(x<0)}, \qquad x \in \mathbb{R},$$

no Gaussian part.

Problem	Tools	The censored process	Results
0000	000	00000	00000
Stable proce			
Stubic proce			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two specific points:

- Assume X does not have one-sided jumps,
- When $\alpha = 1$, X is symmetric.

Problem	Tools	The censored process	Results
oo●o	000		00000
Problem st	atement		

The problem

Let

$$\tau_{-1}^1 = \inf\{t > 0 : X_t \in (-1,1)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

be the first hitting time of (-1, 1). What is $P_x(X_{\tau_{-1}^1} \in dy, \tau_{-1}^1 < \infty)$?

Problem	Tools	The censored process	Results
oo●o	000		00000
Problem sta	atement		

The problem

Let

$$\tau_{-1}^1 = \inf\{t > 0 : X_t \in (-1, 1)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

be the first hitting time of (-1, 1). What is $P_x(X_{\tau_{-1}^1} \in dy, \tau_{-1}^1 < \infty)$?

Problem	Tools	The censored process	Results
000●	000		00000
Problem: history	/		

• Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Port (1967): one-sided jumps

Problem	Tools	The censored process	Results
000●	000		00000
Problem:	history		

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Theorem (B-G-R)

Let x > 1. Then, when $\alpha \in (0, 1]$,

$$\begin{split} \mathsf{P}_x(X_{\tau_{-1}^1} \in \mathsf{d} y,\,\tau_{-1}^1 < \infty)/\mathsf{d} y \\ &= \frac{\sin(\pi\alpha/2)}{\pi} (x^2 - 1)^{\alpha/2} (1 - y^2)^{-\alpha/2} (x - y)^{-1} \end{split}$$

for $y \in (-1, 1)$.

Problem	Tools	The censored process	Results
000●	000		00000
Problem:	history		

- Blumenthal, Getoor, Ray (1961): symmetric, d-dimensional
- Port (1967): one-sided jumps

Theorem (B-G-R)

Let x > 1. Then, when $\alpha \in (1, 2)$,

$$\begin{aligned} \mathsf{P}_{x}(X_{\tau_{-1}^{1}} \in \mathsf{d}y)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha/2)}{\pi} (x^{2}-1)^{\alpha/2} (1-y^{2})^{-\alpha/2} (x-y)^{-1} \\ &- (\alpha-1) \frac{\sin(\pi\alpha/2)}{\pi} (1-y^{2})^{-\alpha/2} \int_{1}^{x} (t^{2}-1)^{\alpha/2-1} \mathsf{d}t, \end{aligned}$$

for $y \in (-1, 1)$.

Problem	Tools	The censored process	Results
0000	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
0000	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
0000	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
0000	•••	00000	00000

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem	Tools	The censored process	Results
0000	○●○		00000
Lamperti	transform		

 \boldsymbol{S} a random time-change

T a random time-change

Problem	Tools	The censored process	Results
0000	○●○	00000	00000
Lamperti t	ransform		

S a random time-change

T a random time-change

X never hits zero X hits zero continuously X hits zero by a jump

$$\leftrightarrow$$

 $\left\{ \begin{array}{l} \xi \to \infty \text{ or } \xi \text{ oscillates} \\ \xi \to -\infty \\ \xi \text{ is killed} \end{array} \right.$

Problem	Tools	The censored process	Results
0000	○○●		00000
Lamperti-stable	processes		

・ロト・日本・モー・モー ショー ション

Problem	Tools	The censored process	Results
0000	○○●		00000
Lamperti-stable	processes		

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Problem	Tools	The censored process	Results
0000	○○●		00000
Lamperti-stable	processes		

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then X^* is a pssMp, with Lamperti transform ξ^* .

Problem	Tools	The censored process	Results
0000	○○●		00000
Lamperti-stable	processes		

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Then X^* is a pssMp, with Lamperti transform ξ^* . ξ^* has Lévy density

$$c_+rac{e^x}{(e^x-1)^{lpha+1}}\mathbbm{1}_{(x>0)}+c_-rac{e^x}{(1-e^x)^{lpha+1}}\mathbbm{1}_{(x<0)},$$

and is killed at rate $c_{-}/\alpha = \frac{\Gamma(\alpha)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})}$.

Problem	Tools	The censored process	Results
0000	000	••••••	00000
Censoring			

• Start with X, the stable process.

