| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# **Exploration of** $\mathbb{R}^d$ by the isotropic $\alpha$ -stable process

Andreas Kyprianou Based on joint work with V. Rivero and W. Satitkanitkul

A more thorough set of lecture notes can be found here: https://arxiv.org/abs/1707.04343 Other related material found here https://arxiv.org/abs/1511.06356 https://arxiv.org/abs/1511.06356 https://arxiv.org/abs/1706.09924

- コン・4回シュ ヨシュ ヨン・9 くの

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

## MAIN OBJECTIVES OF MINI-COURSE

To review the theory  $\mathbb{R}^d$  -valued stable processes in light of a number of recent developments

・ロト・日本・モー・モー・ 日・ うへの

- Theory of self-similar Markov processes
- Radial fluctuation theory
- Space-time transformations (Riesz–Bogdan–Żak transform)
- Connections with classical potential analysis

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

§1. Quick review of Lévy processes



| <b>91.</b> 92. 95. 94. 95. 90. 97. 96. Referen | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | Reference |
|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|
|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|

## (KILLED) LÉVY PROCESS

Fundamentally we are going to spend a lot of time talking about Lévy processes in one and higher dimensions. But it is worth us briefly reminding ourselves about a few facts:

- ► (ξ<sub>t</sub>, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula:

$$\mathbb{E}[\mathbf{e}^{\mathbf{i}\boldsymbol{\theta}\cdot\boldsymbol{\xi}_t}] = \mathbf{e}^{-\Psi(\boldsymbol{\theta})t}, \qquad \boldsymbol{\theta} \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{ia} \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A}\theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i}\theta \cdot x} + \mathrm{i}(\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d}x),$$

where  $a \in \mathbb{R}$ , **A** is a  $d \times d$  Gaussian covariance matrix and  $\Pi$  is a measure satisfying  $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$ . Think of  $\Pi$  as the intensity of jumps in the sense of

 $\mathbb{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$ 

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

$$\mathbb{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

$$\Phi(\lambda) = q + \delta\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

| <b>91.</b> 92. 95. 94. 95. 90. 97. 96. Referen | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | Reference |
|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|
|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|

## (KILLED) LÉVY PROCESS

Fundamentally we are going to spend a lot of time talking about Lévy processes in one and higher dimensions. But it is worth us briefly reminding ourselves about a few facts:

- ► (ξ<sub>t</sub>, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula:

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta\cdot\xi_t}] = \mathrm{e}^{-\Psi(\theta)t}, \qquad \theta \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i}a \cdot \theta + \frac{1}{2}\theta \cdot \mathbf{A}\theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i}\theta \cdot x} + \mathrm{i}(\theta \cdot x)\mathbf{1}_{(|x| < 1)})\Pi(\mathrm{d}x),$$

where  $a \in \mathbb{R}$ , **A** is a  $d \times d$  Gaussian covariance matrix and  $\Pi$  is a measure satisfying  $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$ . Think of  $\Pi$  as the intensity of jumps in the sense of

#### $\mathbb{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

$$\mathbb{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

$$\Phi(\lambda) = q + \delta\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

$$4/73$$

| <b>91.</b> 92. 95. 94. 95. 90. 97. 96. Referen | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | Reference |
|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|
|------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|

## (KILLED) LÉVY PROCESS

Fundamentally we are going to spend a lot of time talking about Lévy processes in one and higher dimensions. But it is worth us briefly reminding ourselves about a few facts:

- ► (ξ<sub>t</sub>, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula:

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta\cdot\xi_t}] = \mathrm{e}^{-\Psi(\theta)t}, \qquad \theta \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i} a \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A} \theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i} \theta \cdot x} + \mathrm{i}(\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d} x),$$

where  $a \in \mathbb{R}$ , **A** is a  $d \times d$  Gaussian covariance matrix and  $\Pi$  is a measure satisfying  $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$ . Think of  $\Pi$  as the intensity of jumps in the sense of

 $\mathbb{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$ 

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

$$\mathbb{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

$$\Phi(\lambda) = q + \delta\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Two examples in one dimension:

► **Stable subordinator**  $(\xi_t, t \ge 0)$  is a subordinator which satisfies the additional scaling property: For c > 0

under  $\mathbb{P}$ , the law of  $(c\xi_{c^{-\alpha}t}, t \ge 0)$  is equal to  $\mathbb{P}$ ,

where  $\alpha \in (0, 1)$ . We have

$$\Phi(\lambda) = \lambda^{\alpha}, \qquad \lambda \ge 0, \qquad \text{and} \qquad \Pi(dx) = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx, \qquad x > 0.$$

▶ Hypgergeometric Lévy process: For  $\beta \leq 1, \gamma \in (0,1)$ ,  $\hat{\beta} \geq 0, \hat{\gamma} \in (0,1)$ 

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}.$$

The Lévy measure has a density with respect to Lebesgue measure which is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1+\gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1+\hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$

- コン・4回シュ ヨシュ ヨン・9 くの

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Two examples in one dimension:

► **Stable subordinator**  $(\xi_t, t \ge 0)$  is a subordinator which satisfies the additional scaling property: For c > 0

under  $\mathbb{P}$ , the law of  $(c\xi_{c-\alpha_t}, t \ge 0)$  is equal to  $\mathbb{P}$ ,

where  $\alpha \in (0, 1)$ . We have

$$\Phi(\lambda) = \lambda^{\alpha}, \qquad \lambda \ge 0, \qquad \text{and} \qquad \Pi(dx) = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx, \qquad x > 0.$$

▶ Hypgergeometric Lévy process: For  $\beta \leq 1, \gamma \in (0, 1), \hat{\beta} \geq 0, \hat{\gamma} \in (0, 1)$ 

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}.$$

The Lévy measure has a density with respect to Lebesgue measure which is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1 + \gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1 + \hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$
  
where  $\eta := 1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}.$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $\xi$  has a characteristic exponent  $\Psi$  then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where  $\kappa$  and  $\hat{\kappa}$  are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the  $\kappa$ -subordinator agrees with the range of  $\sup_{s < t} \xi_s$ ,  $t \ge 0$
- range  $\hat{\kappa}$ -subordinator agrees with the range of  $-\inf_{s < t} \xi_s, t \ge 0$ .
- ▶ Note if  $\delta > 0$ , then  $\mathbb{P}(\xi_{\tau_x^+} = x) > 0$ , where  $\tau_x^+ = \inf\{t > 0 : \xi_t = x\}, x > 0$ .
- We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}$$

6/73 《 □ > 《 🗗 > 《 볼 > 《 볼 > 》 볼 · 키익 @

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $\xi$  has a characteristic exponent  $\Psi$  then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where  $\kappa$  and  $\hat{\kappa}$  are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ-subordinator agrees with the range of sup<sub>s≤t</sub> ξ<sub>s</sub>, t ≥ 0
   range κ̂-subordinator agrees with the range of − inf<sub>s≤t</sub> ξ<sub>s</sub>, t ≥ 0.

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}$$

・・・ うどの ほう ふぼう ふぼう ふほう

6/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $\xi$  has a characteristic exponent  $\Psi$  then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where  $\kappa$  and  $\hat{\kappa}$  are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ-subordinator agrees with the range of sup<sub>s<t</sub> ξ<sub>s</sub>, t ≥ 0
- ▶ range  $\hat{\kappa}$ -subordinator agrees with the range of  $-\inf_{s \le t} \overline{\xi_{s,t}} t \ge 0$ .
- Note if  $\delta > 0$ , then  $\mathbb{P}(\xi_{\tau_x^+} = x) > 0$ , where  $\tau_x^+ = \inf\{t > 0 : \xi_t = x\}, x > 0$ .

We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}$$

・ロット 本語 マネ 前 マネ 市 キャー ひょう

6/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $\xi$  has a characteristic exponent  $\Psi$  then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where  $\kappa$  and  $\hat{\kappa}$  are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ-subordinator agrees with the range of sup<sub>s<t</sub> ξ<sub>s</sub>, t ≥ 0
- ▶ range  $\hat{\kappa}$ -subordinator agrees with the range of  $-\inf_{s \le t} \overline{\xi_{s,t}} t \ge 0$ .
- ▶ Note if  $\delta > 0$ , then  $\mathbb{P}(\xi_{\tau_x^+} = x) > 0$ , where  $\tau_x^+ = \inf\{t > 0 : \xi_t = x\}, x > 0$ .
- We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - i\theta)}{\Gamma(1 - \beta - i\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + i\theta)}{\Gamma(\hat{\beta} + i\theta)} \qquad \theta \in \mathbb{R}$$

| §1.   | §2.    | §3.  | §4. | §5. | §6. | §7. | §8. | References |
|-------|--------|------|-----|-----|-----|-----|-----|------------|
| Нітті | NG POI | INTS |     |     |     |     |     |            |

• We say that  $\xi$  *can hit a point*  $x \in \mathbb{R}$  if

 $\mathbb{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$ 

Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that  $\xi$  is not a compound Poisson process. Then  $\xi$  can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where  $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$ , providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z$$

for some  $c \in \mathbb{R}$ .

| §1.   | §2.    | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-------|--------|-----|-----|-----|-----|-----|-----|------------|
| Нітті | NG POI | NTS |     |     |     |     |     |            |

• We say that  $\xi$  *can hit a point*  $x \in \mathbb{R}$  if

 $\mathbb{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$ 

Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that  $\xi$  is not a compound Poisson process. Then  $\xi$  can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where  $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$ , providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z$$

for some  $c \in \mathbb{R}$ .

| §1.    | §2.      | §3. | §4. | §5. | §6. | §7. | §8. | References |
|--------|----------|-----|-----|-----|-----|-----|-----|------------|
| HITTIN | NG POIN' | ГS  |     |     |     |     |     |            |

• We say that  $\xi$  *can hit a point*  $x \in \mathbb{R}$  if

 $\mathbb{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$ 

Creeping is one way to hit a point, but not the only way

## Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that  $\xi$  is not a compound Poisson process. Then  $\xi$  can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where  $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$ , providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z$$

for some  $c \in \mathbb{R}$ .

7/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

#### §2. Stable processes seen as Lévy processes

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

For  $d \ge 2$ , let  $X := (X_t : t \ge 0)$  be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent  $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$  satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- ▶ Necessarily,  $\alpha \in (0, 2]$ , we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for  $B \in \mathcal{B}(\mathbb{R}^d)$ ,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{d}y \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

where  $\sigma_1(\mathrm{d} heta)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass.

▶ *X* is Markovian with probabilities denoted by  $\mathbb{P}_x$ ,  $x \in \mathbb{R}^a$ 

| 81. <b>85</b> . 80. 84. 80. 80. 87. 80. | References |
|-----------------------------------------|------------|
|                                         |            |

For  $d \ge 2$ , let  $X := (X_t : t \ge 0)$  be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent  $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$  satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for  $B \in \mathcal{B}(\mathbb{R}^d)$ ,

$$\Pi(B) = \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy$$
$$= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} r^{d-1} \sigma_{1}(d\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} dr,$$

where  $\sigma_1(d heta)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass.

▶ X is Markovian with probabilities denoted by  $\mathbb{P}_x$ ,  $x \in \mathbb{R}^d$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

For  $d \ge 2$ , let  $X := (X_t : t \ge 0)$  be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent  $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$  satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for  $B \in \mathcal{B}(\mathbb{R}^d)$ ,

$$\Pi(B) = \frac{2^{\alpha}\Gamma((d+\alpha)/2)}{\pi^{d/2}|\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy$$
$$= \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} r^{d-1}\sigma_{1}(d\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} dr,$$

< ロト 4 課 ト 4 語 ト 4 語 ト 語 9 Q ()</li>

where  $\sigma_1(d heta)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass.

▶ X is Markovian with probabilities denoted by  $\mathbb{P}_x$ ,  $x \in \mathbb{R}^d$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

For  $d \ge 2$ , let  $X := (X_t : t \ge 0)$  be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent  $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$  satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ► Associated Lévy measure satisfies, for  $B \in \mathcal{B}(\mathbb{R}^d)$ ,

$$\Pi(B) = \frac{2^{\alpha}\Gamma((d+\alpha)/2)}{\pi^{d/2}|\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy$$
$$= \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} r^{d-1}\sigma_{1}(d\theta) \int_{0}^{\infty} \mathbb{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} dr,$$

where  $\sigma_1(d heta)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass.

► X is Markovian with probabilities denoted by  $\mathbb{P}_x$ ,  $x \in \mathbb{R}^a$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

For  $d \ge 2$ , let  $X := (X_t : t \ge 0)$  be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent  $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$  satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ► Associated Lévy measure satisfies, for  $B \in \mathcal{B}(\mathbb{R}^d)$ ,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

where  $\sigma_1(d\theta)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass.

• X is Markovian with probabilities denoted by  $\mathbb{P}_x, x \in \mathbb{R}^d$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

For  $d \ge 2$ , let  $X := (X_t : t \ge 0)$  be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent  $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$  satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for  $B \in \mathcal{B}(\mathbb{R}^d)$ ,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

where  $\sigma_1(d\theta)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass.

▶ *X* is Markovian with probabilities denoted by  $\mathbb{P}_x$ ,  $x \in \mathbb{R}^d$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

Stable processes are also self-similar. For c > 0 and  $x \in \mathbb{R}^d \setminus \{0\}$ ,

under  $\mathbb{P}_x$ , the law of  $(cX_{c^{-\alpha}t}, t \ge 0)$  is equal to  $\mathbb{P}_{cx}$ .

▶ Isotropy means, for all rotations  $U : \mathbb{R}^d \mapsto \mathbb{R}^d$  and  $x \in \mathbb{R}^d$ .

under  $\mathbb{P}_x$ , the law of  $(UX_t, t \ge 0)$  is equal to  $\mathbb{P}_{Ux}$ .

▶ If  $(S_t, t \ge 0)$  is a stable subordinator with index  $\alpha/2$  (a Lévy process with Laplace exponent  $-t^{-1} \log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$ ) and  $(B_t, t \ge 0)$  for a standard *d*-dimensional Brownian motion, then it is known that  $X_t := \sqrt{2}B_{S_t}, t \ge 0$ , is a stable process with index  $\alpha$ .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

Stable processes are also self-similar. For c > 0 and  $x \in \mathbb{R}^d \setminus \{0\}$ ,

```
under \mathbb{P}_x, the law of (cX_{c-\alpha_t}, t \ge 0) is equal to \mathbb{P}_{cx}.
```

▶ Isotropy means, for all rotations  $U : \mathbb{R}^d \mapsto \mathbb{R}^d$  and  $x \in \mathbb{R}^d$ ,

under  $\mathbb{P}_x$ , the law of  $(UX_t, t \ge 0)$  is equal to  $\mathbb{P}_{Ux}$ .

▶ If  $(S_t, t \ge 0)$  is a stable subordinator with index  $\alpha/2$  (a Lévy process with Laplace exponent  $-t^{-1} \log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$ ) and  $(B_t, t \ge 0)$  for a standard *d*-dimensional Brownian motion, then it is known that  $X_t := \sqrt{2}B_{S_t}, t \ge 0$ , is a stable process with index  $\alpha$ .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}.$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

Stable processes are also self-similar. For c > 0 and  $x \in \mathbb{R}^d \setminus \{0\}$ ,

```
under \mathbb{P}_x, the law of (cX_{c^{-\alpha}t}, t \ge 0) is equal to \mathbb{P}_{cx}.
```

▶ Isotropy means, for all rotations  $U : \mathbb{R}^d \mapsto \mathbb{R}^d$  and  $x \in \mathbb{R}^d$ ,

under  $\mathbb{P}_x$ , the law of  $(UX_t, t \ge 0)$  is equal to  $\mathbb{P}_{Ux}$ .

▶ If  $(S_t, t \ge 0)$  is a stable subordinator with index  $\alpha/2$  (a Lévy process with Laplace exponent  $-t^{-1} \log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$ ) and  $(B_t, t \ge 0)$  for a standard *d*-dimensional Brownian motion, then it is known that  $X_t := \sqrt{2}B_{S_t}, t \ge 0$ , is a stable process with index  $\alpha$ .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}$$

10/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |





| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |





| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |





| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |





Х

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |





Х

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

## Some classical properties: Transience

We are interested in the potential measure

$$U(x, \mathrm{d} y) = \int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = \left(\int_0^\infty p_t(y-x) \mathrm{d} t\right) \mathrm{d} y, \qquad x, y \in \mathbb{R}.$$

Note: stationary and independent increments means that it suffices to consider U(0, dy).

#### Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y - x)dy,  $x, y \in \mathbb{R}^d$ , where

$$u(z) = 2^{-\alpha} \pi^{-d/2} \frac{\Gamma((d-\alpha)/2)}{\Gamma(\alpha/2)} |z|^{\alpha-d}, \qquad z \in \mathbb{R}^d.$$

In this respect X is transient. It can be shown moreover that

$$\lim_{t\to\infty}|X_t|=\infty$$

almost surely



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

## Some classical properties: Transience

We are interested in the potential measure

$$U(x, \mathrm{d} y) = \int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = \left(\int_0^\infty p_t(y-x) \mathrm{d} t\right) \mathrm{d} y, \qquad x, y \in \mathbb{R}.$$

Note: stationary and independent increments means that it suffices to consider U(0, dy).

#### Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y - x)dy,  $x, y \in \mathbb{R}^d$ , where

$$u(z) = 2^{-\alpha} \pi^{-d/2} \frac{\Gamma((d-\alpha)/2)}{\Gamma(\alpha/2)} |z|^{\alpha-d}, \qquad z \in \mathbb{R}^d.$$

In this respect X is transient. It can be shown moreover that

$$\lim_{t\to\infty}|X_t|=\infty$$

almost surely



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

## Some classical properties: Transience

We are interested in the potential measure

$$U(x, \mathrm{d} y) = \int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = \left(\int_0^\infty p_t(y-x) \mathrm{d} t\right) \mathrm{d} y, \qquad x, y \in \mathbb{R}.$$

Note: stationary and independent increments means that it suffices to consider U(0, dy).

#### Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y - x)dy,  $x, y \in \mathbb{R}^d$ , where

$$u(z) = 2^{-\alpha} \pi^{-d/2} \frac{\Gamma((d-\alpha)/2)}{\Gamma(\alpha/2)} |z|^{\alpha-d}, \qquad z \in \mathbb{R}^d.$$

In this respect *X* is transient. It can be shown moreover that

$$\lim_{t\to\infty}|X_t|=\infty$$

almost surely

16/73

イロト イロト イヨト イヨト 三日

# §1. §2. §3. §4. §5. §6. §7. §8. References

Now note that, for bounded and measurable  $f : \mathbb{R}^d \mapsto \mathbb{R}^d$ ,

$$\begin{split} \mathbb{E}\left[\int_{0}^{\infty} f(X_{t})dt\right] &= \mathbb{E}\left[\int_{0}^{\infty} f(\sqrt{2}B_{S_{t}})dt\right] \\ &= \int_{0}^{\infty} ds \int_{0}^{\infty} dt \,\mathbb{P}(S_{t} \in ds) \int_{\mathbb{R}} \mathbb{P}(B_{s} \in dx)f(\sqrt{2}x) \\ &= \frac{1}{\Gamma(\alpha/2)\pi^{d/2}2^{d}} \int_{\mathbb{R}} dy \int_{0}^{\infty} ds \, \mathrm{e}^{-|y|^{2}/4s} \mathrm{s}^{-1+(\alpha-d)/2}f(y) \\ &= \frac{1}{2^{\alpha}\Gamma(\alpha/2)\pi^{d/2}} \int_{\mathbb{R}} dy \, |y|^{(\alpha-d)} \int_{0}^{\infty} du \, \mathrm{e}^{-u} u^{-1+(d-\alpha/2)}f(y) \\ &= \frac{\Gamma((d-\alpha)/2)}{2^{\alpha}\Gamma(\alpha/2)\pi^{d/2}} \int_{\mathbb{R}} dy \, |y|^{(\alpha-d)}f(y). \end{split}$$

17/73 < □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ ▷ 클 · ∽ < ♡ < ♡

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# Some classical properties: Polarity

▶ Kesten-Bretagnolle integral test, in dimension  $d \ge 2$ ,

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d}z = \int_{\mathbb{R}} \frac{1}{1+|z|^{\alpha}} \mathrm{d}z \propto \int_{\mathbb{R}} \frac{1}{1+r^{\alpha}} r^{d-1} \mathrm{d}r \,\sigma_1(\mathrm{d}\theta) = \infty.$$

18/73

(ロト・日本・日本・日本・日本・日本・1000)

$$\blacktriangleright \mathbb{P}_x(\tau^{\{y\}} < \infty) = 0, \text{ for } x, y \in \mathbb{R}^d.$$

▶ i.e. the stable process cannot hit individual points almost surely.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

#### §3. Stable processes seen as a self-similar Markov process


| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# Lemma *The process* $(|X_t|, t \ge 0)$ *is strong Markov and self-similar.*

- ► Temporarily write  $(X_t^{(x)}, t \ge 0)$  in place of  $(X, \mathbb{P}_x)$
- Markov property of *X* tells us that, for  $s, t \ge 0$ ,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where  $\tilde{X}^{(x)}$  is an independent copy of  $X^{(x)}$ 

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ► Self-similarity of |X| follows directly from the self-similarity of X.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

#### Lemma

*The process*  $(|X_t|, t \ge 0)$  *is strong Markov and self-similar.* 

- ▶ Temporarily write  $(X_t^{(x)}, t \ge 0)$  in place of  $(X, \mathbb{P}_x)$
- Markov property of *X* tells us that, for  $s, t \ge 0$ ,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where  $\tilde{X}^{(x)}$  is an independent copy of  $X^{(x)}$ 

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

### Lemma

*The process*  $(|X_t|, t \ge 0)$  *is strong Markov and self-similar.* 

- ▶ Temporarily write  $(X_t^{(x)}, t \ge 0)$  in place of  $(X, \mathbb{P}_x)$
- Markov property of *X* tells us that, for  $s, t \ge 0$ ,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

## where $\tilde{X}^{(x)}$ is an independent copy of $X^{(x)}$ .

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

### Lemma

*The process*  $(|X_t|, t \ge 0)$  *is strong Markov and self-similar.* 

- ▶ Temporarily write  $(X_t^{(x)}, t \ge 0)$  in place of  $(X, \mathbb{P}_x)$
- Markov property of *X* tells us that, for  $s, t \ge 0$ ,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where  $\tilde{X}^{(x)}$  is an independent copy of  $X^{(x)}$ .

$$|X_{t+s}^{(x)}| = |\tilde{X}_{s}^{(y)}|_{y=X_{t}^{(x)}} =^{d} |\tilde{X}_{s}^{(z)}|_{z=(|X_{t}^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

### THE RADIAL PART OF A STABLE PROCESS

### Lemma

*The process*  $(|X_t|, t \ge 0)$  *is strong Markov and self-similar.* 

- ▶ Temporarily write  $(X_t^{(x)}, t \ge 0)$  in place of  $(X, \mathbb{P}_x)$
- Markov property of *X* tells us that, for  $s, t \ge 0$ ,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where  $\tilde{X}^{(x)}$  is an independent copy of  $X^{(x)}$ .

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ► Self-similarity of |X| follows directly from the self-similarity of X.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

## POSITIVE SELF-SIMILAR MARKOV PROCESSES

The process |X| is an example of a positive self-similar Markov process.

### Definition

A  $[0, \infty)$ -valued regular Feller process  $Z = (Z_t, t \ge 0)$  is called a *positive self-similar Markov process* if there exists a constant  $\alpha > 0$  such that, for any x > 0 and c > 0,

the law of  $(cZ_{c-\alpha_t}, t \ge 0)$  under  $P_x$  is  $P_{cx}$ ,

where  $P_x$  is the law of *Z* when issued from *x*. In that case, we refer to  $\alpha$  as the *index of self-similarity*.

### LAMPERTI TRANSFORM

## Theorem (Lamperti 1972)

Fix  $\alpha > 0$ .

(i) If  $(Z, P_x)$ , x > 0, is a positive self-similar Markov process with index of self-similarity  $\alpha$ , then up to absorption at the origin, it can be represented as follows:

$$Z_t \mathbf{1}_{(t < \zeta)} = \exp\{\xi_{\varphi(t)}\}, \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\{s > 0 : \int_0^s \exp(\alpha \xi_u) \mathrm{d}u > s\},\$$

 $\xi_0 = \log x$  and either

- P<sub>x</sub>(ζ = ∞) = 1 for all x > 0, in which case, ξ is a Lévy process satisfying lim sup<sub>t↑∞</sub> ξ<sub>t</sub> = ∞,
- (2)  $P_x(\zeta < \infty \text{ and } Z_{\zeta-} = 0) = 1 \text{ for all } x > 0$ , in which case  $\xi$  is a Lévy process satisfying  $\lim_{t \uparrow \infty} \xi_t = -\infty$ , or
- (3)  $P_x(\zeta < \infty \text{ and } Z_{\zeta-} > 0) = 1$  for all x > 0, in which case  $\xi$  is a Lévy process killed at an independent and exponentially distributed random time.

In all cases, we may identify  $\zeta = I_{\infty} := \int_0^{\infty} e^{\alpha \xi_t} dt$ .

(ii) Conversely, for each x > 0, suppose that ξ is a given (killed) Lévy process, issued from log x. Define

$$Z_t = \exp\{\xi_{\varphi(t)}\}\mathbf{1}_{(t < I_\infty)}, \qquad t \ge 0.$$

Then Z defines a positive self-similar Markov process up to its absorption time  $\zeta = I_{\infty}$ , which satisfies  $Z_0 = x$  and which has index  $\alpha$ .

22/73

# Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process,  $\xi$  that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that  $\lim_{t\to\infty} |X_t| = \infty$  implies that  $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write  $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$  for the Laplace exponent of  $\xi$ , then it is well defined for  $\lambda \in (-d, \alpha)$  with roots at  $\lambda = 0$  and  $\lambda = \alpha d$ .

Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that  $|X_t| = \exp(\xi_{\varphi_t})$  and that  $\varphi_t$  is an almost surely finite stopping time (because  $\lim_{t\to\infty} \xi_t = \infty$ ) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

# Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process,  $\xi$  that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that  $\lim_{t\to\infty} |X_t| = \infty$  implies that  $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write  $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$  for the Laplace exponent of  $\xi$ , then it is well defined for  $\lambda \in (-d, \alpha)$  with roots at  $\lambda = 0$  and  $\lambda = \alpha d$ .

Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that  $|X_t| = \exp(\xi_{\varphi_t})$  and that  $\varphi_t$  is an almost surely finite stopping time (because  $\lim_{t\to\infty} \xi_t = \infty$ ) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

# Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process,  $\xi$  that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that  $\lim_{t\to\infty} |X_t| = \infty$  implies that  $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write  $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$  for the Laplace exponent of  $\xi$ , then it is well defined for  $\lambda \in (-d, \alpha)$  with roots at  $\lambda = 0$  and  $\lambda = \alpha d$ .
- Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

### is a martingale

▶ Recalling that  $|X_t| = \exp(\xi_{\varphi_t})$  and that  $\varphi_t$  is an almost surely finite stopping time (because  $\lim_{t\to\infty} \xi_t = \infty$ ) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

# Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process,  $\xi$  that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that  $\lim_{t\to\infty} |X_t| = \infty$  implies that  $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write  $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$  for the Laplace exponent of  $\xi$ , then it is well defined for  $\lambda \in (-d, \alpha)$  with roots at  $\lambda = 0$  and  $\lambda = \alpha d$ .
- Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that  $|X_t| = \exp(\xi_{\varphi_t})$  and that  $\varphi_t$  is an almost surely finite stopping time (because  $\lim_{t\to\infty} \xi_t = \infty$ ) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

### We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \ne 0$$

Suppose that f is a bounded measurable function then, for all c > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

- Markovian, isotropy and self-similarity properties pass through to  $(X, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ .
- Similarly  $(|X|, \mathbb{P}_x^{\circ}), x \neq 0$  is a positive self-similar Markov process.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|--|--|
|     |     |     |     |     |     |     |     |            |  |  |
|     |     |     |     |     |     |     |     |            |  |  |
| 0   |     |     |     |     |     |     |     |            |  |  |

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

Suppose that f is a bounded measurable function then, for all c > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

- ▶ Markovian, isotropy and self-similarity properties pass through to  $(X, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ .
- Similarly  $(|X|, \mathbb{P}_x^\circ), x \neq 0$  is a positive self-similar Markov process.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|--|--|
|     |     |     |     |     |     |     |     |            |  |  |
|     |     |     |     |     |     |     |     |            |  |  |
| 0   |     |     |     |     |     |     |     |            |  |  |

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

Suppose that f is a bounded measurable function then, for all c > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

▶ Markovian, isotropy and self-similarity properties pass through to  $(X, \mathbb{P}_x^\circ), x \neq 0$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|--|--|
|     |     |     |     |     |     |     |     |            |  |  |
|     |     |     |     |     |     |     |     |            |  |  |
| 0   |     |     |     |     |     |     |     |            |  |  |

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

Suppose that f is a bounded measurable function then, for all c > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

- ▶ Markovian, isotropy and self-similarity properties pass through to  $(X, \mathbb{P}_x^\circ), x \neq 0$ .
- Similarly  $(|X|, \mathbb{P}_x^{\circ})$ ,  $x \neq 0$  is a positive self-similar Markov process.

- ▶ It turns out that  $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$ , corresponds to the stable process conditioned to be continuously absorbed at the origin.
  - ▶ More precisely, for  $A \in \sigma(X_s, s \le t)$ , if we set {0} to be 'cemetery' state and  $k = \inf\{t > 0 : X_t = 0\}$ , then

$$\mathbb{P}_x^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_x(A, t < \Bbbk | \tau_a^{\oplus} < \infty),$$

where  $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$ 

▶ In light of the associated Esscher transform on  $\xi$ , we note that the Lamperti transform of  $(|X|, \mathbb{P}_x^\circ), x \neq 0$ , corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

< □ > < @ > < 图 > < 图 > < 图 > < 图</p>

Given the pathwise interpretation of  $(X, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ , it follows immediately that  $\lim_{t\to\infty} \xi_t = -\infty$ ,  $\mathbb{P}_x^\circ$  almost surely, for any  $x \neq 0$ .

## CONDITIONED STABLE PROCESS

- ▶ It turns out that  $(X, \mathbb{P}_x^\circ), x \neq 0$ , corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for  $A \in \sigma(X_s, s \le t)$ , if we set {0} to be 'cemetery' state and  $k = \inf\{t > 0 : X_t = 0\}$ , then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

# where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on  $\xi$ , we note that the Lamperti transform of  $(|X|, \mathbb{P}_x^\circ), x \neq 0$ , corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

▶ Given the pathwise interpretation of  $(X, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ , it follows immediately that  $\lim_{t\to\infty} \xi_t = -\infty$ ,  $\mathbb{P}_x^\circ$  almost surely, for any  $x \neq 0$ .

### CONDITIONED STABLE PROCESS

- ▶ It turns out that  $(X, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ , corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for  $A \in \sigma(X_s, s \le t)$ , if we set {0} to be 'cemetery' state and  $k = \inf\{t > 0 : X_t = 0\}$ , then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where  $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$ 

▶ In light of the associated Esscher transform on  $\xi$ , we note that the Lamperti transform of  $(|X|, \mathbb{P}_x^\circ), x \neq 0$ , corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

イロト 不得 とくほ とくほ とうほう

Given the pathwise interpretation of  $(X, \mathbb{P}_x^o)$ ,  $x \neq 0$ , it follows immediately that  $\lim_{t\to\infty} \xi_t = -\infty$ ,  $\mathbb{P}_x^o$  almost surely, for any  $x \neq 0$ .

# CONDITIONED STABLE PROCESS

- ▶ It turns out that  $(X, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ , corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for  $A \in \sigma(X_s, s \le t)$ , if we set {0} to be 'cemetery' state and  $k = \inf\{t > 0 : X_t = 0\}$ , then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where  $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$ 

▶ In light of the associated Esscher transform on  $\xi$ , we note that the Lamperti transform of  $(|X|, \mathbb{P}_x^\circ)$ ,  $x \neq 0$ , corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

- コン・4回シュ ヨシュ ヨン・9 くの

▶ Given the pathwise interpretation of  $(X, \mathbb{P}^{\circ}_{x})$ ,  $x \neq 0$ , it follows immediately that  $\lim_{t\to\infty} \xi_t = -\infty$ ,  $\mathbb{P}^{\circ}_{x}$  almost surely, for any  $x \neq 0$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# $\mathbb{R}^d$ -Self-Similar Markov processes

## Definition

A  $\mathbb{R}^d$ -valued regular Feller process  $Z = (Z_t, t \ge 0)$  is called a  $\mathbb{R}^d$ -valued self-similar Markov process if there exists a constant  $\alpha > 0$  such that, for any x > 0 and c > 0,

the law of  $(cZ_{c-\alpha_t}, t \ge 0)$  under  $P_x$  is  $P_{cx}$ ,

26/73

where  $P_x$  is the law of *Z* when issued from *x*.

- Same definition as before except process now lives on  $\mathbb{R}^d$ .
- Is there an analogue of the Lamperti representation?

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# $\mathbb{R}^d$ -Self-Similar Markov processes

### Definition

A  $\mathbb{R}^d$ -valued regular Feller process  $Z = (Z_t, t \ge 0)$  is called a  $\mathbb{R}^d$ -valued self-similar Markov process if there exists a constant  $\alpha > 0$  such that, for any x > 0 and c > 0,

the law of  $(cZ_{c-\alpha_t}, t \ge 0)$  under  $P_x$  is  $P_{cx}$ ,

26/73

where  $P_x$  is the law of *Z* when issued from *x*.

### ▶ Same definition as before except process now lives on ℝ<sup>d</sup>.

▶ Is there an analogue of the Lamperti representation?

