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De Finetti’s control problem and spectrally negative Lévy processes

Cramér-Lundberg processes

• A classic actuarial problem concerns the ruin problem centred around
the surplus process defined by:

• The stochastic process under P

X
(x)
t = x + ct −

Nt∑
i=1

ξi

where x , c > 0, {Nt : t ≥ 0} is a Poisson process with rate λ > 0
and {ξi : i ≥ 1} is a sequence of i.i.d. random variables.

• The ruin problem looks at the behaviour of the surplus process up to
and on the event

{τ+0 <∞}

where
τ+0 = inf{t > 0 : Xt < 0}.

under the assumption that c − λE(ξ1) > 0, i.e. limt↑∞Xt =∞.
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De Finetti’s control problem and spectrally negative Lévy processes

Technicalities (you can choose to ignore)

• Note that the Cramér-Lundberg risk process is an example of a Lévy
process.

• For that reason we prefer the notation (X ,Px ) in place of (X (x),P).
• In this talk, you have the option to think of X = {Xt : t ≥ 0} as a

spectrally negative Lévy process.

• In either case, for θ ≥ 0 we may work with the Laplace exponent

ψ(θ) := logE0(e
θX1),

which is strictly convex, respects the condition ψ′(0+) > 0, passes
though the origin and so tends to +∞ at ∞.
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De Finetti’s control problem and spectrally negative Lévy processes

de Finetti’s view of the ruin problem

An ‘old’ actuarial problem of the ‘modern’ probabilistic age proposed by
de Finetti 1957 (also Gerber 1969).

• Consider L = {Lt : t ≥ 0} is a stream of dividend payments or a
‘dividend strategy’: left continuous, non-negative, non-decreasing
process adapted to the filtration generated by X .

• Ut = Xt − Lt is the residual surplus after dividends are paid,

σL = inf{t > 0 : Xt − Lt < 0}

is the ruin time. (Also impose that L is such that ruin cannot be
caused by a jump of L).

• de Finetti’s control problem: find the value function and matching
dividend strategy L∗ such that

v(x ) = sup
L

Ex

(∫ σL

0

e−qtdLt

)
= Ex

(∫ σL∗

0

e−qtdL∗t

)
where q > 0 and the supremum is taken over all admissible dividend
strategies.
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De Finetti’s control problem and spectrally negative Lévy processes

Reflection strategies

• It has been shown that the optimal strategy is of a ‘barrier type with
reflection’:

La
t = (a ∨ sup

s≤t
Xs)− a

for some optimal level a. Below a realisation of Xt − La
t

a

These cases are:

1 (Gerber 1969) Cramér-Lundberg process with exponentially
distributed jumps Xt = ct −

∑Nt
i=1 ei ,

2 (Jeanblanc & Shiryaev 1995 and many others) Linear Brownian
motion: Xt = µt + σBt .

• However, it has also been shown that the above strategy is not
optimal, even by straying not too far from the above models!

3 (Ascue & Muler 2005) Cramér-Lundberg process with gamma
distributed jumps having density proportional to xe−x .
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De Finetti’s control problem and spectrally negative Lévy processes

Scale functions are a natural tool

• It turns out there is a very natural tool for analysing path functionals
of spectrally negative Lévy processes (and in particular
Cramér-Lundberg processes).

• For each q ≥ 0 there exists a function W (q) : [0,∞)→ [0,∞)
defined by its Laplace transform∫ ∞

0

e−βxW (q)(x )dx =
1

ψ(β)− q

for β sufficiently large.

• For all a > 0,

va(x ) := Ex

(∫ La

0

e−qxdLa
t

)
=


W (q)(x)
W (q)′(a)

when x ≤ a

(x − a) + W (q)(a)
W (q)′(a)

when x > a
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De Finetti’s control problem and spectrally negative Lévy processes

Loeffen (2008)

• .....made two extraordinary observations by examining the HJB
equations in more detail.

1 The refraction strategy at level

a∗ := sup{a ≥ 0 : W (q)′(a) ≤W (q)′(x) for all x ≥ 0}

is optimal as soon as one assumes that W (q) is a convex function on
(a∗,∞).
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is optimal as soon as one assumes that W (q) is a convex function on
(a∗,∞).

2 The above condition is satisfied if the distribution of the i.i.d. claims
{ξi : i ≥ 1} has a density f which is completely monotone.1 i.e.
(−1)ndn f /dxn ≥ 0 for all n ≥ 1.

• The latter condition expands vastly the claim distributions in the
Cramér-Lundberg model for which the reflection barrier strategy is
optimal.

• Moreover, it gives some hint as to why the Azcue & Muler example
fails: In that case the claim distribution has a density which is not
completely monotone!