Problem	Tools	The censored process	Results
0000	000	••••••	00000
Censoring			

<□ > < @ > < E > < E > E のQ @

• Start with X, the stable process.

• Let
$$A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$$
.

Problem	Tools	The censored process	Results
0000	000	●○○○○	00000
Censoring			

• Start with X, the stable process.

• Let
$$A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$$
.

• Let γ be the right-inverse of A, and put $\check{Y}_t := X_{\gamma(t)}$.

・ロト・日本・モト・モート ヨー うへで

Problem	Tools	The censored process	Results
0000	000	●○○○○	00000
Censoring			

• Start with X, the stable process.

• Let
$$A_t = \int_0^t \mathbb{1}_{(X_t > 0)} dt$$
.

• Let γ be the right-inverse of A, and put $\check{Y}_t := X_{\gamma(t)}$.

 Finally, make zero an absorbing state (needed in the case α ∈ (1,2)): Y_t = Y_t 1_(t<T₀). This is the censored stable process.

Problem	Tools	The censored process	Results
0000	000	0000	00000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Lamperti transform of Y and its structure

Censoring preserves self-similarity: *Y* is a pssMp.

Problem	Tools	The censored process	Results
0000	000	0000	00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Lamperti transform of Y and its structure

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Problem	Tools	The censored process	Results
0000	000	0000	00000

The Lamperti transform of Y and its structure

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Theorem

- $\xi \stackrel{d}{=} \xi^{\mathsf{L}} + \xi^{\mathsf{C}}$ (independent sum), with
 - ξ^{L} equal in law to ξ^{*} with the killing removed,
 - ξ^{C} a compound Poisson process with jump rate c_{-}/α .

Problem	Tools	The censored process	Results
0000	000	0000	00000

The Lamperti transform of Y and its structure

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Theorem

$$\xi \stackrel{d}{=} \xi^{\mathsf{L}} + \xi^{\mathsf{C}}$$
 (independent sum), with

- ξ^{L} equal in law to ξ^{*} with the killing removed,
- ξ^{C} a compound Poisson process with jump rate c_{-}/α .

Proof.

By diagram.

Problem	Tools	The censored process	Results
0000	000	0000	00000

The Lamperti transform of Y and its structure

Censoring preserves self-similarity: Y is a pssMp. Let ξ be the Lamperti transform of Y.

Theorem

$$\xi \stackrel{d}{=} \xi^{\mathsf{L}} + \xi^{\mathsf{C}}$$
 (independent sum), with

- ξ^{L} equal in law to ξ^{*} with the killing removed,
- ξ^{C} a compound Poisson process with jump rate c_{-}/α .

Proof.

By diagram. Tricky element – show Δ independent of ξ^{L} . Lamperti: $\Delta \leftrightarrow \frac{\chi_{\sigma}}{\chi_{\tau-}}$. By Markov property, reduces to showing $P_x(\frac{\chi_{\sigma}}{\chi_{\tau-}} \in \cdot)$ does not depend on x and this follows by scaling.

Problem	Tools	The censored process	Results
0000	000	0000	00000

Wiener-Hopf factorisation

Recall: Wiener-Hopf factorisation

Let ξ be a Lévy process, $\mathbb{E}[e^{i\theta\xi_1}] = e^{-\Psi(\theta)}$. Then there exist κ , $\hat{\kappa}$, such that:

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta),$$

 κ and $\hat{\kappa}$ Laplace exponents of increasing, possibly killed Lévy processes (subordinators) H and \hat{H} :

$$\mathbb{E}ig[e^{-\lambda H_1}ig] = e^{-\kappa(\lambda)}, \ \mathbb{E}ig[e^{-\lambda \hat{H}_1}ig] = e^{-\hat{\kappa}(\lambda)}, \qquad \lambda \geq 0.$$

unique

H and *Ĥ* related to maxima and minima of ξ: ascending and descending ladder processes.

Problem	Tools	The censored process	Results
0000	000		00000
Wiener-Hopf fact	torisation for ξ :	$\alpha \in (0, 1]$	

WHF for $\alpha \in (0, 1]$

$$\kappa(\lambda) = \frac{\Gamma(\alpha \rho + \lambda)}{\Gamma(\lambda)}, \qquad \hat{\kappa}(\lambda) = \frac{\Gamma(1 - \alpha \rho + \lambda)}{\Gamma(1 - \alpha + \lambda)}, \qquad \lambda \ge 0.$$

H: Lamperti-stable subordinator with parameters $(\alpha \rho, 1)$, i.e. pure jump subordinator with Lévy density $e^{x}/(e^{x}-1)^{\alpha \rho}$ *Ĥ*: (killed) Lamperti-stable subordinator with parameters $(\alpha \hat{\rho}, \alpha)$.

