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Galton–Watson processes
↓
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↓
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↓
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↓
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↓
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↓
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↓
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An overview of processes with branching

1. Galton–Watson processes
A model for asexual reproduction represented by the Markov chain
{Zn : n ≥ 0} and k ∈ N,
Zn is the number of individuals in the n-th generation.
Take, Z0 = k ∈ N. [Usually assume k = 1].
Thereafter, iterate from generation n to n+ 1 via

Zn+1 =

Zn∑
j=1

A
(n+1)
j ,

where {A(n+1)
j } are independent of {Z1, · · · , Zn} and have a common

distribution {pi : i ≥ 0}, known as the offspring distribution. [Assume
p1 = 0 and distribution is not defective].
What makes this a branching process?
Momentarily incorporate the the initial value k into the notation:

Z(k)
n =d Z(1)

n (1) + Z(1)
n (2) + · · ·+ Z(1)

n (k),

where Z(1)
n (j) is an i.i.d. copy of Z(1)

n .
Note Markov property: for k, n, n′ ∈ N

Z
(k)

n+n′ = Z̃
(Z

(k)
n )

n′

where Z̃(·)
· is an independent copy of Z(·)

· .
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2. Criticality
Suppose that q = P(Zn = 0 for some n ∈ N)
Let Fn = σ(Z0, · · · , Zn), then we have a martingale:

P(Zn = 0 for some n ∈ N|Fn) = qZn

The constant q is a fixed point of the p.g.f. of the offspring distribution

q =

∞∑
j=0

qipi

Conversely, any fixed point, q, of the p.g.f. of the offspring distribution
makes a martingale: {qZn : n ≥ 0}
Note that q1 = 1 is always a root.
Note, moreover, that

∞∑
j=0

sipi

∣∣∣∣∣
s=0+

= p0

and a little argument shows that the p.g.f. is strictly convex and hence
there is a second root q2 ∈ (0, 1) if and only if

m :=

∞∑
i=1

ipi > 1.

Always assume that m <∞
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3. Criticality

Either m ≤ 1, in which case q = 1 is the only fixed point, i.e. extinction is
certain.

Or m > 1, in which case qZn
2 is a uniformly integrable martingale which

has a non-trivial limit with mean q2 < 1.

This means P(Zn = 0 for some n ≥ 1) ∈ [0, 1) and hence, as this
probability is also a fixed point, it must be equal to q2.

Theorem:
(i) If m ≤ 1, (sub)critical, then P(Zn = 0 for some n ≥ 1) = 1
(ii) If m > 1, supercritical, then P(Zn = 0 for some n ≥ 1) = q where
q =

∑∞
i=0 q

ipi.
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4. Supercritical growth

Another martingale (with unit mean):

Mn :=
Zn
mn

, n ≥ 0.

Note
E[Mn+1|Fn] =

1

mn+1
E[Z̃

(Zn)
1 |Fn]

so it is enough to prove that

E[Z
(`)
1 ] = `m,

but this is obvious.

As a positive martingale, Mn has an almost sure limit, say M∞. If the
latter is non-trivial, then

Z(k)
n ∼ mnM∞ as n→∞.
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5. Supercritical growth

Theorem (Kesten–Stigum): Suppose that m > 1. The martingale Mn is
L1 convergent (in particular E(M∞) = 1 and hence M∞ is not trivial if
and only

∞∑
i=1

i log ipi <∞.

Otherwise M∞ ≡ 0.

In fact, when there is L1 convergence {M∞ = 0} = {Zn = 0 for some n}
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6. Branching Random Walk

We want to build a spatial ‘branching’ out of the Galton–Watson process.
We think of the population in generation n as random measure on Rd with
atomic support, each atom having unit mass: i.e. a process
X = {Xn(·) : n ≥ 0}, where

Xn(·) =

Zn∑
i=1

δxni (·),

and {xni : i = 1, · · · , Zn} are the positions and number of particles
making up the support of Xn.
Consider a point process ξ(·) on Rd.
Let X0(·) = δ0(·) and, given Xn(·),

Xn+1(·) =

Zn∑
i=1

ξ
(n+1)
i (· − xni ),

where ξ(n+1)
i are i.i.d. copies of ξ.