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# $\mathbb{R}^d$ -Self-Similar Markov processes

## Definition

A  $\mathbb{R}^d$ -valued regular Feller process  $Z = (Z_t, t \ge 0)$  is called a  $\mathbb{R}^d$ -valued self-similar Markov process if there exists a constant  $\alpha > 0$  such that, for any x > 0 and c > 0,

the law of  $(cZ_{c-\alpha_t}, t \ge 0)$  under  $P_x$  is  $P_{cx}$ ,

26/73

where  $P_x$  is the law of *Z* when issued from *x*.

- Same definition as before except process now lives on  $\mathbb{R}^d$ .
- Is there an analogue of the Lamperti representation?

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to introduce the notion of a Markov additive process.

### Definition

An  $\mathbb{R} \times E$  valued regular Feller process  $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$  with probabilities  $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$ , and cemetery state  $(-\infty, \dagger)$  is called a *Markov additive process* (MAP) if  $\Theta$  is a regular Feller process on E with cemetery state  $\dagger$  such that, for every bounded measurable function  $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$  and  $(x, \theta) \in \mathbb{R} \times E$ , on  $\{t < \varsigma\}$ ,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where  $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$ 

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to introduce the notion of a Markov additive process.

### Definition

An  $\mathbb{R} \times E$  valued regular Feller process  $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$  with probabilities  $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$ , and cemetery state  $(-\infty, \dagger)$  is called a *Markov additive process* (MAP) if  $\Theta$  is a regular Feller process on E with cemetery state  $\dagger$  such that, for every bounded measurable function  $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$  and  $(x, \theta) \in \mathbb{R} \times E$ , on  $\{t < \varsigma\}$ ,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where  $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$ 

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments
- Think of the E-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to introduce the notion of a Markov additive process.

### Definition

An  $\mathbb{R} \times E$  valued regular Feller process  $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$  with probabilities  $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$ , and cemetery state  $(-\infty, \dagger)$  is called a *Markov additive process* (MAP) if  $\Theta$  is a regular Feller process on E with cemetery state  $\dagger$  such that, for every bounded measurable function  $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$  and  $(x, \theta) \in \mathbb{R} \times E$ , on  $\{t < \varsigma\}$ ,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where  $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$ 

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to introduce the notion of a Markov additive process.

### Definition

An  $\mathbb{R} \times E$  valued regular Feller process  $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$  with probabilities  $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$ , and cemetery state  $(-\infty, \dagger)$  is called a *Markov additive process* (MAP) if  $\Theta$  is a regular Feller process on E with cemetery state  $\dagger$  such that, for every bounded measurable function  $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$  and  $(x, \theta) \in \mathbb{R} \times E$ , on  $\{t < \varsigma\}$ ,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where  $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$ 

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

# §1. §2. **§3.** §4. §5. §6. §7. §8. References LAMPERTI–KIU TRANSFORM

### Theorem

Fix  $\alpha > 0$ . The process Z is a ssMp with index  $\alpha$  if and only if there exists a (killed) MAP,  $(\xi, \Theta)$  on  $\mathbb{R} \times \mathbb{S}_d$  such that

$$Z_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad , \qquad t \le I_{\varsigma}, \tag{1}$$

28/73

where

$$\varphi(t) = \inf \left\{ s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t \right\}, \qquad t \le I_{\varsigma},$$

and  $I_{\varsigma} = \int_{0}^{\varsigma} e^{\alpha \xi_{\varsigma}} ds$  is the lifetime of Z until absorption at the origin. Here, we interpret  $\exp\{-\infty\} \times \dagger := 0$  and  $\inf \emptyset := \infty$ .

▶ In the representation (1), the time to absorption in the origin,

$$\zeta = \inf\{t > 0 : Z_t = 0\},\$$

satisfies  $\zeta = I_{\varsigma}$ .

▶ Note  $x \in \mathbb{R}^d$  if and only if

$$x = (|x|, \operatorname{Arg}(x)),$$

where  $\operatorname{Arg}(x) = x/|x| \in \mathbb{S}_d$ . The Lamperti–Kiu decomposition therefore gives us a *d*-dimensional skew product decomposition of self-similar Markov processes.

| §1. | §2.      | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|-----|----------|--------|-----|-----|-----|-----|-----|------------|
| ΙΔΜ | DEDTI_CT | ARIE M | ΛP  |     |     |     |     |            |

### LAMPERTI-STABLE MAP

▶ The stable process *X* is an  $\mathbb{R}^d$ -valued self-similar Markov process and therefore fits the description above

29/73

- How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does  $\Theta$  and what properties to the pair  $(\xi, \Theta)$  have?

| §1.  | §2.      | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|------|----------|--------|-----|-----|-----|-----|-----|------------|
| Lami | PERTI-ST | ABLE M | AP  |     |     |     |     |            |

▶ The stable process *X* is an  $\mathbb{R}^d$ -valued self-similar Markov process and therefore fits the description above

29/73

- ► How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does  $\Theta$  and what properties to the pair  $(\xi, \Theta)$  have?

| §1.  | §2.      | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|------|----------|--------|-----|-----|-----|-----|-----|------------|
| Lami | PERTI-ST | ABLE M | AP  |     |     |     |     |            |

• The stable process X is an  $\mathbb{R}^d$ -valued self-similar Markov process and therefore fits the description above

29/73

・ロト・西ト・ヨト・ヨト ・ ヨー うらぐ

- ► How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does  $\Theta$  and what properties to the pair  $(\xi, \Theta)$  have?

| §1.  | §2.      | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|------|----------|--------|-----|-----|-----|-----|-----|------------|
| Lami | PERTI-ST | ABLE M | АР  |     |     |     |     |            |

- The stable process *X* is an  $\mathbb{R}^d$ -valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP  $(\xi, \Theta)$ ?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ

29/73

• What properties does  $\Theta$  and what properties to the pair  $(\xi, \Theta)$  have?

| §1. | §2.     | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|---------|-----|-----|-----|-----|-----|-----|------------|
| MAP | ISOTROP | Y   |     |     |     |     |     |            |

### Theorem

Suppose  $(\xi, \Theta)$  is the MAP underlying the stable process. Then  $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$  is equal in law to  $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$ , for every orthogonal d-dimensional matrix U and  $x \in \mathbb{R}^d$ ,  $\theta \in \mathbb{S}_d$ .

### Proof.

First note that  $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$ . It follows that

 $(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$ 

where the random times  $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$  are stopping times in the natural filtration of *X*.

Now suppose that U is any orthogonal d-dimensional matrix and let  $X' = U^{-1}X$ . Since X is isotropic and since |X'| = |X|, and  $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$ , we see from (??) that, for  $x \in \mathbb{R}$  and  $\theta \in \mathbb{S}_d$ 

$$((\xi, U^{-1}\Theta), \mathbf{P}_{\log|x|, \theta}) = ((\log|X_{A(t)}|, U^{-1}\operatorname{Arg}(X_{A(t)})), \mathbb{P}_x)$$
  
$$\stackrel{d}{=} ((\log|X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \mathbb{P}_{U^{-1}x})$$
  
$$= ((\xi, \Theta), \mathbf{P}_{\log|x|, U^{-1}\theta})$$

30/73

as required.

| §1.   | §2.     | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-------|---------|-----|-----|-----|-----|-----|-----|------------|
| MAP I | SOTROPY | (   |     |     |     |     |     |            |

#### Theorem

Suppose  $(\xi, \Theta)$  is the MAP underlying the stable process. Then  $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$  is equal in law to  $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$ , for every orthogonal d-dimensional matrix U and  $x \in \mathbb{R}^d$ ,  $\theta \in \mathbb{S}_d$ .

### Proof.

First note that  $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$ . It follows that

 $(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$ 

where the random times  $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$  are stopping times in the natural filtration of *X*.

Now suppose that U is any orthogonal d-dimensional matrix and let  $X' = U^{-1}X$ . Since X is isotropic and since |X'| = |X|, and  $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$ , we see from (??) that, for  $x \in \mathbb{R}$  and  $\theta \in \mathbb{S}_d$ 

$$((\xi, U^{-1}\Theta), \mathbf{P}_{\log|x|, \theta}) = ((\log|X_{A(t)}|, U^{-1}\operatorname{Arg}(X_{A(t)})), \mathbb{P}_x)$$
  
$$\stackrel{d}{=} ((\log|X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \mathbb{P}_{U^{-1}x})$$
  
$$= ((\xi, \Theta), \mathbf{P}_{\log|x|, U^{-1}\theta})$$

30/73

as required.

# §1. §2. §3. §4. §5. §6. §7. §8. References

### Theorem

Suppose  $(\xi, \Theta)$  is the MAP underlying the stable process. Then  $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$  is equal in law to  $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$ , for every orthogonal d-dimensional matrix U and  $x \in \mathbb{R}^d$ ,  $\theta \in \mathbb{S}_d$ .

### Proof.

First note that  $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$ . It follows that

$$(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$$

where the random times  $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$  are stopping times in the natural filtration of *X*.

Now suppose that *U* is any orthogonal *d*-dimensional matrix and let  $X' = U^{-1}X$ . Since *X* is isotropic and since |X'| = |X|, and  $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$ , we see from (??) that, for  $x \in \mathbb{R}$  and  $\theta \in \mathbb{S}_d$ 

$$((\xi, U^{-1}\Theta), \mathbf{P}_{\log|x|, \theta}) = ((\log|X_{A(t)}|, U^{-1}\operatorname{Arg}(X_{A(t)})), \mathbb{P}_x)$$
  
$$\stackrel{d}{=} ((\log|X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \mathbb{P}_{U^{-1}x})$$
  
$$= ((\xi, \Theta), \mathbf{P}_{\log|x|, U^{-1}\theta})$$

30/73

as required.

| §1.  | §2. | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|------|-----|--------|-----|-----|-----|-----|-----|------------|
| λαλτ |     | LATION |     |     |     |     |     |            |

### MAP CORROLATION

▶ We will work with the increments  $\Delta \xi_t = \xi_t - \xi_{t-1} \in \mathbb{R}, t \ge 0$ ,

## Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))

Suppose that f is a bounded measurable function on  $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}^d \times \mathbb{S}^d$  such that  $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$ , then, for all  $\theta \in \mathbb{S}_d$ ,

$$\begin{split} \mathbf{E}_{0,\theta} \left( \sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_d} \int_{\mathbb{S}_d} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_d, s \ge 0,$$

is the space-time potential of  $(\xi, \Theta)$  under  $\mathbf{P}_{0,\theta}$ ,  $\sigma_1(\phi)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass and

$$c(\alpha) = 2^{\alpha - 1} \pi^{-d} \Gamma((d + \alpha)/2) \Gamma(d/2) / \left| \Gamma(-\alpha/2) \right|.$$

| §1. | §2.   | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|-----|-------|--------|-----|-----|-----|-----|-----|------------|
| MAF | CORRC | LATION |     |     |     |     |     |            |

• We will work with the increments  $\Delta \xi_t = \xi_t - \xi_{t-1} \in \mathbb{R}, t \ge 0$ ,

### Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))

Suppose that f is a bounded measurable function on  $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}^d \times \mathbb{S}^d$  such that  $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$ , then, for all  $\theta \in \mathbb{S}_d$ ,

$$\begin{split} \mathbf{E}_{0,\theta} \left( \sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_d} \int_{\mathbb{S}_d} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_d, s \ge 0,$$

is the space-time potential of  $(\xi, \Theta)$  under  $\mathbf{P}_{0,\theta}$ ,  $\sigma_1(\phi)$  is the surface measure on  $\mathbb{S}_d$  normalised to have unit mass and

$$c(\alpha) = 2^{\alpha - 1} \pi^{-d} \Gamma((d + \alpha)/2) \Gamma(d/2) / \left| \Gamma(-\alpha/2) \right|.$$
|  | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|--|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|--|-----|-----|-----|-----|-----|-----|-----|-----|------------|

### MAP OF $(X, \mathbb{P}^{\circ}_{\cdot})$

- Recall that  $(|X_t|^{\alpha-d}, t \ge 0)$ , is a martingale.
- ▶ Informally, we should expect  $\mathcal{L}h = 0$ , where  $h(x) = |x|^{\alpha d}$  and  $\mathcal{L}$  is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d} y), \qquad |x| > 0,$$

for appropriately smooth functions.

• Associated to  $(X, \mathbb{P}_x)$ ,  $x \neq 0$  is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using  $\mathcal{L}h = 0$  gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} d\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{dr}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$
  
for  $|x| > 0$  and  $B \in \mathcal{B}(\mathbb{R}^{d}).$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

## MAP OF $(X, \mathbb{P}^{\circ}_{\cdot})$

- Recall that  $(|X_t|^{\alpha-d}, t \ge 0)$ , is a martingale.
- ▶ Informally, we should expect  $\mathcal{L}h = 0$ , where  $h(x) = |x|^{\alpha d}$  and  $\mathcal{L}$  is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d} y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to  $(X, \mathbb{P}_x)$ ,  $x \neq 0$  is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using  $\mathcal{L}h = 0$  gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)}y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} d\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{dr}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$
  
for  $|x| > 0$  and  $B \in \mathcal{B}(\mathbb{R}^{d}).$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# MAP of $(X, \mathbb{P}^{\circ}_{\cdot})$

- Recall that  $(|X_t|^{\alpha-d}, t \ge 0)$ , is a martingale.
- ▶ Informally, we should expect  $\mathcal{L}h = 0$ , where  $h(x) = |x|^{\alpha d}$  and  $\mathcal{L}$  is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to  $(X, \mathbb{P}_x)$ ,  $x \neq 0$  is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using *Lh* = 0 gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$
  
for  $|x| > 0$  and  $B \in \mathcal{B}(\mathbb{R}^{d})$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

### MAP OF $(X, \mathbb{P}^{\circ}_{\cdot})$

- Recall that  $(|X_t|^{\alpha-d}, t \ge 0)$ , is a martingale.
- ▶ Informally, we should expect  $\mathcal{L}h = 0$ , where  $h(x) = |x|^{\alpha d}$  and  $\mathcal{L}$  is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d} y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to  $(X, \mathbb{P}_x)$ ,  $x \neq 0$  is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

▶ Straightforward algebra using Lh = 0 gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$
  
for  $|x| > 0$  and  $B \in \mathcal{B}(\mathbb{R}^{d}).$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

### MAP OF $(X, \mathbb{P}^{\circ}_{\cdot})$

- Recall that  $(|X_t|^{\alpha-d}, t \ge 0)$ , is a martingale.
- ▶ Informally, we should expect  $\mathcal{L}h = 0$ , where  $h(x) = |x|^{\alpha d}$  and  $\mathcal{L}$  is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to  $(X, \mathbb{P}_x)$ ,  $x \neq 0$  is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

▶ Straightforward algebra using Lh = 0 gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$
  
for  $|x| > 0$  and  $B \in \mathcal{B}(\mathbb{R}^{d}).$ 

| §1. | §2.        | §3.                       | §4. | §5. | §6. | §7. | §8. | References |
|-----|------------|---------------------------|-----|-----|-----|-----|-----|------------|
| MAF | • of (X, ] | $\mathbb{P}^{\circ}_{.})$ |     |     |     |     |     |            |

#### Theorem

Suppose that f is a bounded measurable function on  $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}^d \times \mathbb{S}^d$  such that  $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$ , then, for all  $\theta \in \mathbb{S}_d$ ,

$$\begin{split} \mathbf{E}_{0,\theta}^{\circ} \left( \sum_{s>0} f(s,\xi_{s-},\Delta\xi_{s},\Theta_{s-},\Theta_{s}) \right) \\ &= \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{S}_{d}} \int_{\mathbb{S}_{d}} \int_{\mathbb{R}} V_{\theta}^{\circ}(\mathrm{d}s,\mathrm{d}x,\mathrm{d}\vartheta) \sigma_{1}(\mathrm{d}\phi) \mathrm{d}y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^{y}\phi - \vartheta|^{\alpha+d}} f(s,x,-y,\vartheta,\phi), \end{split}$$

where

$$V^{\circ}_{ heta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} artheta)=\mathbf{P}^{\circ}_{0, heta}(\xi_s\in\mathrm{d} x,\Theta_s\in\mathrm{d} artheta)\mathrm{d} s,\qquad x\in\mathbb{R},artheta\in\mathbb{S}_d,s\geq0,$$

*is the space-time potential of*  $(\xi, \Theta)$  *under*  $\mathbf{P}_{0,\theta}^{\circ}$ *.* 

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of  $(\xi, \Theta)$  under  $\mathbf{P}_{x,\theta}^{\circ}$ ,  $x \in \mathbb{R}$ ,  $\theta \in \mathbb{S}_d$ , is precisely that of  $(-\xi, \Theta)$  under  $\mathbf{P}_{x,\theta}$ ,  $x \in \mathbb{R}$ ,  $\theta \in \mathbb{S}_d$ .

| §1. | §2.                        | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|----------------------------|-----|-----|-----|-----|-----|-----|------------|
| MAF | <b>?</b> of ( <i>X</i> , I | P.) |     |     |     |     |     |            |

#### Theorem

Suppose that f is a bounded measurable function on  $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}^d \times \mathbb{S}^d$  such that  $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$ , then, for all  $\theta \in \mathbb{S}_d$ ,

$$\begin{split} \mathbf{E}_{0,\theta} \left( \sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_d} \int_{\mathbb{S}_d} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_d, s \ge 0,$$

*is the space-time potential of*  $(\xi, \Theta)$  *under*  $\mathbf{P}_{0,\theta}^{\circ}$ *.* 

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of  $(\xi, \Theta)$  under  $\mathbf{P}_{x,\theta'}^{\circ}, x \in \mathbb{R}$ ,  $\theta \in \mathbb{S}_d$ , is precisely that of  $(-\xi, \Theta)$  under  $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in \mathbb{S}_d$ .