Lamperti-stable subordinators are nice! We can calculate:

- The Lévy measure of ξ ,
- The Lévy measures of H and \hat{H} ,
- The renewal measures, $\mathbb{E}\int_0^\infty \mathbbm{1}_{(H_t\in\cdot)} dt$ and $\mathbb{E}\int_0^\infty \mathbbm{1}_{(\hat{H}_t\in\cdot)} dt$.

Problem	Tools	The censored process	Results
0000	000	○○○○●	00000
Wiener-Hopf fac	torisation for ξ :	$\alpha \in (1,2)$	

WHF for $\alpha \in (1, 2)$

$$\kappa(\lambda) = (\alpha - 1 + \lambda) \frac{\Gamma(\alpha \rho + \lambda)}{\Gamma(1 + \lambda)}, \qquad \hat{\kappa}(\lambda) = \lambda \frac{\Gamma(1 - \alpha \rho + \lambda)}{\Gamma(2 - \alpha + \lambda)},$$

for
$$\lambda \ge 0$$
.
• $\kappa(\lambda) = \frac{\lambda}{\mathcal{T}_{\alpha-1}\psi(\lambda)}$, with $\psi \text{ LSS}(1 - \alpha\rho, \alpha\hat{\rho})$.
• $\hat{\kappa}(\lambda) = \frac{\lambda}{\phi(\lambda)}$, with $\phi \text{ LSS}(1 - \alpha\hat{\rho}, \alpha\rho)$.

Not as nice, but we can still calculate Lévy measures and renewal measures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem	Tools	The censored process	Results
0000	000		●0000
Results			

Recall: the problem

Let X be a stable process and x > 1.

$$\mathsf{P}_xig(X_{ au_{-1}}^1\in \mathsf{d} y,\, au_{-1}^1<\inftyig)=\mathsf{what}?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem	Tools	The censored process	Results
0000	000		•0000
Results			

Recall: the problem

Let X be a stable process and x > 1.

$$\mathsf{P}_{x}ig(X_{ au_{-1}}^{-1}\in \mathsf{d} y,\, au_{-1}^{1}<\inftyig)=\mathsf{what}?$$

As stable processes are self-similar and have stationary and independent increments, we can shift-and scale and reduce the probability of interest to:

$$\mathsf{P}_1(X_{\tau_0^b} \in \mathsf{d}z, \tau_0^b < \infty), \qquad 0 < b < 1.$$

where $\tau_0^b = \inf\{t > 0 : X_t \in (0, b)\}.$

Problem	Tools	The censored process	Results
0000	000		0●000
Results			

Key fact 1:
$$P_1(X_{\tau_0^b} \in dz, \tau_0^b < \infty) = P_1(Y_{\eta_0^b} \in dz, \eta_0^b < \infty)$$

where $\eta_0^b = \inf\{t > 0 : Y_t \in [0, b)\}.$

Problem	Tools	The censored process	Results
0000	000	00000	0●000
Results			

Recall: Lamperti transform

$$Y_t = \exp(\xi_{S(t)}), \text{ and } \xi_s = \log Y_{T(s)},$$

where S, T are random, mutually inverse time-changes.

Key fact 2: (0, b) for Y corresponds to $(-\infty, \log b)$ for ξ and η_0^b corresponds to $S_a^- = \inf\{s > 0 : \xi_s < \log b\}$. Then,

$$Y_{\eta_0^b} = \exp\bigl(\xi_{S^-_{\log b}}\bigr).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem	Tools	The censored process	Results
0000	000	00000	0●000
Results			

Recall: Lamperti transform

$$Y_t = \exp(\xi_{S(t)}), \text{ and } \xi_s = \log Y_{T(s)},$$

where S, T are random, mutually inverse time-changes.

Key fact 2: (0, b) for Y corresponds to $(-\infty, \log b)$ for ξ and η_0^b corresponds to $S_a^- = \inf\{s > 0 : \xi_s < \log b\}$. Then,

$$Y_{\eta_0^b} = \exp\bigl(\xi_{S^-_{\log b}}\bigr).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem	Tools	The censored process	Results
0000	000		00●00
Results			

So now we are looking for $\mathbb{P}(\xi_{S_a^-} \in \mathsf{d}w, S_a^- < \infty)$, for a < 0.