X is still a branching process, in the sense of independent additivity, and
Markovian, as a measure-valued process.
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7. Branching Random Walk



An overview of processes with branching

8. Branching Random Walk (BRW)

Note that the total mass of Xn, is integer valued and satisfies

〈1, Xn〉 =

∫
Rd

1 Xn(dx) = Zn

Pre-emptive choice of notation: Zn is again a Galton–Watson process.
Drop to one dimension, fix θ ∈ R and let

m(θ) = E

[
Z1∑
i=1

e−θx
n
i

]
Note that when θ = 0 then m(0) = m = E(Z1), as before.
Another martingale:

Wn(θ) :=
1

m(θ)n

Zn∑
i=1

e−θx
n
i , n ≥ 0.

Note that when θ = 0, then Wn(0) = Zn/m
n.

Again, as a non-negative martingale, it has an almost sure limit, say
W∞(θ).
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9. Biggins’ Martingale Convergence Theorem

Let θ1 = inf{θ : m(θ) <∞} and θ2 = sup{θ : m(θ) <∞}.
Theorem (Biggins 1977): Suppose that θ1 < θ2. Then there exists an
interval (θ∗, θ

∗) such that, for all θ ∈ (θ1, θ2), W∞(θ) is an L1 limit if and
only if

E[W1(θ)| logW1(θ)|] <∞ and θ ∈ (θ∗, θ
∗),

otherwise W∞(θ) ≡ 0.
In fact, when there is L1 convergence,

{W∞(θ) = 0} = {Zn = 0 for some n}.

There is a remarkable connection between this theorem and the behaviour
of the right most particle

Rn = sup{xin : i = 1, ·, Zn} = sup{y ∈ R : Xn(y,∞) > 0}.

Theorem (Biggins 1976):

Rn
n
→ γ∗ :=

1

θ∗
logm(θ∗) as n→∞ a.s on {Extinction}c
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10. Right most particle

By differentiating Wn(θ) across its conditional expectation, one quickly
establishes that

∂Wn(θ) := − ∂

∂θ
Wn(θ), n ≥ 0,

is also a martingale (albeit signed).
Theorem (Biggins and K. 2004) (A continuation of Biggins’ Martingale
Convergence Theorem). For θ ∈ [θ∗, θ

∗] the derivative martingale limit
exists almost surely (denoted by ∂W∞(θ)) and

∂W∞(θ) ≡ 0 when θ ∈ (θ∗, θ
∗),

moreover, under some additional mild moment conditions,

∂W∞(θ∗) > 0 and ∂W∞(θ∗) > 0

on {Zn = 0 for some n}c and both have infinite mean.
Theorem (Aidekon 2012): Under mild conditions,

P(Rn − γ∗n+
3

2
c∗ logn ≤ x)→ E[exp{−C∗∂W∞(θ∗)}]

as n→∞.
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11. Crump–Mode–Jagers processes

In the special case that supp ξ = [0,∞), the BRW describes a
Crump–Mode-Jagers process.
Think of ‘spatial displacement’ as ‘birth time’.
Rather than studying the CMJ indexed by generation, it is now more
natural to study the evolution the process as it evolves in ‘time’.
For example, the ‘coming generation’:

C(t) = {individuals born after time t whose parents were born before time t}

Denote their birth times by {σu : u ∈ C(t)}.
Malthusian Parameter: The constant α > 0 such that

E
[∫ ∞

0

e−αxξ(dx)

]
= 1.