34/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

\_

#### §4. Riesz-Bogdan-Żak transform



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

• Define the transformation  $K : \mathbb{R}^d \mapsto \mathbb{R}^d$ , by

$$\mathsf{K}x = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere  $\{x \in \mathbb{R}^d : |x| = 1\}$ .
- ▶ Write  $x \in \mathbb{R}^d$  in skew product form  $x = (|x|, \operatorname{Arg}(x))$ , and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},\$$

showing that the K-transform 'radially inverts' elements of  $\mathbb{R}^d$  through  $\mathbb{S}_d$ .

• In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform,  $d \ge 2$ ) Suppose that X is a *d*-dimensional isotropic stable process with  $d \ge 2$ . Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} \mathrm{d}u > t\}, \qquad t \ge 0.$$
(2)

Then, for all  $x \in \mathbb{R}^d \setminus \{0\}$ ,  $(KX_{\eta(t)}, t \ge 0)$  under  $\mathbb{P}_x$  is equal in law to  $(X, \mathbb{P}_{Kx}^{\circ})$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

• Define the transformation  $K : \mathbb{R}^d \mapsto \mathbb{R}^d$ , by

$$\mathsf{K}x = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere  $\{x \in \mathbb{R}^d : |x| = 1\}$ .
- ▶ Write  $x \in \mathbb{R}^d$  in skew product form  $x = (|x|, \operatorname{Arg}(x))$ , and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the K-transform 'radially inverts' elements of  $\mathbb{R}^d$  through  $\mathbb{S}_d$ .

• In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform,  $d \ge 2$ ) Suppose that X is a *d*-dimensional isotropic stable process with  $d \ge 2$ . Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} \mathrm{d}u > t\}, \qquad t \ge 0.$$
(2)

Then, for all  $x \in \mathbb{R}^d \setminus \{0\}$ ,  $(KX_{\eta(t)}, t \ge 0)$  under  $\mathbb{P}_x$  is equal in law to  $(X, \mathbb{P}_{Kx}^{\circ})$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

• Define the transformation  $K : \mathbb{R}^d \mapsto \mathbb{R}^d$ , by

$$Xx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere  $\{x \in \mathbb{R}^d : |x| = 1\}$ .
- ▶ Write  $x \in \mathbb{R}^d$  in skew product form  $x = (|x|, \operatorname{Arg}(x))$ , and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of  $\mathbb{R}^d$  through  $\mathbb{S}_d$ .

• In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform,  $d \ge 2$ ) Suppose that X is a *d*-dimensional isotropic stable process with  $d \ge 2$ . Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} \mathrm{d}u > t\}, \qquad t \ge 0.$$
(2)

Then, for all  $x \in \mathbb{R}^d \setminus \{0\}$ ,  $(KX_{\eta(t)}, t \ge 0)$  under  $\mathbb{P}_x$  is equal in law to  $(X, \mathbb{P}^{\circ}_{Kx})$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

• Define the transformation  $K : \mathbb{R}^d \mapsto \mathbb{R}^d$ , by

$$Xx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere  $\{x \in \mathbb{R}^d : |x| = 1\}$ .
- ▶ Write  $x \in \mathbb{R}^d$  in skew product form  $x = (|x|, \operatorname{Arg}(x))$ , and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of  $\mathbb{R}^d$  through  $\mathbb{S}_d$ . In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform,  $d \ge 2$ ) Suppose that X is a *d*-dimensional isotropic stable process with  $d \ge 2$ . Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} \mathrm{d}u > t\}, \qquad t \ge 0.$$
(2)

Then, for all  $x \in \mathbb{R}^d \setminus \{0\}$ ,  $(KX_{\eta(t)}, t \ge 0)$  under  $\mathbb{P}_x$  is equal in law to  $(X, \mathbb{P}^{\circ}_{Kx})$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

• Define the transformation  $K : \mathbb{R}^d \mapsto \mathbb{R}^d$ , by

$$Xx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere  $\{x \in \mathbb{R}^d : |x| = 1\}$ .
- ▶ Write  $x \in \mathbb{R}^d$  in skew product form  $x = (|x|, \operatorname{Arg}(x))$ , and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the K-transform 'radially inverts' elements of  $\mathbb{R}^d$  through  $\mathbb{S}_d$ .

• In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform,  $d \ge 2$ ) Suppose that X is a *d*-dimensional isotropic stable process with  $d \ge 2$ . Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(2)

Then, for all  $x \in \mathbb{R}^d \setminus \{0\}$ ,  $(KX_{\eta(t)}, t \ge 0)$  under  $\mathbb{P}_x$  is equal in law to  $(X, \mathbb{P}_{Kx}^{\circ})$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that  $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$ , where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi}(t)} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta}(t)}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi \circ \eta(t)}}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} du > t\}$$

$$= \Box \mapsto A = B \to A \to B \to A = B \to A = B$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that  $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$ , where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi \circ \eta(t)}}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

$$= \varphi \circ \eta(t) = \inf\{s > 0 : f(s) = 0 \text{ for } s \in \mathbb{R} \}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that  $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$ , where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

$$= \varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that  $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$ , where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}$$

$$(a \to a) = 0$$

$$(a \to a) = 0$$

$$(b \to a) = 0$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# Proof of Riesz–Bogdan–Żak transform

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}.$$

- ▶ It follows that  $(KX_{\eta(t)}, t \ge 0)$  is a self-similar Markov process with underlying MAP  $(-\xi, \Theta)$
- ▶ We have also seen that  $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$ , is also a self-similar Markov process with underlying MAP given by  $(-\xi, \Theta)$ .

38/73

イロト 不得 とくほ とくほ とうほう

• The statement of the theorem follows.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# Proof of Riesz–Bogdan– $\dot{Z}$ ak transform

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}$$

- ▶ It follows that  $(KX_{\eta(t)}, t \ge 0)$  is a self-similar Markov process with underlying MAP  $(-\xi, \Theta)$
- ▶ We have also seen that  $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$ , is also a self-similar Markov process with underlying MAP given by  $(-\xi, \Theta)$ .

38/73

シック・ヨー イヨン イヨン イロン

• The statement of the theorem follows.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# Proof of Riesz–Bogdan– $\dot{Z}$ ak transform

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}$$

- ▶ It follows that  $(KX_{\eta(t)}, t \ge 0)$  is a self-similar Markov process with underlying MAP  $(-\xi, \Theta)$
- ▶ We have also seen that  $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$ , is also a self-similar Markov process with underlying MAP given by  $(-\xi, \Theta)$ .

38/73

▶ The statement of the theorem follows.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# Proof of Riesz–Bogdan– $\dot{Z}$ ak transform

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}$$

- ▶ It follows that  $(KX_{\eta(t)}, t \ge 0)$  is a self-similar Markov process with underlying MAP  $(-\xi, \Theta)$
- ▶ We have also seen that  $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$ , is also a self-similar Markov process with underlying MAP given by  $(-\xi, \Theta)$ .

38/73

The statement of the theorem follows.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

§5. Hitting spheres



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

#### Recall that a stable process cannot hit points

▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere  $\mathbb{S}_d = \{x \in \mathbb{R}^d : |x| = 1\}.$ 

Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (196) If  $\alpha \in (1, 2)$  then

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} 2F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d}{}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \le |x|. \end{cases} \end{split}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere  $\mathbb{S}_d = \{x \in \mathbb{R}^d : |x| = 1\}.$

Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (19) *If*  $\alpha \in (1, 2)$ *, then* 

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} 2F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \le |x|. \end{split}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere  $\mathbb{S}_d = \{x \in \mathbb{R}^d : |x| = 1\}.$
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (1969)) If  $\alpha \in (1,2)$ , then  $\mathbb{P}_x(\tau^{\odot} < \infty)$ 

$$= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \begin{cases} 2F_1((d-\alpha)/2, 1-\alpha/2, d/2; |x|^2) & 1 > |x| \\ |x|^{\alpha-d} {}_2F_1((d-\alpha)/2, 1-\alpha/2, d/2; 1/|x|^2) & 1 \le |x|. \end{cases}$$

| §1. §2. §3 | 3. §4. | §5. | §6. | §7. | §8. | References |
|------------|--------|-----|-----|-----|-----|------------|
|            |        |     |     |     |     |            |

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere  $\mathbb{S}_d = \{x \in \mathbb{R}^d : |x| = 1\}.$
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (1969)

If  $\alpha \in (1, 2)$ , then

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \begin{cases} 2F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; 1/|x|^{2}) & 1 \leq |x|. \end{cases} \end{split}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere  $\mathbb{S}_d = \{x \in \mathbb{R}^d : |x| = 1\}.$
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

 $\begin{aligned} & \text{Theorem (Port (1969))} \\ & If \, \alpha \in (1, 2), \, then \\ & \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ & = \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} & {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ & |x|^{\alpha-d}{}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \leq |x|. \end{aligned}$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $(\xi, \Theta)$  is the underlying MAP then

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \mathbf{P}_{\log |x|}(\tau^{\{0\}} < \infty) = \mathbf{P}_{0}(\tau^{\{\log(1/|x|)\}} < \infty),$$

where  $\tau^{\{z\}} = \inf\{t > 0 : \xi_t = z\}, z \in \mathbb{R}$ . (Note, the time change in the Lamperti–Kiu representation does not level out.)

▶ Using Sterling's formula, we have,  $|\Gamma(x + iy)| = \sqrt{2\pi}e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1 + o(1))$ , for  $x, y \in \mathbb{R}$ , as  $y \to \infty$ , uniformly in any finite interval  $-\infty < a \le x \le b < \infty$ . Hence,

$$\frac{1}{\Psi(z)} = \frac{\Gamma(-\frac{1}{2}iz)}{\Gamma(\frac{1}{2}(-iz+\alpha))} \frac{\Gamma(\frac{1}{2}(iz+d-\alpha))}{\Gamma(\frac{1}{2}(iz+d))} \sim |z|^{-c}$$

uniformly on  $\mathbb{R}$  as  $|z| \to \infty$ .

From Kesten-Brestagnolle integral test we conclude that  $(1 + \Psi(z))^{-1}$  is integrable and each sphere  $\mathbb{S}_d$  can be reached with positive probability from any x with  $|x| \neq 1$  if and only if  $\alpha \in (1, 2)$ .

41/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $(\xi, \Theta)$  is the underlying MAP then

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \mathbf{P}_{\log |x|}(\tau^{\{0\}} < \infty) = \mathbf{P}_{0}(\tau^{\{\log(1/|x|)\}} < \infty),$$

where  $\tau^{\{z\}} = \inf\{t > 0 : \xi_t = z\}, z \in \mathbb{R}$ . (Note, the time change in the Lamperti–Kiu representation does not level out.)

► Using Sterling's formula, we have,  $|\Gamma(x + iy)| = \sqrt{2\pi}e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1 + o(1))$ , for  $x, y \in \mathbb{R}$ , as  $y \to \infty$ , uniformly in any finite interval  $-\infty < a \le x \le b < \infty$ . Hence,

$$\frac{1}{\Psi(z)} = \frac{\Gamma(-\frac{1}{2}iz)}{\Gamma(\frac{1}{2}(-iz+\alpha))} \frac{\Gamma(\frac{1}{2}(iz+d-\alpha))}{\Gamma(\frac{1}{2}(iz+d))} \sim |z|^{-\alpha}$$

uniformly on  $\mathbb{R}$  as  $|z| \to \infty$ .

From Kesten-Brestagnolle integral test we conclude that  $(1 + \Psi(z))^{-1}$  is integrable and each sphere  $\mathbb{S}_d$  can be reached with positive probability from any x with  $|x| \neq 1$  if and only if  $\alpha \in (1, 2)$ .

41/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

• If  $(\xi, \Theta)$  is the underlying MAP then

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \mathbf{P}_{\log |x|}(\tau^{\{0\}} < \infty) = \mathbf{P}_{0}(\tau^{\{\log(1/|x|)\}} < \infty),$$

where  $\tau^{\{z\}} = \inf\{t > 0 : \xi_t = z\}, z \in \mathbb{R}$ . (Note, the time change in the Lamperti–Kiu representation does not level out.)

► Using Sterling's formula, we have,  $|\Gamma(x + iy)| = \sqrt{2\pi}e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1 + o(1))$ , for  $x, y \in \mathbb{R}$ , as  $y \to \infty$ , uniformly in any finite interval  $-\infty < a \le x \le b < \infty$ . Hence,

$$\frac{1}{\Psi(z)} = \frac{\Gamma(-\frac{1}{2}iz)}{\Gamma(\frac{1}{2}(-iz+\alpha))} \frac{\Gamma(\frac{1}{2}(iz+d-\alpha))}{\Gamma(\frac{1}{2}(iz+d))} \sim |z|^{-\alpha}$$

uniformly on  $\mathbb{R}$  as  $|z| \to \infty$ .

From Kesten-Brestagnolle integral test we conclude that (1 + Ψ(z))<sup>-1</sup> is integrable and each sphere S<sub>d</sub> can be reached with positive probability from any x with |x| ≠ 1 if and only if α ∈ (1, 2).

41/73

・ロト・日本・モート モー うへの

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Note that

$$\frac{\Gamma(\frac{1}{2}(-\mathrm{i}z+\alpha))}{\Gamma(-\frac{1}{2}\mathrm{i}z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i}z+d))}{\Gamma(\frac{1}{2}(\mathrm{i}z+d-\alpha))}$$

so that  $\Psi(-iz)$ , is well defined for  $\operatorname{Re}(z) \in (-d, \alpha)$  with roots at 0 and  $\alpha - d$ .

We can use the identity

$$\mathbb{P}_x(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)},$$

providing

$$u_{\xi}(x) = rac{1}{2\pi \mathrm{i}} \int_{c+\mathrm{i}\mathbb{R}} rac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z, \qquad x \in \mathbb{R},$$

for  $c \in (\alpha - d, 0)$ .

▶ Build the contour integral around simple poles at  $\{-2n - (d - \alpha) : n \ge 0\}$ .





| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Note that

$$\frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+d))}{\Gamma(\frac{1}{2}(iz+d-\alpha))}$$

so that  $\Psi(-iz)$ , is well defined for  $\operatorname{Re}(z) \in (-d, \alpha)$  with roots at 0 and  $\alpha - d$ . • We can use the identity

$$\mathbb{P}_x(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)},$$

providing

$$u_{\xi}(x) = rac{1}{2\pi \mathrm{i}} \int_{c+\mathrm{i}\mathbb{R}} rac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z, \qquad x \in \mathbb{R},$$

for  $c \in (\alpha - d, 0)$ .

▶ Build the contour integral around simple poles at  $\{-2n - (d - \alpha) : n \ge 0\}$ .

$$\begin{aligned} &\frac{1}{2\pi i} \int_{c-iR}^{c+iR} \frac{e^{-zx}}{\Psi(-iz)} dz \\ &= -\frac{1}{2\pi i} \int_{c+Re^{i\theta}:\theta \in (\pi/2, 3\pi/2)} \frac{e^{-zx}}{\Psi(-iz)} dz \\ &+ \sum_{1 \le n \le \lfloor R \rfloor} \operatorname{Res} \left( \frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d-\alpha) \right) \end{aligned}$$



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Note that

$$\frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+d))}{\Gamma(\frac{1}{2}(iz+d-\alpha))}$$

so that  $\Psi(-iz)$ , is well defined for  $\operatorname{Re}(z) \in (-d, \alpha)$  with roots at 0 and  $\alpha - d$ . • We can use the identity

$$\mathbb{P}_x(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)},$$

providing

$$u_{\xi}(x) = rac{1}{2\pi \mathrm{i}} \int_{c+\mathrm{i}\mathbb{R}} rac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z, \qquad x \in \mathbb{R},$$

for  $c \in (\alpha - d, 0)$ .

▶ Build the contour integral around simple poles at  $\{-2n - (d - \alpha) : n \ge 0\}$ .





| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

▶ Now fix  $x \le 0$  and recall estimate  $|1/\Psi(-iz)| \le |z|^{-\alpha}$ . The assumption  $x \le 0$  and the fact that the arc length of  $\{c + Re^{i\theta} : \theta \in (\pi/2, 3\pi/2)\}$  is  $\pi R$ , gives us

$$\left| \int_{c+Re^{i\theta}:\theta\in(\pi/2,3\pi/2)} \frac{e^{-xz}}{\Psi(-iz)} dz \right| \le CR^{-(\alpha-1)} \to 0$$

as  $R \to \infty$  for some constant C > 0.