1For Lévy-friendly readers: the Lévy measure when projected onto (0,∞) has a
completely monotone density.
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De Finetti’s control problem and spectrally negative Lévy processes

Restricted class of control strategies

• Many variations on this theme have been examined for the case of
diffusions (Jeanblanc & Shiryaev 1995, Elena Boguslavskaya’s Ph.D.
thesis) as well as the Cramér-Lundberg case with exponential jumps
(Gerber & Shiu 2006) including the following:

• The class of admissible strategies is further restricted to the case
that

Lt =

∫ t

0

φ(s)ds

where φ is measurable and uniformly bounded by, say, δ > 0. In the
Cramér-Lundberg setting we need that δ < c. We should now think
of φ as the control.

• What was the optimal strategy appeared in the aforementioned
articles?
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De Finetti’s control problem and spectrally negative Lévy processes

Refraction strategies

• A refraction strategy refers to the control φ(x ) = δ1(x>b) for some
threshold level b ≥ 0. Thus the controlled process would need to
solve the stochastic differential equation

Ut = Xt − δ
∫ t

0

1(Us>b)ds.

b

• Note in the case that X is a general spectrally negative Lévy process
the above SDE is highly non-trivial if there is no Gaussian
component.
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De Finetti’s control problem and spectrally negative Lévy processes

K., and Loeffen (2010)

• Existence and uniqueness of a strong solution to SDE established in
the general Lévy case.

• Write W(q) for the scale function associated with Xt − δt .

• Suppose that
κ−0 := inf{t > 0 : Ut < 0}.

For q ≥ 0 and x ≥ 0

vb(x ) := Ex

(∫ κ−0

0

e−qtδ1{Ut>b}ds

)

= −δ
∫ (x−b)∨0

0

W(q)(z )dz

+
W (q)(x ) + δ1{x≥b}

∫ x

b
W(q)(x − y)W (q)′(y)dy

ϕ(q)
∫∞
0

e−ϕ(q)yW (q)′(y + b)dy
,

where ϕ(q) is the unique solution in (0,∞) to ψ(θ)− δθ = 0.
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De Finetti’s control problem and spectrally negative Lévy processes

K., Loeffen and Pérez (2010)

• Define the function

h(x ) = ϕ(q)

∫ ∞
0

e−ϕ(q)yW (q)′(y + b)dy

• Define further the constant

b∗ = sup{b ≥ 0 : h(b) ≤ h(x ) for all x ≥ 0}
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K., Loeffen and Pérez (2010)

• Define the function

h(x ) = ϕ(q)

∫ ∞
0

e−ϕ(q)yW (q)′(y + b)dy

• Define further the constant

b∗ = sup{b ≥ 0 : h(b) ≤ h(x ) for all x ≥ 0}

• The refraction strategy at level b∗ is optimal amongst the absolutely
continuous δ-bounded strategies as soon as we assume that the
common distribution of the claims is absolutely continuous with
completely monotone density.2

2For Lévy-friendly readers: the Lévy measure when projected onto (0,∞) has a
completely monotone density.
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De Finetti’s control problem and spectrally negative Lévy processes

How explicit is explicit? How natural is natural?

• The results presented here have been possible thanks to an deep
understanding of analytical properties of scale functions.

• Whilst the conditions on the claim distribution (resp. Lévy measure)
are very straightforward to check, the expressions for the optimal
value can only be written in terms of a mysterious ”scale function”.

• There has been significant work recently in pushing forward
methodology which allows one to develop either closed form or
semi-explicit expressions for W (q). See the forthcoming review of
the theory of scale functions in the springer Lecture Notes in
Mathematics series ”Lévy Matters”: K., Rivero and Kuznetsov
(2011).

• How close are the sufficient conditions of a completely monotone
density to necessary?

• Two more papers, K., Rivero, Song (2010) and Loeffen and Renaud
(2010) explore this idea further and the final word from the latter
papers shows that insisting that the tail of the jump distribution is a
log-convex function is still sufficient.
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methodology which allows one to develop either closed form or
semi-explicit expressions for W (q). See the forthcoming review of
the theory of scale functions in the springer Lecture Notes in
Mathematics series ”Lévy Matters”: K., Rivero and Kuznetsov
(2011).

• How close are the sufficient conditions of a completely monotone
density to necessary?

• Two more papers, K., Rivero, Song (2010) and Loeffen and Renaud
(2010) explore this idea further and the final word from the latter
papers shows that insisting that the tail of the jump distribution is a
log-convex function is still sufficient.
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Mathematics series ”Lévy Matters”: K., Rivero and Kuznetsov
(2011).

• How close are the sufficient conditions of a completely monotone
density to necessary?

• Two more papers, K., Rivero, Song (2010) and Loeffen and Renaud
(2010) explore this idea further and the final word from the latter
papers shows that insisting that the tail of the jump distribution is a
log-convex function is still sufficient.