In fact
Λt(α) :=

∑
u∈C(t)

e−ασu , t ≥ 0

is a martingale (non-negative and hence with an a.s. limit).
Under very mild assumptions Λ∞(α) = W∞(α) !
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12. Crump–Mode–Jagers processes
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13. Fragmentation Chains
Consider the unit interval [0, 1] fragmented randomly into smaller pieces
(intervals), and the pieces arranged in descending order of their lengths:
B1, B2, · · · , ∑

i≥1

|Bi| = 1

Use independent samples from the distribution of (B1, B2, · · · ) to
fragment each of these pieces further into further pieces. e.g. given a
fragment interval I, it can be dislocated further into fragments
(IB′1, IB

′
2, · · · ), where (B′1, B

′
2, · · · ) is an independent sample from the

distribution of (B1, B2, · · · ).
Suppose that (In1 , I

n
2 , · · · ) are the pieces (intervals) in the n-th generation

of fragmentations, arranged in decreasing order of size. Then

Xn(·) :=
∞∑
j=1

δ− log Inj
(·), n ≥ 0,

is a C-M-J process.
Note that the process can equally be represented by a sequence of ordered
length (or mass) partitions of [0, 1], indexed by generations of
fragmentation:

In = (In1 , I
n
2 , · · · ), n ≥ 0
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14. Fragmentation Chains

Instead of considering dislocations, at each generation, we can set the
process in real time by applying an independent and identically distributed
exponential holding time to each fragment before it dislocates.

t

-log I

The process can be thought of as a process of ordered length (or mass)
partitions of [0, 1] indexed by real time:

I(t) = (I1(t), I2(t), · · · ), t ≥ 0.
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15. Fragmentation Chains

A self-similar fragmentation chain has the property that a fragment of size
s has an independent exponentially distributed holding time with rate
which is proportional to sα. Here, α ∈ R is the index of self-similarity.

α = 0 is the homogenous case considered on the previous slide.

In general, the resulting fragmentation chain has the property that, for any
c ∈ (0, 1),

{cI(cαt) : t ≥ 0} with I(0) = (1, 0, 0, · · · ),

is equal in law to

{I(t) : t ≥ 0} with I(0) = (c, 0, 0, · · · ).

Branching and Markov properties still to be found: The law of I(t+ s)
given {I(u) : u ≤ s} is equal in law to the ordering of the collective mass
partitions produced by an independent sequence of mass partitions

c1I(cα1 s), c2I(cα2 s), c . . . ,

where I(t) = (c1, c2, · · · ).
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16. Fragmentation processes

A (self-similar) mass fragmentation process is a stochastic process which is
valued on the space of ordered mass partitions of [0, 1] and which satisfies
the branching and Markov properties in the previous bullet point.

A fragmentation chain fits the description of a fragmentation process, but
there are more processes to be found in the latter class.

In general, one can find fragmentation processes for which dislocation
times form a dense set of of [0,∞).

Fragmentation chains are to fragmentation processes what compound
Poiss on processes are to Lévy processes.
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17. Continuous-time Galton–Watson processes

Following the example of fragmentation chains, we can convert a
Galton–Watson process to a continuous-time branching process by giving
holding times (life lengths) to individuals before they branch, which are
independent and identically exponentially distributed with parameter, say,
β.

Write {Z(t) : t ≥ 0} for the number of individuals at time t.

Temporarily introducing extra notation for the number of initial
individuals: Z(k)(t) satisfies Z(k)(0) = 0.

We still have the branching property

Z(k)(t) =d Z
(1)
1 (t) + · · ·+ Z

(1)
k (t), t ≥ 0,

where Z(1)
i (·) are i.i.d. copies of Z(1)(·).

The lack of memory property for each life length gives us the Markov
property

Z(t+ s) =d Z̃(Zt)(s), t ≥ 0,

where Z̃(k)(·) is an independent copy of Z(k)(·).
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18. Continuous-time Galton–Watson processes

Lots of familiar properties when we compare to the discrete-time
Galton–Watson process

If m ≤ 1 then P(Z(t) = 0 for some t > 0) = 1

If m > 1 then q := P(Z(t) = 0 for some t > 0) < 1 and Z(t)→∞ on
{Z(t) = 0 for some t > 0}c.
qZ(t), t ≥ 0, is a martingale.