Moreover,

$$u_{\xi}(x) = \sum_{n \ge 1} \operatorname{Res} \left( \frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d - \alpha) \right)$$
  
=  $\sum_{0}^{\infty} (-1)^{n+1} \frac{\Gamma(n + (d - \alpha)/2)}{\Gamma(-n + \alpha/2)\Gamma(n + d/2)} \frac{e^{2nx}}{n!}$   
=  $e^{x(d-\alpha)} \frac{\Gamma((d - \alpha)/2)}{\Gamma(\alpha/2)\Gamma(d/2)} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; e^{2x}),$ 

Which also gives a value for  $u_{\xi}(0)$ .

• Hence, for  $1 \le |x|$ ,

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

▶ Now fix  $x \le 0$  and recall estimate  $|1/\Psi(-iz)| \le |z|^{-\alpha}$ . The assumption  $x \le 0$  and the fact that the arc length of  $\{c + Re^{i\theta} : \theta \in (\pi/2, 3\pi/2)\}$  is  $\pi R$ , gives us

$$\left| \int_{c+Re^{i\theta}:\theta\in(\pi/2,3\pi/2)} \frac{e^{-xz}}{\Psi(-iz)} dz \right| \le CR^{-(\alpha-1)} \to 0$$

as  $R \to \infty$  for some constant C > 0.

Moreover,

$$\begin{split} u_{\xi}(x) &= \sum_{n \ge 1} \operatorname{Res} \left( \frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d - \alpha) \right) \\ &= \sum_{0}^{\infty} (-1)^{n+1} \frac{\Gamma(n + (d - \alpha)/2)}{\Gamma(-n + \alpha/2)\Gamma(n + d/2)} \frac{e^{2nx}}{n!} \\ &= e^{x(d - \alpha)} \frac{\Gamma((d - \alpha)/2)}{\Gamma(\alpha/2)\Gamma(d/2)} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; e^{2x}), \end{split}$$

Which also gives a value for  $u_{\xi}(0)$ .

• Hence, for  $1 \le |x|$ 

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)}$$

$$= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}|x|^{\alpha-d}{}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{-2}).$$

$$43/2$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

▶ Now fix  $x \le 0$  and recall estimate  $|1/\Psi(-iz)| \le |z|^{-\alpha}$ . The assumption  $x \le 0$  and the fact that the arc length of  $\{c + Re^{i\theta} : \theta \in (\pi/2, 3\pi/2)\}$  is  $\pi R$ , gives us

$$\left| \int_{c+Re^{i\theta}:\theta\in(\pi/2,3\pi/2)} \frac{e^{-xz}}{\Psi(-iz)} dz \right| \le CR^{-(\alpha-1)} \to 0$$

as  $R \to \infty$  for some constant C > 0.

► Moreover,

$$\begin{split} u_{\xi}(x) &= \sum_{n \ge 1} \operatorname{Res} \left( \frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d - \alpha) \right) \\ &= \sum_{0}^{\infty} (-1)^{n+1} \frac{\Gamma(n + (d - \alpha)/2)}{\Gamma(-n + \alpha/2)\Gamma(n + d/2)} \frac{e^{2nx}}{n!} \\ &= e^{x(d - \alpha)} \frac{\Gamma((d - \alpha)/2)}{\Gamma(\alpha/2)\Gamma(d/2)} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; e^{2x}), \end{split}$$

Which also gives a value for  $u_{\xi}(0)$ .

• Hence, for  $1 \le |x|$ ,

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) &= \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)} \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{-2}). \end{split}$$
| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# PROOF OF PORT'S HITTING PROBABILITY

- ► To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform to help us.</p>
- To this end we note that, for |x| < 1, |Kx| > 1

$$\mathbb{P}_{Kx}(\tau^{\odot} < \infty) = \mathbb{P}_{x}^{\circ}(\tau^{\odot} < \infty) = \mathbb{E}_{x}\left[\frac{|X_{\tau^{\odot}}|^{\alpha-d}}{|x|^{\alpha-d}}\mathbf{1}_{(\tau^{\odot} < \infty)}\right] = \frac{1}{|x|^{\alpha-d}}\mathbb{P}_{x}(\tau^{\odot} < \infty)$$

• Hence plugging in the expression for |x| < 1,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)}{}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2})$$

( ) + ( ) + ( ) + ( ) + ( ) + ( ) = ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( )

thus completing the proof.

• To deal with the case x = 0, take limits in the established identity as  $|x| \rightarrow 0$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

## PROOF OF PORT'S HITTING PROBABILITY

- ▶ To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform to help us.</p>
- ▶ To this end we note that, for |x| < 1, |Kx| > 1

$$\mathbb{P}_{Kx}(\tau^{\odot} < \infty) = \mathbb{P}_{x}^{\circ}(\tau^{\odot} < \infty) = \mathbb{E}_{x}\left[\frac{|X_{\tau^{\odot}}|^{\alpha-d}}{|x|^{\alpha-d}}\mathbf{1}_{(\tau^{\odot} < \infty)}\right] = \frac{1}{|x|^{\alpha-d}}\mathbb{P}_{x}(\tau^{\odot} < \infty)$$

• Hence plugging in the expression for |x| < 1,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{2}).$$

44 / 73

イロト イポト イモト イモト 三日

thus completing the proof.

• To deal with the case x = 0, take limits in the established identity as  $|x| \rightarrow 0$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# PROOF OF PORT'S HITTING PROBABILITY

- ▶ To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform to help us.</p>
- To this end we note that, for |x| < 1, |Kx| > 1

$$\mathbb{P}_{Kx}(\tau^{\odot} < \infty) = \mathbb{P}_{x}^{\circ}(\tau^{\odot} < \infty) = \mathbb{E}_{x}\left[\frac{|X_{\tau^{\odot}}|^{\alpha-d}}{|x|^{\alpha-d}}\mathbf{1}_{(\tau^{\odot} < \infty)}\right] = \frac{1}{|x|^{\alpha-d}}\mathbb{P}_{x}(\tau^{\odot} < \infty)$$

• Hence plugging in the expression for |x| < 1,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)}{}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2})$$

(ロト・日本・日本・日本・日本・日本・1000)

thus completing the proof.

▶ To deal with the case x = 0, take limits in the established identity as  $|x| \rightarrow 0$ .

| §1. §2. §3. | §4. | §5. | §6. | §7. | §8. | References |
|-------------|-----|-----|-----|-----|-----|------------|
|             |     |     |     |     |     |            |

#### Theorem

Suppose  $\alpha \in (1, 2)$ . For all  $x \in \mathbb{R}^d$ ,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \int_{\mathbb{S}_{d}} |z-x|^{\alpha-d} \sigma_{1}(\mathrm{d}z).$$

In particular, for  $y \in \mathbb{S}_d$ ,

$$\int_{\mathbb{S}_d} |z - y|^{\alpha - d} \sigma_1(\mathrm{d}z) = \frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha - 1)}{\Gamma\left(\frac{\alpha + d}{2} - 1\right) \Gamma\left(\frac{\alpha}{2}\right)}$$

45/73 《 □ ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ ⑦ ⓒ

|--|

- We know that  $|X_t z|^{\alpha d}$ ,  $t \ge 0$  is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_d} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

• Recall that  $\lim_{t\to\infty} |X_t| = 0$  and  $\alpha < d$  and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_d} |z - X_{\tau^{\odot}}|^{\alpha - d} \sigma_1(dz) \mathbf{1}_{(\tau^{\odot} < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau^{\odot} < \infty)}.$$

where, despite the randomness in  $\mathrm{X}_{ au^{\odot}}$  , by rotational symmetry,

$$C = \int_{\mathbb{S}_d} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and  $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$  is the 'North Pole' on  $\mathbb{S}_d$ .

Since M is a UI martingale, taking expectations of M<sub>∞</sub>

$$\int_{\mathbb{S}_d} |z - x|^{\alpha - d} \sigma_1(dz) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as 
$$|x| \to 0$$
,  
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .  
 $(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .

|--|

- We know that  $|X_t z|^{\alpha d}$ ,  $t \ge 0$  is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_d} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

#### is a martingale.

▶ Recall that  $\lim_{t\to\infty} |X_t| = 0$  and  $\alpha < d$  and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_d} |z - X_{\tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z) \mathbf{1}_{(\tau^{\odot} < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau^{\odot} < \infty)}.$$

where, despite the randomness in  $X_{ au \odot}$  , by rotational symmetry,

$$C = \int_{\mathbb{S}_d} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and  $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$  is the 'North Pole' on  $\mathbb{S}_d$ .

Since M is a UI martingale, taking expectations of M<sub>∞</sub>

$$\int_{\mathbb{S}_d} |z - x|^{\alpha - d} \sigma_1(\mathrm{d}z) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as 
$$|x| \to 0$$
,  
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .  
 $(\Box \to \langle \sigma \rangle + \langle \sigma \rangle$ 

|--|

- We know that  $|X_t z|^{\alpha d}$ ,  $t \ge 0$  is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_d} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

▶ Recall that  $\lim_{t\to\infty} |X_t| = 0$  and  $\alpha < d$  and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_d} |z - X_{\tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z) \mathbf{1}_{(\tau^{\odot} < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau^{\odot} < \infty)}.$$

where, despite the randomness in  $X_{\tau \odot}$  , by rotational symmetry,

$$C = \int_{\mathbb{S}_d} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and  $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$  is the 'North Pole' on  $\mathbb{S}_d$ .

Since M is a UI martingale, taking expectations of M<sub>∞</sub>

$$\int_{\mathbb{S}_d} |z-x|^{\alpha-d} \sigma_1(\mathrm{d} z) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as 
$$|x| \to 0$$
,  
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .  
 $(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .

|--|

- We know that  $|X_t z|^{\alpha d}$ ,  $t \ge 0$  is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_d} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

▶ Recall that  $\lim_{t\to\infty} |X_t| = 0$  and  $\alpha < d$  and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_d} |z - X_{\tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z) \mathbf{1}_{(\tau^{\odot} < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau^{\odot} < \infty)}.$$

where, despite the randomness in  $X_{\tau\odot}$  , by rotational symmetry,

$$C = \int_{\mathbb{S}_d} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and  $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$  is the 'North Pole' on  $\mathbb{S}_d$ .

▶ Since *M* is a UI martingale, taking expectations of M<sub>∞</sub>

$$\int_{\mathbb{S}_d} |z - x|^{\alpha - d} \sigma_1(dz) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

Taking limits as  $|x| \to 0$ ,  $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .

|--|

- We know that  $|X_t z|^{\alpha d}$ ,  $t \ge 0$  is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_d} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

▶ Recall that  $\lim_{t\to\infty} |X_t| = 0$  and  $\alpha < d$  and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_d} |z - X_{\tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z) \mathbf{1}_{(\tau^{\odot} < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau^{\odot} < \infty)}.$$

where, despite the randomness in  $X_{\tau \odot}$  , by rotational symmetry,

$$C = \int_{\mathbb{S}_d} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and  $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$  is the 'North Pole' on  $\mathbb{S}_d$ .

▶ Since *M* is a UI martingale, taking expectations of M<sub>∞</sub>

$$\int_{\mathbb{S}_d} |z - x|^{\alpha - d} \sigma_1(dz) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as 
$$|x| \to 0$$
,  
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$ .

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

Sphere inversions



| §1.   | §2.    | §3.    | §4. | §5. | §6. | §7. | §8. | References |
|-------|--------|--------|-----|-----|-----|-----|-----|------------|
| SPHER | E INVE | RSIONS |     |     |     |     |     |            |

- Fix a point  $b \in \mathbb{R}^d$  and a value r > 0.
- The spatial transformation  $x^* : \mathbb{R}^d \setminus \{b\} \mapsto \mathbb{R}^d \setminus \{b\}$

$$x^* = b + \frac{r^2}{|x-b|^2}(x-b),$$

is called an *inversion through the sphere*  $\mathbb{S}_d(b, r) := \{x \in \mathbb{R}^d : |x - b| = r\}.$ 



Figure: Inversion relative to the sphere  $\mathbb{S}_d(b, r)$ .

48/73

イロン 不聞と 不良と 不良とう 良い

| §1. §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|---------|-----|-----|-----|-----|-----|-----|------------|
|         |     |     |     |     |     |     |            |

# INVERSION THROUGH $\mathbb{S}_d(b, r)$ : KEY PROPERTIES

Inversion through  $\mathbb{S}_d(b, r)$ 

$$x^* = b + \frac{r^2}{|x-b|^2}(x-b),$$

The following can be deduced by straightforward algebra

Self inverse

$$x = b + r^2 \frac{(x^* - b)}{|x^* - b|^2}$$

Symmetry

$$r^2 = |x^* - b||x - b|$$

Difference

$$|x^* - y^*| = \frac{r^2|x - y|}{|x - b||y - b|}$$

Differential

$$\mathrm{d}x^* = \frac{r^{2d}}{|x-b|^{2d}}\mathrm{d}x$$

49/73

・ロト・西ト・ヨト・ヨト ・ ヨー うらぐ

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
| _   |     |     |     |     |     |     |     |            |

INVERSION THROUGH  $\mathbb{S}_d(b, r)$ : KEY PROPERTIES

▶ The sphere  $\mathbb{S}_d(c, R)$  maps to itself under inversion through  $\mathbb{S}_d(b, r)$  provided the former is orthogonal to the latter, which is equivalent to  $r^2 + R^2 = |c - b|^2$ .



In particular, the area contained in the blue segment is mapped to the area in the red segment and vice versa.

50/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# SPHERE INVERSION WITH REFLECTION

A variant of the sphere inversion transform takes the form

$$x^{\diamond} = b - \frac{r^2}{|x-b|^2}(x-b),$$

and has properties

Self inverse

$$x = b - \frac{r^2}{|x^\diamond - b|^2} (x^\diamond - b),$$

Symmetry

$$r^2 = |x^\diamond - b||x - b|,$$

Difference

$$|x^{\diamond} - y^{\diamond}| = \frac{r^2 |x - y|}{|x - b||y - b|}.$$

Differential

$$\mathrm{d}x^\diamond = \frac{r^{2d}}{|x-b|^{2d}}\mathrm{d}x$$

51/73 <□▶<륜▶<≧▶<≧▶ ≧ ∽੧<

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# SPHERE INVERSION WITH REFLECTION

Fix  $b \in \mathbb{R}^d$  and r > 0. The sphere  $\mathbb{S}_d(c, R)$  maps to itself through  $\mathbb{S}_d(b, r)$  providing  $|c - b|^2 + r^2 = R^2$ .



▶ However, this time, the exterior of the sphere  $\mathbb{S}_d(c, R)$  maps to the interior of the sphere  $\mathbb{S}_d(c, R)$  and vice versa. For example, the region in the exterior of  $\mathbb{S}_d(c, R)$  contained by blue boundary maps to the portion of the interior of  $\mathbb{S}_d(c, R)$  contained by the red boundary.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

## §6. Spherical hitting distribution



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# PORT'S SPHERE HITTING DISTRIBUTION

A richer version of the previous theorem:

Theorem (Port (1969))

Define the function

$$h^{\odot}(x,y) = \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \frac{||x|^2-1|^{\alpha-1}}{|x-y|^{\alpha+d-2}}$$

for  $|x| \neq 1$ , |y| = 1. Then, if  $\alpha \in (1, 2)$ ,

$$\mathbb{P}_{x}(X_{\tau^{\odot}} \in dy) = h^{\odot}(x, y)\sigma_{1}(dy)\mathbf{1}_{(|x|\neq 1)} + \delta_{x}(dy)\mathbf{1}_{(|x|=1)}, \qquad |y| = 1,$$

where  $\sigma_1(dy)$  is the surface measure on  $\mathbb{S}_d$ , normalised to have unit total mass.

Otherwise, if  $\alpha \in (0, 1]$ ,  $\mathbb{P}_x(\tau^{\odot} = \infty) = 1$ , for all  $|x| \neq 1$ .

54/73 《 □ ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ 의 역 @

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- Write  $\mu_x^{\odot}(dz) = \mathbb{P}_x(X_{\tau^{\odot}} \in dz)$  on  $\mathbb{S}_d$  where  $x \in \mathbb{R}^d \setminus \mathbb{S}_d$ .
- Recall the expression for the resolvent of the stable process in Theorem 2 which states that, due to transience,

$$\int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d}y)\mathrm{d}t = C(\alpha)|x-y|^{\alpha-d}\mathrm{d}y, \qquad x, y \in \mathbb{R}^d,$$

where  $C(\alpha)$  is an unimportant constant in the following discussion.

• The measure  $\mu_x^{\odot}$  is the solution to the 'functional fixed point equation'

$$|x-y|^{\alpha-d} = \int_{\mathbb{S}_d} |z-y|^{\alpha-d} \mu(\mathrm{d} z), \qquad y \in \mathbb{S}_d.$$

With a little work, we can show it is the unique solution in the class of probability measures.

