Backbone decomposition for superprocesses and applications.

A. E. Kyprianou¹

Department of Mathematical Sciences, University of Bath

¹ Julien Berestycki, Rongli Liu, Antonio Murillo-Salas, Yanxia Ren < 🗇 k 🗄 🖈 k 🗄 🖉 🔊 k 🖉

Backbone decomposition for superprocesses and applications.

2/17 ▲□▶ ▲륜▶ ▲토▶ ▲토▶ 토 외역은

To be advertised next week: Chair of the probability laboratory at Bath

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

To be advertised next week: Chair of the probability laboratory at Bath

 Now receiving submissions in applications of probability: Acta Applicandae Mathematicae

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

 $^{{}^{\}mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

^{▲□▶ ▲}圖▶ ▲≣▶ ▲≣▶ ■ ● ● ●

• Atomic-measure valued Markov process: $Z = \{Z_t : t \ge 0\}$ with probabilities denoted by \mathbb{P}_{μ} where $\mu(\cdot) = \sum_{i=1}^{n} \delta_{x_i}(\cdot)$ with $x_i \in E$.

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

 $^{{}^{\}mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

- Atomic-measure valued Markov process: $Z = \{Z_t : t \ge 0\}$ with probabilities denoted by \mathbb{P}_{μ} where $\mu(\cdot) = \sum_{i=1}^{n} \delta_{x_i}(\cdot)$ with $x_i \in E$.
- Path construction: Under P_µ, from each x_i ∈ E initiate: iid copies of a nice² conservative³ E-valued Markov process whose semi-group is denoted by P = {P_t : t ≥ 0}, each of which have a branching generator given by

$$F(s) = q\left(\sum_{n=0}^{\infty} s^n p_n - s\right).$$

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

 $^{{}^{\}mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

- Atomic-measure valued Markov process: $Z = \{Z_t : t \ge 0\}$ with probabilities denoted by \mathbb{P}_{μ} where $\mu(\cdot) = \sum_{i=1}^n \delta_{x_i}(\cdot)$ with $x_i \in E$.
- Path construction: Under P_µ, from each x_i ∈ E initiate: iid copies of a nice² conservative³ E-valued Markov process whose semi-group is denoted by P = {P_t : t ≥ 0}, each of which have a branching generator given by

$$F(s) = q\left(\sum_{n=0}^{\infty} s^n p_n - s\right).$$

• Markov property: Z_{t+s} is equal in law to an independent copy of Z_s under \mathbb{P}_{Z_t} .

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

 $^{{}^{\}mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

- Atomic-measure valued Markov process: $Z = \{Z_t : t \ge 0\}$ with probabilities denoted by \mathbb{P}_{μ} where $\mu(\cdot) = \sum_{i=1}^{n} \delta_{x_i}(\cdot)$ with $x_i \in E$.
- Path construction: Under P_µ, from each x_i ∈ E initiate: iid copies of a nice² conservative³ E-valued Markov process whose semi-group is denoted by P = {P_t : t ≥ 0}, each of which have a branching generator given by

$$F(s) = q\left(\sum_{n=0}^{\infty} s^n p_n - s\right).$$

- Markov property: Z_{t+s} is equal in law to an independent copy of Z_s under \mathbb{P}_{Z_t} .
- Branching property: For atomic measures μ_1 and μ_2 , $(Z, \mathbb{P}_{\mu_1+\mu_2})$ has the same law as $Z^{(1)} + Z^{(2)}$ where $Z^{(i)}$ has law \mathbb{P}_{μ_i} for i = 1, 2.

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

 $^{{}^{\}mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

- Atomic-measure valued Markov process: $Z = \{Z_t : t \ge 0\}$ with probabilities denoted by \mathbb{P}_{μ} where $\mu(\cdot) = \sum_{i=1}^{n} \delta_{x_i}(\cdot)$ with $x_i \in E$.
- Path construction: Under P_µ, from each x_i ∈ E initiate: iid copies of a nice² conservative³ E-valued Markov process whose semi-group is denoted by P = {P_t : t ≥ 0}, each of which have a branching generator given by

$$F(s) = q\left(\sum_{n=0}^{\infty} s^n p_n - s\right).$$

- **Markov property:** Z_{t+s} is equal in law to an independent copy of Z_s under \mathbb{P}_{Z_t} .
- Branching property: For atomic measures μ_1 and μ_2 , $(Z, \mathbb{P}_{\mu_1 + \mu_2})$ has the same law as $Z^{(1)} + Z^{(2)}$ where $Z^{(i)}$ has law \mathbb{P}_{μ_i} for i = 1, 2.
- Notation: $\langle f, Z_t \rangle = \int_E f(x) Z_t(dx) = \sum_{i=1}^{N_t} f(z_i(t))$ when $Z_t(\cdot) = \sum_{i=1}^{N_t} \delta_{z_i(t)}(\cdot).$