When Z(0) = 1,
E[Z(t)] = eβ(m−1)t

The process
Z(t)e−β(m−1)t, t ≥ 0,

is a martingale.

Exercise: guess the analogue of the Kesten–Stigum Theorem.
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19. Lamperti time change
Introduce a new distribution on {πi : i = −1, 0, 1, 2, · · · }, where
πi = pi+1. (The number of GW offspring minus 1).
Write, for t ≥ 0,

Jt =

∫ t

0

Z(s)ds,

set
ϕ(t) = inf{u > 0 : Ju > t}

(with the usual inf ∅ =∞) and define

L(t) = Z(ϕ(t)), t ≥ 0.

Consider what happens up to the first branching time T1:
If Z(0) = k, then T1 is the minimum of k independent exponentially
distributed random variables, each with rate q. i.e. T1 ∼ exp(kβ).
And hence, JT1 = kT1 ∼ exp(β).
Apply Markov property at time T1, when the number of individuals moves
from k to k + i with probability πi, and use this same reasoning again
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20. Lamperti time change

The converse is also true: Suppose that Lt is a compound Poisson process
with arrival rate q and jump distribution F (dx) =

∑∞
i=−1 πδi(dx). Let

Kt =

∫ t

0

1

L(s)
ds, t ≥ 0,

set
θ(t) = inf{u > 0 : Ku > t}

and define
Z(t) = L(θ(t) ∧ τ0), t ≥ 0,

where
τ0 = inf{t > 0 : L(t) = 0}.

Then {Z(t) : t ≥ 0} is a continuous-time Galton–Watson process.
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21. Continuous-state branching process (CSBP)

A [0,∞]-valued strong Markov process Z = {Z(t) : t ≥ 0} with
probabilities {Px : x ≥ 0} is called a continuous-state branching process if
it has paths that are right-continuous with left limits and its law observes
the branching property: for all θ ≥ 0 and x, y ≥ 0,

Ex+y(e−θZ(t)) = Ex(e−θZ(t))Ey(e−θZ(t)).

The same time change using the additive functional∫ t

0

Y (s)ds, t ≥ 0

makes Z(ϕ(t)), t ≥ 0 a Lévy process with no negative jumps.

Similarly, given a Lévy process {L(t) : t ≥ 0} with no negative jumps, the
same transform as before using the additive functional∫ t

0

1

L(s)
ds, t ≥ 0

makes L(θ(t) ∧ τ0), t ≥ 0, a CSBP.
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22. CSBP semi-group

Recall that a (finite mean) Lévy process with no negative jumps is
characterised through its Laplace exponent:

E[e−λL(t)] = exp{ψ(λ)t}, t ≥ 0,

where

ψ(λ) = −aλ+ σλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx), λ ≥ 0,

where a ∈ R, σ ≥ 0 and Π is a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x2)Π(dx) <∞.

Not easy to see the CSBP Z through a path wise construction, but some
information in its semi-group: For θ ≥ 0, x > 0,

Ex(e−θZ(t)) = e−ut(θ)x,

where, for t, θ ≥ 0,

∂

∂t
ut(θ) + ψ(ut(θ)) = 0, and u0(θ) = θ.
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Recall that a (finite mean) Lévy process with no negative jumps is
characterised through its Laplace exponent:

E[e−λL(t)] = exp{ψ(λ)t}, t ≥ 0,

where

ψ(λ) = −aλ+ σλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx), λ ≥ 0,

where a ∈ R, σ ≥ 0 and Π is a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x2)Π(dx) <∞.

For comparison, consider the semi-group of the continuous-time G–W
process:

Ex(e−θZ(t)) = vt(θ)x,

where, for t, θ ≥ 0,

∂

∂t
vt(θ) = G(vt(θ)), and u0(θ) = e−θ.

where G(s) = β
(∑∞

j=0 s
jpj − s

)
.
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23. Growth, extinguishing and extinction

As before

Ex(Z(t)) = xeat and Z(t)e−at is a martingale.