Method for $\alpha \in (0, 1]$

Use the ladder process:

$$\mathbb{P}(\xi_{S_a^-} \in \mathsf{d}w, \, S_a^- < \infty) = \mathbb{P}(\underline{\xi}_{S_a^-} \in \mathsf{d}w, \, S_a^- < \infty)$$
$$= \mathbb{P}(-\hat{H}_{S_{-a}^+} \in \mathsf{d}w)$$
$$= \int_{[0,-a]} \hat{U}(\mathsf{d}z) \Pi_{\hat{H}}(-\mathsf{d}w - z),$$

recalling that $-\hat{H}$ is a time-change of the running minimum ξ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem	Tools	The censored process	Results
0000	000		00€00
Results			

So now we are looking for
$$\mathbb{P}(\xi_{S_a^-} \in \mathsf{d} w, S_a^- < \infty)$$
, for $a < 0$.

Method for $\alpha \in \overline{(1,2)}$

Use the Pecherskii-Rogozin identity:

$$\int_0^{\infty} \int \exp(qa - \beta(a - \xi_{S_a^-})) \, \mathrm{d}\mathbb{P} \, \mathrm{d}a = \frac{\hat{\kappa}(q) - \hat{\kappa}(\beta)}{(q - \beta)\hat{\kappa}(q)},$$
for $a < 0, q, \beta > 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem	Tools	The censored process	Results
0000	000		000●0
The theorem			

Theorem

Let x > 1. Then, when $\alpha \in (0, 1]$,

$$\begin{split} \mathsf{P}_{x}(X_{\tau_{-1}^{1}} \in \mathsf{d}y, \, \tau_{-1}^{1} < \infty)/\mathsf{d}y \\ &= \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (x+1)^{\alpha\rho} (x-1)^{\alpha\hat{\rho}} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}} (x-y)^{-1}, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for
$$y \in (-1, 1)$$
.

Problem	Tools	The censored process	Results
0000	000		000●0
The theorem			

Theorem

Let x > 1. Then, when $\alpha \in (1, 2)$,

$$P_{x}(X_{\tau_{-1}^{1}} \in dy)/dy$$

$$= \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (x+1)^{\alpha\rho} (x-1)^{\alpha\hat{\rho}} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}} (x-y)^{-1}$$

$$- (\alpha-1) \frac{\sin(\pi\alpha\hat{\rho})}{\pi} (1+y)^{-\alpha\rho} (1-y)^{-\alpha\hat{\rho}}$$

$$\times \int_{1}^{x} (t-1)^{\alpha\hat{\rho}-1} (t+1)^{\alpha\rho-1} dt,$$
For $x \in (-1, 1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for $y \in (-1, 1)$.

Problem	Tools	The censored process	Results
0000	000	00000	0000●
Robustness			

This method turns out to be robust enough to prove other identities, including explicit identities for:

Problem	Tools	The censored process	Results
0000	000		0000●
Robustness			

This method turns out to be robust enough to prove other identities, including explicit identities for:

The expected occupation measure for X of $(-1,1)^c$ until hitting (-1,1),

$$\mathsf{E}_{x}\int_{0}^{\tau_{-1}^{1}}\mathbb{1}_{(X_{t}\in\mathsf{d}_{y})}\,\mathsf{d} t \qquad x,y\not\in(-1,1).$$

Problem	Tools	The censored process	Results
0000	000		0000●
Robustness			

This method turns out to be robust enough to prove other identities, including explicit identities for:

The expected occupation measure for X of $(-1, 1)^c$ until hitting (-1, 1),

$$\exists_x \int_0^{\tau_{-1}^1} \mathbb{1}_{(X_t \in \mathsf{d}_y)} \mathsf{d}t \qquad x, y \notin (-1, 1).$$

When $\alpha \in (1,2)$, the law of first entry into $(1,\infty)$ of X on avoiding the origin,

$$\mathsf{P}_{x}(X_{\tau_{1}^{+}} \in \mathsf{d}u, \, \tau_{1}^{+} < \tau_{0}), \qquad x \leq 1,$$

where $\tau_1^+ = \inf\{t > 0 : X_t > 1\}.$