(日本)(国本)(国本)(国本)

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- ▶ Write  $\mu_x^{\odot}(dz) = \mathbb{P}_x(X_{\tau^{\odot}} \in dz)$  on  $\mathbb{S}_d$  where  $x \in \mathbb{R}^d \setminus \mathbb{S}_d$ .
- Recall the expression for the resolvent of the stable process in Theorem 2 which states that, due to transience,

$$\int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = C(\alpha) |x - y|^{\alpha - d} \mathrm{d} y, \qquad x, y \in \mathbb{R}^d,$$

where  $C(\alpha)$  is an unimportant constant in the following discussion.

• The measure  $\mu_x^{\odot}$  is the solution to the 'functional fixed point equation'

$$|x-y|^{\alpha-d} = \int_{\mathbb{S}_d} |z-y|^{\alpha-d} \mu(\mathrm{d} z), \qquad y \in \mathbb{S}_d.$$

With a little work, we can show it is the unique solution in the class of probability measures.

< ロト 4 課 ト 4 語 ト 4 語 ト 語 9 Q ()</li>

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- Write  $\mu_x^{\odot}(dz) = \mathbb{P}_x(X_{\tau^{\odot}} \in dz)$  on  $\mathbb{S}_d$  where  $x \in \mathbb{R}^d \setminus \mathbb{S}_d$ .
- Recall the expression for the resolvent of the stable process in Theorem 2 which states that, due to transience,

$$\int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = C(\alpha) |x - y|^{\alpha - d} \mathrm{d} y, \qquad x, y \in \mathbb{R}^d,$$

where  $C(\alpha)$  is an unimportant constant in the following discussion.

• The measure  $\mu_x^{\odot}$  is the solution to the 'functional fixed point equation'

$$|x-y|^{\alpha-d} = \int_{\mathbb{S}_d} |z-y|^{\alpha-d} \mu(\mathrm{d} z), \qquad y \in \mathbb{S}_d.$$

With a little work, we can show it is the unique solution in the class of probability measures.

55/73

| 91. 92. 93. 94. 95. <b>90.</b> 97. 90. Reference | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Recall, for  $y^* \in S_d$ , from the Riesz representation of the sphere hitting probability,

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_d} |z^* - y^*|^{\alpha-d} \sigma_1(\mathrm{d} z^*).$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation **first assuming that** |x| > 1

Apply the sphere inversion with respect to the sphere  $\mathbb{S}_d(x, (|x|^2 - 1)^{1/2})$  remembering that this transformation maps  $\mathbb{S}_d$  to itself and using

$$\frac{1}{|z^* - x|^{d-1}}\sigma_1(dz^*) = \frac{1}{|z - x|^{d-1}}\sigma_1(dz)$$
$$(|x|^2 - 1) = |z^* - x||z - x| \quad \text{and} \quad |z^* - y^*| = \frac{(|x|^2 - 1)|z - y|}{|z - x||y - x|}$$

We have

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_d} |z^* - x|^{d-1} |z^* - y^*|^{\alpha-d} \frac{\sigma_1(\mathrm{d}z^*)}{|z^* - x|^{d-1}}$$
$$= \frac{(|x|^2 - 1)^{\alpha-1}}{|y - x|^{\alpha-d}} \int_{\mathbb{S}_d} \frac{|z - y|^{\alpha-d}}{|z - x|^{\alpha+d-2}} \sigma_1(\mathrm{d}z).$$

▶ For the case |x| < 1, calculate similarly by replacing  $x^*$  by  $x^\circ$  i.e. inverting and reflecting in the sphere  $\mathbb{S}_d(x, (1 - |x|^2)^{1/2})$   $(\Box \mapsto \langle \mathcal{O} \mapsto \langle \mathbb{P} \rangle \land \mathbb{P})$ 

| 91. 92. 93. 94. 95. <b>90.</b> 97. 90. Reference | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Recall, for  $y^* \in S_d$ , from the Riesz representation of the sphere hitting probability,

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_d} |z^* - y^*|^{\alpha-d} \sigma_1(\mathrm{d} z^*).$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation **first assuming that** |x| > 1

▶ Apply the sphere inversion with respect to the sphere  $\mathbb{S}_d(x, (|x|^2 - 1)^{1/2})$  remembering that this transformation maps  $\mathbb{S}_d$  to itself and using

$$\frac{1}{|z^* - x|^{d-1}}\sigma_1(dz^*) = \frac{1}{|z - x|^{d-1}}\sigma_1(dz)$$
$$(|x|^2 - 1) = |z^* - x||z - x| \quad \text{and} \quad |z^* - y^*| = \frac{(|x|^2 - 1)|z - y|}{|z - x||y - x|}$$

We have

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_d} |z^* - x|^{d-1} |z^* - y^*|^{\alpha-d} \frac{\sigma_1(\mathrm{d}z^*)}{|z^* - x|^{d-1}}$$
$$= \frac{(|x|^2 - 1)^{\alpha-1}}{|y - x|^{\alpha-d}} \int_{\mathbb{S}_d} \frac{|z - y|^{\alpha-d}}{|z - x|^{\alpha+d-2}} \sigma_1(\mathrm{d}z).$$

For the case |x| < 1, calculate similarly by replacing  $x^*$  by  $x^{\diamond}$  i.e. inverting and reflecting in the sphere  $\mathbb{S}_d(x, (1 - |x|^2)^{1/2})$ 

| 91. 92. 93. 94. 95. <b>90.</b> 97. 90. Reference | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Recall, for  $y^* \in S_d$ , from the Riesz representation of the sphere hitting probability,

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_d} |z^* - y^*|^{\alpha-d} \sigma_1(\mathrm{d} z^*).$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation **first assuming that** |x| > 1

• Apply the sphere inversion with respect to the sphere  $\mathbb{S}_d(x, (|x|^2 - 1)^{1/2})$  remembering that this transformation maps  $\mathbb{S}_d$  to itself and using

$$\frac{1}{|z^* - x|^{d-1}}\sigma_1(dz^*) = \frac{1}{|z - x|^{d-1}}\sigma_1(dz)$$
$$(|x|^2 - 1) = |z^* - x||z - x| \quad \text{and} \quad |z^* - y^*| = \frac{(|x|^2 - 1)|z - y|}{|z - x||y - x|}$$

We have

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_d} |z^* - x|^{d-1} |z^* - y^*|^{\alpha-d} \frac{\sigma_1(\mathrm{d}z^*)}{|z^* - x|^{d-1}}$$
$$= \frac{(|x|^2 - 1)^{\alpha-1}}{|y - x|^{\alpha-d}} \int_{\mathbb{S}_d} \frac{|z - y|^{\alpha-d}}{|z - x|^{\alpha+d-2}} \sigma_1(\mathrm{d}z).$$

For the case |x| < 1, calculate similarly by replacing  $x^*$  by  $x^{\diamond}$  i.e. inverting and reflecting in the sphere  $\mathbb{S}_d(x, (1 - |x|^2)^{1/2})$ 

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

\_

## §7. Spherical entrance/exit distribution



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# BLUMENTHAL-GETOOR-RAY EXIT/ENTRANCE DISTRIBUTION

Theorem *Define the function* 

$$g(x,y) = \pi^{-(d/2+1)} \Gamma(d/2) \sin(\pi\alpha/2) \frac{|1-|x|^2|^{\alpha/2}}{|1-|y|^2|^{\alpha/2}} |x-y|^{-d}$$

for  $x, y \in \mathbb{R}^d \setminus \mathbb{S}_d$ . Let  $\tau^{\oplus} := \inf\{t > 0 : |X_t| < 1\}$  and  $\tau_a^{\ominus} := \inf\{t > 0 : |X_t| > 1\}$ . (i) Suppose that |x| < 1, then  $\mathbb{P}_x(X_{\tau^{\ominus}} \in dy) = g(x, y)dy, \quad |y| \ge 1$ . (ii) Suppose that |x| > 1, then  $\mathbb{P}_x(X_{\tau^{\oplus}} \in dy, \tau^{\oplus} < \infty) = g(x, y)dy, \quad |y| \le 1$ .

> 58/73 《 ロ ト 《 큔 ト 《 콘 ト 《 콘 ト · 트 · · · 이 Q ()·

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

 Appealing again to the potential density and the strong Markov property, it suffices to find a solution to

$$|x-y|^{\alpha-d} = \int_{|z|\ge 1} |z-y|^{\alpha-d} \mu(\mathrm{d}z), \qquad |y|> 1,$$

#### with a straightforward argument providing uniqueness.

The proof is complete as soon as we can verify that

$$|x-y|^{\alpha-d} = c_{\alpha,d} \int_{|z| \ge 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz$$

for |y| > 1 > |x|, where

$$c_{\alpha,d} = \pi^{-(1+d/2)} \Gamma(d/2) \sin(\pi \alpha/2).$$

59/73 《 □ ▷ 《 큔 ▷ 《 큰 ▷ 《 큰 ▷ 《 은

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

 Appealing again to the potential density and the strong Markov property, it suffices to find a solution to

$$|x-y|^{\alpha-d} = \int_{|z|\ge 1} |z-y|^{\alpha-d} \mu(\mathrm{d}z), \qquad |y|> 1,$$

with a straightforward argument providing uniqueness.

The proof is complete as soon as we can verify that

$$|x-y|^{\alpha-d} = c_{\alpha,d} \int_{|z| \ge 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz$$

for |y| > 1 > |x|, where

$$c_{\alpha,d} = \pi^{-(1+d/2)} \Gamma(d/2) \sin(\pi \alpha/2).$$

59/73 ▲□▶▲@▶▲필▶▲필▶ 필 이익은

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

► Transform  $z \mapsto z^{\diamond}$  (sphere inversion with reflection) through the sphere  $\mathbb{S}_d(x, (1 - |x|^2)^{1/2})$ , noting in particular that

$$|z^{\diamond} - y^{\diamond}| = (1 - |x|^2) \frac{|z - y|}{|z - x||y - x|}$$
 and  $|z|^2 - 1 = \frac{|z - x|^2}{1 - |x|^2} (1 - |z^{\diamond}|^2)$ 

and

$$\mathrm{d} z^\diamond = (1-|x|^2)^d |z-x|^{-2d} \mathrm{d} z, \qquad z \in \mathbb{R}^d.$$

For 
$$|x| < 1 < |y|$$
,  
$$\int_{|z| \ge 1} |z - y|^{\alpha - d} \frac{|1 - |x|^2|^{\alpha/2}}{|1 - |z|^2|^{\alpha/2}} |x - z|^{-d} dz = |y - x|^{\alpha - d} \int_{|z^\diamond| \le 1} \frac{|z^\diamond - y^\diamond|^{\alpha - d}}{|1 - |z^\diamond|^2|^{\alpha/2}} dz^\diamond.$$

▶ Now perform similar transformation  $z^{\diamond} \mapsto w$  (inversion with reflection), albeit through the sphere  $S_d(y^{\diamond}, (1 - |y^{\diamond}|^2)^{1/2})$ .

$$|y-x|^{\alpha-d} \int_{|z^{\diamond}| \le 1} \frac{|z^{\diamond} - y^{\diamond}|^{\alpha-d}}{|1-|z^{\diamond}|^{2}|^{\alpha/2}} \mathrm{d}z^{\diamond} = |y-x|^{\alpha-d} \int_{|w| \ge 1} \frac{|1-|y^{\diamond}|^{2}|^{\alpha/2}}{|1-|w|^{2}|^{\alpha/2}} |w-y^{\diamond}|^{-d} \mathrm{d}w.$$

60/73

- コン・4回シュ ヨシュ ヨン・9 くの

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

► Transform  $z \mapsto z^{\diamond}$  (sphere inversion with reflection) through the sphere  $\mathbb{S}_d(x, (1 - |x|^2)^{1/2})$ , noting in particular that

$$|z^{\diamond} - y^{\diamond}| = (1 - |x|^2) \frac{|z - y|}{|z - x||y - x|}$$
 and  $|z|^2 - 1 = \frac{|z - x|^2}{1 - |x|^2} (1 - |z^{\diamond}|^2)$ 

and

$$\mathrm{d} z^\diamond = (1-|x|^2)^d |z-x|^{-2d} \mathrm{d} z, \qquad z \in \mathbb{R}^d.$$

For 
$$|x| < 1 < |y|$$
,  
$$\int_{|z| \ge 1} |z - y|^{\alpha - d} \frac{|1 - |x|^2|^{\alpha/2}}{|1 - |z|^2|^{\alpha/2}} |x - z|^{-d} dz = |y - x|^{\alpha - d} \int_{|z^{\diamond}| \le 1} \frac{|z^{\diamond} - y^{\diamond}|^{\alpha - d}}{|1 - |z^{\diamond}|^2|^{\alpha/2}} dz^{\diamond}.$$

Now perform similar transformation  $z^{\diamond} \mapsto w$  (inversion with reflection), albeit through the sphere  $\mathbb{S}_d(y^{\diamond}, (1 - |y^{\diamond}|^2)^{1/2})$ .

$$|y-x|^{\alpha-d} \int_{|z^{\circ}| \le 1} \frac{|z^{\circ} - y^{\circ}|^{\alpha-d}}{|1-|z^{\circ}|^{2}|^{\alpha/2}} \mathrm{d}z^{\circ} = |y-x|^{\alpha-d} \int_{|w| \ge 1} \frac{|1-|y^{\circ}|^{2}|^{\alpha/2}}{|1-|w|^{2}|^{\alpha/2}} |w-y^{\circ}|^{-d} \mathrm{d}w.$$

・ロト・日本・モート モー シック・

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

▶ Transform  $z \mapsto z^{\diamond}$  (sphere inversion with reflection) through the sphere  $\mathbb{S}_d(x, (1 - |x|^2)^{1/2})$ , noting in particular that

$$|z^{\diamond} - y^{\diamond}| = (1 - |x|^2) \frac{|z - y|}{|z - x||y - x|}$$
 and  $|z|^2 - 1 = \frac{|z - x|^2}{1 - |x|^2} (1 - |z^{\diamond}|^2)$ 

and

$$\mathrm{d} z^\diamond = (1-|x|^2)^d |z-x|^{-2d} \mathrm{d} z, \qquad z \in \mathbb{R}^d.$$

• For 
$$|x| < 1 < |y|$$
,

$$\int_{|z|\geq 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz = |y-x|^{\alpha-d} \int_{|z^\diamond|\leq 1} \frac{|z^\diamond - y^\diamond|^{\alpha-d}}{|1-|z^\diamond|^2|^{\alpha/2}} dz^\diamond.$$

▶ Now perform similar transformation  $z^{\diamond} \mapsto w$  (inversion with reflection), albeit through the sphere  $\mathbb{S}_d(y^{\diamond}, (1 - |y^{\diamond}|^2)^{1/2})$ .

$$|y-x|^{\alpha-d} \int_{|z^{\diamond}| \le 1} \frac{|z^{\diamond} - y^{\diamond}|^{\alpha-d}}{|1-|z^{\diamond}|^{2}|^{\alpha/2}} \mathrm{d}z^{\diamond} = |y-x|^{\alpha-d} \int_{|w| \ge 1} \frac{|1-|y^{\diamond}|^{2}|^{\alpha/2}}{|1-|w|^{2}|^{\alpha/2}} |w-y^{\diamond}|^{-d} \mathrm{d}w.$$

| §1. §2. §3. §4. §5. §6. <b>§7.</b> §8. | References |
|----------------------------------------|------------|
|----------------------------------------|------------|

PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I) Thus far:

$$\int_{|z|\geq 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz = |y-x|^{\alpha-d} \int_{|w|\geq 1} \frac{|1-|y^{\diamond}|^2|^{\alpha/2}}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} dw.$$

 Taking the integral in red and decomposition into generalised spherical polar coordinates

$$\int_{|v|\geq 1} \frac{1}{|1-|w|^2|^{\alpha/2}} |w-y^\diamond|^{-d} \mathrm{d}w = \frac{2\pi^{d/2}}{\Gamma(d/2)} \int_1^\infty \frac{r^{d-1}\mathrm{d}r}{|1-r^2|^{\alpha/2}} \int_{\mathbb{S}_d(0,r)} |z-y^\diamond|^{-d} \sigma_r(\mathrm{d}z)$$

Poisson's formula (the probability that a Brownian motion hits a sphere of radius r > 0) states that

$$\int_{\mathbb{S}_d(0,r)} \frac{r^{d-2}(r^2 - |y^{\diamond}|^2)}{|z - y^{\diamond}|^d} \sigma_r(\mathrm{d} z) = 1, \qquad |y^{\diamond}| < 1 < r.$$

gives us

$$\begin{split} \int_{|v| \ge 1} \frac{1}{|1 - |w|^2 |^{\alpha/2}} |w - y^{\diamond}|^{-d} \mathrm{d}w &= \frac{\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{2r}{(r^2 - 1)^{\alpha/2} (r^2 - |y^{\diamond}|^2)} \mathrm{d}r \\ &= \frac{\pi}{\sin(\alpha \pi/2)} \frac{1}{(1 - |y^{\diamond}|^2)^{\alpha/2}} \end{split}$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I) Thus far:

$$\int_{|z|\geq 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz = |y-x|^{\alpha-d} \int_{|w|\geq 1} \frac{|1-|y^{\diamond}|^2|^{\alpha/2}}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} dw.$$

 Taking the integral in red and decomposition into generalised spherical polar coordinates

$$\int_{|v|\geq 1} \frac{1}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} dw = \frac{2\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{r^{d-1} dr}{|1-r^2|^{\alpha/2}} \int_{\mathbb{S}_d(0,r)} |z-y^{\diamond}|^{-d} \sigma_r(dz)$$

▶ Poisson's formula (the probability that a Brownian motion hits a sphere of radius r > 0) states that

$$\int_{\mathbb{S}_d(0,r)} \frac{r^{d-2}(r^2 - |y^{\diamond}|^2)}{|z - y^{\diamond}|^d} \sigma_r(dz) = 1, \qquad |y^{\diamond}| < 1 < r.$$

gives us

$$\begin{split} \int_{|v| \ge 1} \frac{1}{|1 - |w|^2 |^{\alpha/2}} |w - y^{\diamond}|^{-d} \mathrm{d}w &= \frac{\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{2r}{(r^2 - 1)^{\alpha/2} (r^2 - |y^{\diamond}|^2)} \mathrm{d}r \\ &= \frac{\pi}{\sin(\alpha \pi/2)} \frac{1}{(1 - |y^{\diamond}|^2)^{\alpha/2}} \end{split}$$

▶ Plugging everything back in gives the result for |x| < 1.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1) from the identity in (i) (i.e. |x| < 1).

Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

$$\mathbb{P}_{x}(X_{\tau\oplus} \in D) = \mathbb{P}^{\circ}_{Kx}(KX_{\tau\oplus} \in D),$$

where  $Kx = x/|x|^2$ , |Kx - Kz| = |x - z|/|x||z| and  $KD = \{Kx : x \in D\}$ .

Noting that  $d(Kz) = |z|^{-2d} dz$ , we have

$$\begin{split} \mathbb{P}_{x}(X_{\tau\oplus} \in D) \\ &= \int_{KD} \frac{|y|^{\alpha-d}}{|Kx|^{\alpha-d}} g(Kx,y) \mathrm{d}y \\ &= c_{\alpha,d} \int_{KD} |z|^{d-\alpha} |Kx|^{d-\alpha} \frac{|1-|Kx|^{2}|^{\alpha/2}}{|1-|y|^{2}|^{\alpha/2}} |Kx-y|^{-d} \mathrm{d}y \\ &= c_{\alpha,d} \int_{D} |z|^{2d} \frac{|1-|x|^{2}|^{\alpha/2}}{|1-|z|^{2}|^{\alpha/2}} |x-z|^{-d} \mathrm{d}(Kz) \\ &= c_{\alpha,d} \int_{D} \frac{|1-|x|^{2}|^{\alpha/2}}{|1-|z|^{2}|^{\alpha/2}} |x-z|^{-d} \mathrm{d}z \end{split}$$

62/73 ∢□▶ < @ ▶ < ≧ ▶ < ≧ ▶ うへぐ

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1) from the identity in (i) (i.e. |x| < 1).

Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

$$\mathbb{P}_{x}(X_{\tau\oplus} \in D) = \mathbb{P}^{\circ}_{Kx}(KX_{\tau\oplus} \in D),$$

where  $Kx = x/|x|^2$ , |Kx - Kz| = |x - z|/|x||z| and  $KD = \{Kx : x \in D\}$ .

• Noting that  $d(Kz) = |z|^{-2d} dz$ , we have

$$\begin{split} \mathbb{P}_{x}(X_{\tau \oplus} \in D) \\ &= \int_{KD} \frac{|y|^{\alpha - d}}{|Kx|^{\alpha - d}} g(Kx, y) \mathrm{d}y \\ &= c_{\alpha, d} \int_{KD} |z|^{d - \alpha} |Kx|^{d - \alpha} \frac{|1 - |Kx|^{2}|^{\alpha/2}}{|1 - |y|^{2}|^{\alpha/2}} |Kx - y|^{-d} \mathrm{d}y \\ &= c_{\alpha, d} \int_{D} |z|^{2d} \frac{|1 - |x|^{2}|^{\alpha/2}}{|1 - |z|^{2}|^{\alpha/2}} |x - z|^{-d} \mathrm{d}(Kz) \\ &= c_{\alpha, d} \int_{D} \frac{|1 - |x|^{2}|^{\alpha/2}}{|1 - |z|^{2}|^{\alpha/2}} |x - z|^{-d} \mathrm{d}z \end{split}$$

62/73 ∢□▶ < @ ▶ < ≧ ▶ < ≧ ▶ うへぐ

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

§8. Radial excursion theory



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

#### EXCURSIONS FROM THE RADIAL MINIMUM

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha\xi_u} \, \mathrm{d}u > t\right\}$$

and  $(\xi, \Theta)$  with probabilities  $\mathbf{P}_{x,\theta}$ ,  $x \neq 0$ ,  $\theta \in \mathbb{S}_d$ , is a MAP. Recall also that, although corollated to  $\Theta$ ,  $\xi$  alone is a Lévy process.

- ► Let  $\ell = (\ell_t, t \ge 0)$ , the local time at 0 of the reflected Lévy process  $\xi_t \underline{\xi}_{t'}, t \ge 0$ , where  $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$ .
- ▶ The process  $\ell$  serves as an adequate choice for the local time of the Markov process  $(\xi \xi, \Theta)$  on the set  $\{0\} \times S_d$ .
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that  $d_t > g_t$  the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \le \zeta_{g_t} := d_t - g_t,$$

codes the excursions of  $(\xi - \underline{\xi}, \Theta)$  from the set  $(0, \mathbb{S}_d)$  or equivalently, excursions of  $(X_t / \inf_{s \le t} | X_s |, t \ge 0)$ , from  $\mathbb{S}_d$ , or equivalently an excursion of X from its running radial infimum.

• Moreover, we see that, for all t > 0 such that  $d_t > g_t$ ,

$$X_{g_{l}+s} = e^{\xi_{g_{l}}} e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s) = |X_{g_{l}}| e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s), \quad s \leq \zeta_{g_{l}}.$$

$$64/73$$
| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and  $(\xi, \Theta)$  with probabilities  $\mathbf{P}_{x,\theta}$ ,  $x \neq 0$ ,  $\theta \in \mathbb{S}_d$ , is a MAP. Recall also that, although corollated to  $\Theta$ ,  $\xi$  alone is a Lévy process.

- ► Let  $\ell = (\ell_t, t \ge 0)$ , the local time at 0 of the reflected Lévy process  $\xi_t \underline{\xi}_{t'}, t \ge 0$ , where  $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$ .
- The process ℓ serves as an adequate choice for the local time of the Markov process (ξ − ξ, Θ) on the set {0} × S<sub>d</sub>.
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that  $d_t > g_t$  the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \le \zeta_{g_t} := d_t - g_t,$$

codes the excursions of  $(\xi - \underline{\xi}, \Theta)$  from the set  $(0, \mathbb{S}_d)$  or equivalently, excursions of  $(X_t / \inf_{s \le t} | X_s |, t \ge 0)$ , from  $\mathbb{S}_d$ , or equivalently an excursion of X from its running radial infimum.

• Moreover, we see that, for all t > 0 such that  $d_t > g_t$ ,

$$X_{g_{l}+s} = e^{\xi_{g_{l}}} e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s) = |X_{g_{l}}| e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s), \quad s \leq \zeta_{g_{l}}.$$

$$64/73$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and  $(\xi, \Theta)$  with probabilities  $\mathbf{P}_{x,\theta}$ ,  $x \neq 0$ ,  $\theta \in \mathbb{S}_d$ , is a MAP. Recall also that, although corollated to  $\Theta$ ,  $\xi$  alone is a Lévy process.

- ► Let  $\ell = (\ell_t, t \ge 0)$ , the local time at 0 of the reflected Lévy process  $\xi_t \underline{\xi}_{t'}, t \ge 0$ , where  $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$ .
- The process ℓ serves as an adequate choice for the local time of the Markov process (ξ − ξ, Θ) on the set {0} × S<sub>d</sub>.

Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that  $d_t > g_t$  the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \le \zeta_{g_t} := d_t - g_t,$$

codes the excursions of  $(\xi - \underline{\xi}, \Theta)$  from the set  $(0, \mathbb{S}_d)$  or equivalently, excursions of  $(X_t / \inf_{s \le t} | X_s |, t \ge 0)$ , from  $\mathbb{S}_d$ , or equivalently an excursion of X from its running radial infimum.

▶ Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_l+s} = e^{\xi_{g_l}} e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s) = |X_{g_l}| e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s), \quad s \leq \zeta_{g_l}.$$

$$4 \exists s \in \{0\} \\ 4 i \in \{0\} \\ 4$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and  $(\xi, \Theta)$  with probabilities  $\mathbf{P}_{x,\theta}$ ,  $x \neq 0$ ,  $\theta \in \mathbb{S}_d$ , is a MAP. Recall also that, although corollated to  $\Theta$ ,  $\xi$  alone is a Lévy process.

- ► Let  $\ell = (\ell_t, t \ge 0)$ , the local time at 0 of the reflected Lévy process  $\xi_t \underline{\xi}_{t'}, t \ge 0$ , where  $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$ .
- ► The process  $\ell$  serves as an adequate choice for the local time of the Markov process  $(\xi \xi, \Theta)$  on the set  $\{0\} \times S_d$ .
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that  $d_t > g_t$  the process

$$(\epsilon_{\mathsf{g}_t}(s), \Theta_{\mathsf{g}_t}^{\epsilon}(s)) := (\xi_{\mathsf{g}_t+s} - \xi_{\mathsf{g}_t}, \Theta_{\mathsf{g}_t+s}), \qquad s \leq \zeta_{\mathsf{g}_t} := \mathsf{d}_t - \mathsf{g}_t,$$

codes the excursions of  $(\xi - \underline{\xi}, \Theta)$  from the set  $(0, \mathbb{S}_d)$  or equivalently, excursions of  $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$ , from  $\mathbb{S}_d$ , or equivalently an excursion of X from its running radial infimum.

▶ Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_l+s} = e^{\xi_{g_l}} e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s) = |X_{g_l}| e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s), \qquad s \le \zeta_{g_l}.$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and  $(\xi, \Theta)$  with probabilities  $\mathbf{P}_{x,\theta}$ ,  $x \neq 0$ ,  $\theta \in \mathbb{S}_d$ , is a MAP. Recall also that, although corollated to  $\Theta$ ,  $\xi$  alone is a Lévy process.

- ► Let  $\ell = (\ell_t, t \ge 0)$ , the local time at 0 of the reflected Lévy process  $\xi_t \underline{\xi}_{t'}, t \ge 0$ , where  $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$ .
- ► The process  $\ell$  serves as an adequate choice for the local time of the Markov process  $(\xi \xi, \Theta)$  on the set  $\{0\} \times S_d$ .
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that  $d_t > g_t$  the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \leq \zeta_{g_t} := d_t - g_t,$$

codes the excursions of  $(\xi - \underline{\xi}, \Theta)$  from the set  $(0, \mathbb{S}_d)$  or equivalently, excursions of  $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$ , from  $\mathbb{S}_d$ , or equivalently an excursion of X from its running radial infimum.

▶ Moreover, we see that, for all *t* > 0 such that d<sub>t</sub> > g<sub>t</sub>,

$$X_{g_t+s} = e^{\xi_{g_t}} e^{\epsilon_{g_t}(s)} \Theta_{g_t}^{\epsilon}(s) = |X_{g_t}| e^{\epsilon_{g_t}(s)} \Theta_{g_t}^{\epsilon}(s), \quad s \le \zeta_{g_t}.$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- ► The classical theory of exit systems in Maisonneuve (1975) now implies that there exists a family of *excursion measures*,  $\mathbb{N}_{\theta}$ ,  $\theta \in \mathbb{S}_d$ , such that:
- ▶ the map  $\theta \mapsto \mathbb{N}_{\theta}$  is a kernel from  $\mathbb{S}_d$  to  $\mathbb{R} \times \mathbb{S}_d$ , such that  $\mathbb{N}_{\theta}(1 e^{-\zeta}) < \infty$  and  $\mathbb{N}_{\theta}$  is carried by the set {( $\epsilon(0), \Theta^{\epsilon}(0) = (0, \theta)$ } and { $\zeta > 0$ };
- we have the *exit formula*

$$\begin{split} \mathbf{E}_{\mathbf{x},\theta} \left[ \sum_{\mathbf{g} \in G} F((\xi_s, \Theta_s) : s < \mathbf{g}) H((\epsilon_{\mathbf{g}}, \Theta_{\mathbf{g}}^{\epsilon})) \right] \\ &= \mathbf{E}_{\mathbf{x},\theta} \left[ \int_0^\infty F((\xi_s, \Theta_s) : s < t) \mathbb{N}_{\Theta_t}(H(\epsilon, \Theta^{\epsilon})) d\ell_t \right], \end{split}$$

for  $x \neq 0$ , where *F* and *H* are continuous on the space of càdlàg paths on  $\mathbb{R} \times \mathbb{S}_d$ ) and  $G = \{g_s : s \ge 0\}$ 

- under any measure  $\mathbb{N}_{\theta}$  the process  $(\epsilon, \Theta^{\epsilon})$  is Markovian with the same *transition* semigroup as  $(\xi, \Theta)$  stopped at its first hitting time of  $(-\infty, 0] \times \mathbb{S}_d$ .
- ▶ The couple  $(\ell, \mathbb{N}_{\cdot})$  is called an exit system. The pair  $\ell$  and the kernels  $\mathbb{N}_{\theta}$ ,  $\theta \in \mathbb{S}_{d}$ , are not unique, but once  $\ell$  is chosen the measures  $\mathbb{N}_{\theta}$  are determined but for a  $\ell$ -neglectable set.

65/73

・ロト・日本・モート モー うへの

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- ► The classical theory of exit systems in Maisonneuve (1975) now implies that there exists a family of *excursion measures*,  $\mathbb{N}_{\theta}$ ,  $\theta \in \mathbb{S}_d$ , such that:
- ▶ the map  $\theta \mapsto \mathbb{N}_{\theta}$  is a kernel from  $\mathbb{S}_d$  to  $\mathbb{R} \times \mathbb{S}_d$ , such that  $\mathbb{N}_{\theta}(1 e^{-\zeta}) < \infty$  and  $\mathbb{N}_{\theta}$  is carried by the set {( $\epsilon(0), \Theta^{\epsilon}(0) = (0, \theta)$ } and { $\zeta > 0$ };
- ▶ we have the *exit formula*

$$\begin{split} \mathbf{E}_{\mathbf{x},\theta} \left[ \sum_{\mathbf{g} \in G} F((\xi_s, \Theta_s) : s < \mathbf{g}) H((\epsilon_{\mathbf{g}}, \Theta_{\mathbf{g}}^{\epsilon})) \right] \\ &= \mathbf{E}_{\mathbf{x},\theta} \left[ \int_0^\infty F((\xi_s, \Theta_s) : s < t) \mathbb{N}_{\Theta_t}(H(\epsilon, \Theta^{\epsilon})) d\ell_t \right], \end{split}$$

for  $x \neq 0$ , where *F* and *H* are continuous on the space of càdlàg paths on  $\mathbb{R} \times \mathbb{S}_d$ ) and  $G = \{g_s : s \ge 0\}$ 

- under any measure  $\mathbb{N}_{\theta}$  the process  $(\epsilon, \Theta^{\epsilon})$  is Markovian with the same *transition* semigroup as  $(\xi, \Theta)$  stopped at its first hitting time of  $(-\infty, 0] \times \mathbb{S}_d$ .
- ▶ The couple  $(\ell, \mathbb{N}_{\cdot})$  is called an exit system. The pair  $\ell$  and the kernels  $\mathbb{N}_{\theta}$ ,  $\theta \in \mathbb{S}_d$ , are not unique, but once  $\ell$  is chosen the measures  $\mathbb{N}_{\theta}$  are determined but for a  $\ell$ -neglectable set.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

For bounded measurable f on  $\mathbb{R}^d$  and  $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$ 

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|,\arg(x)} \left[ \sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|,\arg(x)} \left[ \int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|,\arg(x)} \left[ \int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where 
$$(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$$

Define the potential

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbb{P}_{\log |x|, \arg(x)}(\mathrm{e}^{-H_t^-}\Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty)\mathrm{d} t, \qquad |z| \le |x|.$$

- As X is transient, (H<sup>-</sup>, Θ<sup>-</sup>) experiences killing at Θ<sup>-</sup>-dependent rate N<sub>θ</sub>(ζ = ∞), θ ∈ S<sub>d</sub>. Isotropy implies N<sub>θ</sub>(ζ = ∞) independent of θ. Scaling of local time ℓ chosen so that N<sub>θ</sub>(ζ = ∞) = 1.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{\mathbb{G}(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(\mathrm{d}z)$$

$$\overset{\mathbf{66}}{\longrightarrow} \mathcal{A} \xrightarrow{\mathbf{6}} \mathcal{A$$

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

For bounded measurable f on  $\mathbb{R}^d$  and  $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$ 

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|,\arg(x)} \left[ \sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|,\arg(x)} \left[ \int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|,\arg(x)} \left[ \int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where 
$$(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$$