(Sub)critical if a ≤ 0. Supercritical if a > 0.

Extinguishing: {Z(t)→ 0}
Extinction: {Z(t) = 0 for some t ≥ 0} (implies extinguishing).

Px(Extinguishing) = exp{−ψ−1(0)x} (< 1 if and only if a > 0).

{Extinguishing}c = {Z(t)→∞}.
If {Extinction} 6= ∅ then {Extinguishing\Extinction} = ∅ (a.s.)
Extinction if and only if ∫ ∞ 1

ψ(θ)
dθ <∞

Note that continuous-time G–W processes cannot undergo extinguishing
as they are integer valued! The reason why there are two types of ‘dying
out’ for CSBPs can be see through particle approximation via
continuous-state G–W processes (see later).
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24. Branching Brownian Motion

Take a continuous-time Galton–Watson processes and make each
individual execute an independent (d-dimensional) Brownian motion from
its space-time moment of birth until branching.

Similarly to a BRW, we can describe the process as a continuous-time
atomic-valued Markov process

Xt(·) =

Z(t)∑
i=1

δxi(t)(·)

Total mass: 〈1, X(t)〉 =
∫
Rd 1Xt(dx) = Z(t)

Martingales:

e−β(m−1)t
Nt∑
i=1

e−λxi(t)−λ
2t/2, t ≥ 0

Right most particle for d = 1: Rt := sup{x ∈ R : Xt(x,∞) > 0}

Rt
t
→
√

2β as t→∞ on {Extinction}c
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25. Branching Brownian Motion (BBM)
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26. ψ-superBrownian motion

Want to construct a Markov process with values in theMF , the space of
finite measures (on Rd).
Fix µ ∈MF , fix n ∈ N. Consider a BBM with an initial number of
particles which are scattered in space according to a Poisson random field
with intensity nµ(·).
Normally BBM assigns unit mass to each individual. Now assign mass 1/n
to each individual.
Fix the branching rate in BBM at n.
Impose a special offspring distribution such that the generator

G(s) = “ β

(
∞∑
j=0

sjpj − s

)
” = n

(
1

n
ψ(n(1− s))

)
where

ψ(λ) = σλ2 +

∫
(0,∞)

(e−λy − 1 + λx)ν(dx)

Now take a ‘weak’ limit of the resulting BBM as n→∞ and we get a
measure-valued Markov process X := {Xt(·) : t ≥ 0} valued inMF .
[Note X0(·) = µ(·)].
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G(s) = “ β

(
∞∑
j=0

sjpj − s

)
” = n

(
1

n
ψ(n(1− s))

)
where

ψ(λ) = σλ2 +

∫
(0,∞)

(e−λy − 1 + λx)ν(dx)

Now take a ‘weak’ limit of the resulting BBM as n→∞ and we get a
measure-valued Markov process X := {Xt(·) : t ≥ 0} valued inMF .
[Note X0(·) = µ(·)].
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27. ψ-superBrownian motion

We can characterise the evolution of X through its semi-group: For all
bounded measurable f , t ≥ 0 and x ∈ Rd and µ ∈MF ,

Eδx(e−〈f,Xt〉) =: e−w(x,t)

(branching)
Eµ(e−〈f,Xt〉) = e−

∫
Rd w(x,t)µ(dx)

and
∂

∂t
w(x, t) =

1

2

∂

∂x2
w(x, t)− ψ(w(x, t)).

It is straightforward to check that {〈1,Xt〉 : t ≥ 0} is a CSBP. Inspection
of ψ shows that it is a critical CSBP.
An adaptation of this reasoning can produce a supercritical (subcritical)
ψ-superBrownian motion.
This construction implicitly describes how to scale a continuous-time G–W
process to get a CSBP.
The difference in the long-term behaviour between CSBP and
continuous-time G–W process is explained by the “infinite number of initial
particles" hidden in the CSBP.
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