Define the potential

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbf{P}_{\log |x|, \arg(x)} (\mathrm{e}^{-H_t^-} \Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty) \mathrm{d} t, \qquad |z| \le |x|.$$

- As X is transient, (H<sup>-</sup>, Θ<sup>-</sup>) experiences killing at Θ<sup>-</sup>-dependent rate N<sub>θ</sub>(ζ = ∞), θ ∈ S<sub>d</sub>. Isotropy implies N<sub>θ</sub>(ζ = ∞) independent of θ. Scaling of local time ℓ chosen so that N<sub>θ</sub>(ζ = ∞) = 1.
- In conclusion, we reach the identity

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

For bounded measurable f on  $\mathbb{R}^d$  and  $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$ 

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|,\arg(x)} \left[ \sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|,\arg(x)} \left[ \int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|,\arg(x)} \left[ \int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where  $(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$ 

Define the potential

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbf{P}_{\log |x|, \arg(x)} (\mathrm{e}^{-H_t^-} \Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty) \mathrm{d} t, \qquad |z| \le |x|.$$

- As X is transient, (H<sup>-</sup>, Θ<sup>-</sup>) experiences killing at Θ<sup>-</sup>-dependent rate N<sub>θ</sub>(ζ = ∞), θ ∈ S<sub>d</sub>. Isotropy implies N<sub>θ</sub>(ζ = ∞) independent of θ. Scaling of local time ℓ chosen so that N<sub>θ</sub>(ζ = ∞) = 1.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{\mathsf{G}(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(\mathrm{d}z)$$

66/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

For bounded measurable f on  $\mathbb{R}^d$  and  $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$ 

$$\begin{split} \mathbb{E}_{x}[f(X_{\mathbb{G}(\infty)})] &= \mathbb{E}_{\log|x|, \arg(x)} \left[ \sum_{t \in G} f(\mathrm{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right] \\ &= \mathbb{E}_{\log|x|, \arg(x)} \left[ \int_{0}^{\infty} f(\mathrm{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) \mathrm{d}\ell_{t} \right] \\ &= \mathbb{E}_{\log|x|, \arg(x)} \left[ \int_{0}^{\ell_{\infty}} f(\mathrm{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) \mathrm{d}t \right] \end{split}$$

where  $(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$ 

Define the potential

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbf{P}_{\log |x|, \arg(x)} (\mathrm{e}^{-H_t^-} \Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty) \mathrm{d} t, \qquad |z| \le |x|.$$

- As X is transient, (H<sup>-</sup>, Θ<sup>-</sup>) experiences killing at Θ<sup>-</sup>-dependent rate N<sub>θ</sub>(ζ = ∞), θ ∈ S<sub>d</sub>. Isotropy implies N<sub>θ</sub>(ζ = ∞) independent of θ. Scaling of local time ℓ chosen so that N<sub>θ</sub>(ζ = ∞) = 1.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(dz)$$
<sup>66/</sup>

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

# POINT OF CLOSEST REACH

# Theorem (Point of Closest Reach to the origin)

The law of the point of closest reach to the origin is given by

$$\mathbb{P}_{x}(X_{G(\infty)} \in \mathrm{d}y) = \pi^{-d/2} \frac{\Gamma(d/2)^{2}}{\Gamma((d-\alpha)/2) \,\Gamma(\alpha/2)} \, \frac{(|x|^{2} - |y|^{2})^{\alpha/2}}{|x - y|^{d}|y|^{\alpha}} \mathrm{d}y, \qquad 0 < |y| < |x|.$$

|  | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|--|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|--|-----|-----|-----|-----|-----|-----|-----|-----|------------|

First define, for  $x \neq 0$ , |x| > r,  $\delta > 0$  and continuous, positive and bounded f on  $\mathbb{R}^d$ ,

$$\Delta_r^{\delta} f(x) := \frac{1}{\delta} \mathbb{E}_x \left[ f(\arg(X_{\mathbb{G}_{\infty}})), |X_{\mathbb{G}_{\infty}}| \in [r - \delta, r] \right].$$

Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

$$\begin{split} &\Delta_{r}^{\delta}f(x) \\ &= \frac{1}{\delta} \int_{|y| \in [r-\delta,r]} \mathbb{P}_{x}(X_{\tau_{r}^{\oplus}} \in \mathrm{d}y; \, \tau_{r}^{\oplus} < \infty) \mathbb{E}_{y} \left[ f(\mathrm{arg}(X_{\mathrm{G}_{\infty}})); \, |X_{\mathrm{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} \int_{|y| \in [r-\delta,r]} \mathrm{d}y \left| \frac{r^{2} - |x|^{2}}{r^{2} - |y|^{2}} \right|^{\alpha/2} |y-x|^{-d} \mathbb{E}_{y} \left[ f(\mathrm{arg}(X_{\mathrm{G}_{\infty}})); \, |X_{\mathrm{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} |r^{2} - |x|^{2} |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^{2} - |y|^{2} |^{\alpha/2}} \int_{r-\delta \le |z| \le |y|} U_{y}^{-}(\mathrm{d}z) f(\mathrm{arg}(z)), \end{split}$$

#### Lemma

Suppose that f is a bounded continuous function on  $\mathbb{R}^d$ . Then

$$\lim_{\delta \to 0} \sup_{|y| \in (r-\delta,r]} \left| \frac{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) f(z)}{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)} - f(y) \right| = 0.$$

68/73

| 21. 32. 30. 34. 30. 30. 37. <b>30.</b> Reference | §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | Reference |
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|
|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|

► First define, for  $x \neq 0$ , |x| > r,  $\delta > 0$  and continuous, positive and bounded *f* on  $\mathbb{R}^d$ ,

$$\Delta_r^{\delta} f(x) := \frac{1}{\delta} \mathbb{E}_x \left[ f(\arg(X_{\mathbb{G}_{\infty}})), |X_{\mathbb{G}_{\infty}}| \in [r - \delta, r] \right].$$

▶ Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

$$\begin{split} &\Delta_{r}^{\delta} f(x) \\ &= \frac{1}{\delta} \int_{|y| \in [r-\delta,r]} \mathbb{P}_{x}(X_{\tau_{r}^{\oplus}} \in \mathrm{d}y; \, \tau_{r}^{\oplus} < \infty) \mathbb{E}_{y} \left[ f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} \int_{|y| \in [r-\delta,r]} \mathrm{d}y \left| \frac{r^{2} - |x|^{2}}{r^{2} - |y|^{2}} \right|^{\alpha/2} |y-x|^{-d} \mathbb{E}_{y} \left[ f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} |r^{2} - |x|^{2} |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^{2} - |y|^{2} |^{\alpha/2}} \int_{r-\delta \le |z| \le |y|} U_{y}^{-}(\mathrm{d}z) f(\mathrm{arg}(z)), \end{split}$$

#### Lemma

Suppose that f is a bounded continuous function on  $\mathbb{R}^d$ . Then

$$\lim_{\delta \to 0} \sup_{|y| \in (r-\delta,r]} \left| \frac{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) f(z)}{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)} - f(y) \right| = 0.$$

68/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     | 0   |            |

▶ First define, for  $x \neq 0$ , |x| > r,  $\delta > 0$  and continuous, positive and bounded *f* on  $\mathbb{R}^d$ ,

$$\Delta_r^{\delta} f(x) := \frac{1}{\delta} \mathbb{E}_x \left[ f(\arg(X_{\mathbb{G}_{\infty}})), |X_{\mathbb{G}_{\infty}}| \in [r - \delta, r] \right].$$

▶ Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

$$\begin{split} &\Delta_{r}^{\delta} f(x) \\ &= \frac{1}{\delta} \int_{|y| \in [r-\delta,r]} \mathbb{P}_{x}(X_{\tau_{r}^{\oplus}} \in \mathrm{d}y; \, \tau_{r}^{\oplus} < \infty) \mathbb{E}_{y} \left[ f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} \int_{|y| \in [r-\delta,r]} \mathrm{d}y \left| \frac{r^{2} - |x|^{2}}{r^{2} - |y|^{2}} \right|^{\alpha/2} |y - x|^{-d} \mathbb{E}_{y} \left[ f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} |r^{2} - |x|^{2} |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y - x|^{-d}}{|r^{2} - |y|^{2} |^{\alpha/2}} \int_{r-\delta \le |z| \le |y|} U_{y}^{-}(\mathrm{d}z) f(\mathrm{arg}(z)), \end{split}$$

#### Lemma

Suppose that f is a bounded continuous function on  $\mathbb{R}^d$ . Then

$$\lim_{\delta \to 0} \sup_{|y| \in (r-\delta,r]} \left| \frac{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) f(z)}{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)} - f(y) \right| = 0.$$

\_\_\_\_\_68/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Hence

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} \frac{1}{\delta} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} f(\arg(y)) \int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} \int_{|y| < r} U_y^-(\mathrm{d}z) \int_{|y| < r} U_y^-(\mathrm{d}z$$

and for  $|y| \in (r - \delta, r]$ ,

$$\int_{r-\delta \le |z| \le |y|} U_y^{-}(\mathrm{d}z) = \mathbb{P}_y(\tau_{r-\delta}^{\oplus} = \infty) = \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))$$

- The right hand side above can be determined explicitly thanks to the known Wiener–Hopf factorisation of ξ
- Note also

$$\Delta_r^{\delta} f(x) \overset{\delta \downarrow 0}{\sim} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \frac{1}{\delta} \int_{r-\delta}^r \rho^{d-1} \mathrm{d}\rho \frac{\mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))}{|r^2 - \rho^2|^{\alpha/2}} \int_{\rho \mathbb{S}_d} \sigma_{\rho}(\mathrm{d}\theta) |\rho \theta - x|^{-d} f(\theta)$$

#### Lemma

Let  $D_{\alpha,d} = \Gamma(d/2)/\Gamma((d-\alpha)/2)\Gamma(\alpha/2)$ . Then

$$\lim_{\delta \to 0} \sup_{|y| \in [r-\delta,r]} \left| (\rho^2 - (r-\delta)^2)^{-\alpha/2} r^{\alpha} \mathbb{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y)) - \frac{2D_{\alpha,d}}{\alpha} \right| = 0$$

69/73

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Hence

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} \frac{1}{\delta} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} f(\arg(y)) \int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} \int_{|y| < r-\delta} \int_{$$

and for  $|y| \in (r - \delta, r]$ ,

$$\int_{r-\delta \le |z| \le |y|} U_y^{-}(\mathrm{d}z) = \mathbb{P}_y(\tau_{r-\delta}^{\oplus} = \infty) = \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))$$

- The right hand side above can be determined explicitly thanks to the known Wiener–Hopf factorisation of ξ
- ► Note also

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \frac{1}{\delta} \int_{r-\delta}^r \rho^{d-1} \mathrm{d}\rho \frac{\mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))}{|r^2 - \rho^2|^{\alpha/2}} \int_{\rho \mathbb{S}_d} \sigma_{\rho}(\mathrm{d}\theta) |\rho \theta - x|^{-d} f(\theta)$$

#### Lemma

Let  $D_{\alpha,d} = \Gamma(d/2)/\Gamma((d-\alpha)/2)\Gamma(\alpha/2)$ . Then

$$\lim_{\delta \to 0} \sup_{|y| \in [r-\delta,r]} \left| (\rho^2 - (r-\delta)^2)^{-\alpha/2} r^{\alpha} \mathbb{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y)) - \frac{2D_{\alpha,d}}{\alpha} \right| = 0$$

69/73

ロトメ起 トメミトメミト ヨー つへ(

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

Hence

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} \frac{1}{\delta} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} f(\arg(y)) \int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} \int_{|y| < r-\delta} U_y^-(\mathrm{d}z) \int_{|y| < r-\delta}$$

and for  $|y| \in (r - \delta, r]$ ,

$$\int_{r-\delta \le |z| \le |y|} U_y^{-}(\mathrm{d}z) = \mathbb{P}_y(\tau_{r-\delta}^{\oplus} = \infty) = \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))$$

- The right hand side above can be determined explicitly thanks to the known Wiener–Hopf factorisation of ξ
- ► Note also

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \frac{1}{\delta} \int_{r-\delta}^r \rho^{d-1} \mathrm{d}\rho \frac{\mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))}{|r^2 - \rho^2|^{\alpha/2}} \int_{\rho \mathbb{S}_d} \sigma_{\rho}(\mathrm{d}\theta) |\rho \theta - x|^{-d} f(\theta)$$

#### Lemma

Let  $D_{\alpha,d} = \Gamma(d/2)/\Gamma((d-\alpha)/2)\Gamma(\alpha/2)$ . Then

$$\lim_{\delta \to 0} \sup_{|y| \in [r-\delta,r]} \left| (\rho^2 - (r-\delta)^2)^{-\alpha/2} r^{\alpha} \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y)) - \frac{2D_{\alpha,d}}{\alpha} \right| = 0$$

69/73

ヘロマ ヘロマ ヘロマ ヘロマ

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|-----|-----|-----|-----|-----|-----|-----|-----|------------|

# More excursion theory-based results

Theorem (Triple law at first entrance/exit of a ball) Fix r > 0 and define, for  $x, z, y, v \in \mathbb{R}^d \setminus \{0\}$ ,

$$\chi_x(z,y,v) := \pi^{-3d/2} \frac{\Gamma((d+\alpha)/2)}{|\Gamma(-\alpha/2)|} \frac{\Gamma(d/2)^2}{\Gamma(\alpha/2)^2} \frac{||z|^2 - |x|^2 |\alpha/2| |y|^2 - |z|^2 |\alpha/2|}{|z|^\alpha |z - x|^d |z - y|^d |v - y|^{\alpha+d}}.$$

(i) Write

$$G(\tau_r^{\oplus}) = \sup\{s < \tau_r^{\oplus} : |X_s| = \inf_{u \le s} |X_u|\}$$

for the instant of closest reach of the origin before first entry into  $rS_d$ . For |x| > |z| > r, |y| > |z| and |v| < r,

$$\mathbb{P}_{x}(X_{G(\tau_{r}^{\oplus})} \in dz, X_{\tau_{r}^{\oplus}-} \in dy, X_{\tau_{r}^{\oplus}} \in dv; \tau_{r}^{\oplus} < \infty) = \chi_{x}(z, y, v) \, dz \, dy \, dv.$$

(ii) Define  $\mathcal{G}(t) = \sup\{s < t : |X_s| = \sup_{u \le s} |X_u|\}, t \ge 0$ , and write

$$\mathcal{G}(\tau_r^{\ominus}) = \sup\{s < \tau_r^{\ominus} : |X_s| = \sup_{u \le s} |X_u|\}.$$

for the instant of furtherest reach from the origin immediately before first exit from  $rS_d$ . For |x| < |z| < r, |y| < |z| and |v| > r,

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

# MORE EXCURSION THEORY-BASED RESULTS

#### Theorem

*Write*  $M_t = \sup_{s \le t} |X_t|$ ,  $t \ge 0$ . *For all bounded measurable*  $f : \mathbb{B}_d \mapsto \mathbb{R}$  and  $x \in \mathbb{R} \setminus \{0\}$ 

$$\lim_{t \to \infty} \mathbb{E}_{x}[f(X_{t}/M_{t})] = \pi^{-d/2} \frac{\Gamma((d+\alpha)/2)}{\Gamma(\alpha/2)} \int_{\mathbb{S}_{d}} \sigma_{1}(\mathrm{d}\phi) \int_{|w|<1} f(w) \frac{|1-|w|^{2}|^{\alpha/2}}{|\phi-w|^{d}} \mathrm{d}w,$$

シック・ヨー イヨン イヨン イロン

where  $\sigma_1(dy)$  is the surface measure on  $\mathbb{S}_d$ , normalised to have unit mass.

| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |
|     |     |     |     |     |     |     |     |            |

References



| §1. | §2. | §3. | §4. | §5. | §6. | §7. | §8. | References |
|-----|-----|-----|-----|-----|-----|-----|-----|------------|
|     |     |     |     |     |     |     |     |            |

- ▶ L. E. Blumenson. A Derivation of n-Dimensional Spherical Coordinates. The American Mathematical Monthly, Vol. 67, No. 1 (1960), pp. 63-66
- K. Bogdan and T. Żak. On Kelvin transformation. J. Theoret. Probab. 19 (1), 89–120 (2006).
- J. Bretagnolle. Résultats de Kesten sur les processus à accroissements indépendants. In Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970), pages 21–36. Lecture Notes in Math., Vol. 191. Springer, Berlin (1971).
- M. E. Caballero, J. C. Pardo and J. L. Pérez. Explicit identities for Lévy processes associated to symmetric stable processes. *Bernoulli* 17 (1), 34–59 (2011).
- Harry Kesten. Hitting probabilities of single points for processes with stationary independent increments. Memoirs of the American Mathematical Society, No. 93. American Mathematical Society, Providence, R.I. (1969).
- ▶ Bernard Maisonneuve. *Exit systems*. Ann. Probability, 3(3):399?411, 1975.
- Sidney C. Port. The first hitting distribution of a sphere for symmetric stable processes. *Trans. Amer. Math. Soc.* 135, 115–125 (1969).

・ロト・日本・モート モー うへの