うして ふゆう ふほう ふほう しょうく

 ${}^{\mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

- Atomic-measure valued Markov process: $Z = \{Z_t : t \ge 0\}$ with probabilities denoted by \mathbb{P}_{μ} where $\mu(\cdot) = \sum_{i=1}^{n} \delta_{x_i}(\cdot)$ with $x_i \in E$.
- Path construction: Under P_µ, from each x_i ∈ E initiate: iid copies of a nice² conservative³ E-valued Markov process whose semi-group is denoted by P = {P_t : t ≥ 0}, each of which have a branching generator given by

$$F(s) = q\left(\sum_{n=0}^{\infty} s^n p_n - s\right).$$

- **Markov property:** Z_{t+s} is equal in law to an independent copy of Z_s under \mathbb{P}_{Z_t} .
- Branching property: For atomic measures μ_1 and μ_2 , $(Z, \mathbb{P}_{\mu_1 + \mu_2})$ has the same law as $Z^{(1)} + Z^{(2)}$ where $Z^{(i)}$ has law \mathbb{P}_{μ_i} for i = 1, 2.
- Notation: $\langle f, Z_t \rangle = \int_E f(x) Z_t(dx) = \sum_{i=1}^{N_t} f(z_i(t))$ when $Z_t(\cdot) = \sum_{i=1}^{N_t} \delta_{z_i(t)}(\cdot).$
- **Total mass:** The process $\{\langle 1, Z_t \rangle : t \ge 0\}$ is a continuous time Galton-Watson process.

²At the moment, the word 'nice' means any *E*-valued Markov process for which the mathematics in this talk can be carried out! However this is a very large class of processes including, for example many conservative diffusions in $E = \mathbb{R}^d$.

 ${}^{\mathbf{3}}\mathcal{P}_t[1] = 1$ for all $t \ge 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

```
(\mathcal{P}, \psi; E)-Superprocess
```

4/17 - 아오오 : (문) · (문) · (문) · (문)

• Measure valued Markov process: $X = \{X_t : t \ge 0\}$ with probabilities \mathbb{P}_{μ} where μ is now a finite measure on E.

• Measure valued Markov process: $X = \{X_t : t \ge 0\}$ with probabilities \mathbb{P}_{μ} where μ is now a finite measure on E.

ション ふゆ アメリア メリア しょうくう

■ Path construction: X can be recovered as the result of rescaling and re-weighting an (P, F; E)-branching diffusion. (Not discussed here!).

- Measure valued Markov process: $X = \{X_t : t \ge 0\}$ with probabilities \mathbb{P}_{μ} where μ is now a finite measure on E.
- Path construction: X can be recovered as the result of rescaling and re-weighting an (P, F; E)-branching diffusion. (Not discussed here!).
- Notation: $\langle f, X_t \rangle = \int_E f(y) X_t(dy).$

- Measure valued Markov process: $X = \{X_t : t \ge 0\}$ with probabilities \mathbb{P}_{μ} where μ is now a finite measure on E.
- Path construction: X can be recovered as the result of rescaling and re-weighting an (P, F; E)-branching diffusion. (Not discussed here!).
- Notation: $\langle f, X_t \rangle = \int_E f(y) X_t(\mathrm{d}y).$
- Markov property: For all $f \in C_c^+(E)$,

$$\mathbb{E}(e^{-\langle f, X_{t+s} \rangle} | \{X_s : s \le t\}) = \mathbb{E}_{\mu}(e^{-\langle f, X_s \rangle}) \Big|_{\mu = X_t}$$

ション ふゆ アメリア メリア しょうくう

- Measure valued Markov process: $X = \{X_t : t \ge 0\}$ with probabilities \mathbb{P}_{μ} where μ is now a finite measure on E.
- Path construction: X can be recovered as the result of rescaling and re-weighting an (𝒫, 𝑘; 𝘢)-branching diffusion. (Not discussed here!).
- Notation: $\langle f, X_t \rangle = \int_E f(y) X_t(\mathrm{d}y).$
- Markov property: For all $f \in C_c^+(E)$,

$$\mathbb{E}(e^{-\langle f, X_{t+s} \rangle} | \{X_s : s \le t\}) = \mathbb{E}_{\mu}(e^{-\langle f, X_s \rangle}) \Big|_{\mu = X_t}$$

Branching property: $(X, \mathbb{P}_{\mu_1+\mu_2})$ has the same law as $X^{(1)} + X^{(2)}$ where $X^{(i)}$ has the law \mathbb{P}_{μ_i} for i = 1, 2.

ション ふゆ アメリア メリア しょうくう

Evolution equations

Evolution equations

Semigroup: For positive, bounded measurable *f*,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\int u_f(x,t)\mu(\mathrm{d}x)} \text{ where } e^{-u_f(x,t)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X_t \rangle}),$$

$$u_f(x,t) = \mathcal{P}_t[f](x) - \int_0^t \mathrm{d}s \cdot \mathcal{P}_s[\psi(u_f(\cdot,t-s))](x).$$

and

$$\psi(\lambda) = -\alpha\lambda + \beta\lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \Pi(\mathrm{d}x),$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

such that $\int_{(0,\infty)} (x \wedge x^2) \Pi(\mathrm{d} x) < \infty.$

Evolution equations

Semigroup: For positive, bounded measurable *f*,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\int u_f(x,t)\mu(\mathrm{d}x)} \text{ where } e^{-u_f(x,t)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X_t \rangle}),$$

$$u_f(x,t) = \mathcal{P}_t[f](x) - \int_0^t \mathrm{d}s \cdot \mathcal{P}_s[\psi(u_f(\cdot,t-s))](x).$$

and

$$\psi(\lambda) = -\alpha\lambda + \beta\lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x) \Pi(\mathrm{d}x),$$

ション ふゆ アメリア メリア しょうくう

such that $\int_{(0,\infty)} (x \wedge x^2) \Pi(\mathrm{d} x) < \infty.$

■ Total mass: ||X_t|| := {⟨1, X_t⟩ : t ≥ 0} is a continuous state branching process (CSBP) with branching mechanism ψ.

6/17 (신고) (전) (코) (코) (코) (전)

Supercritical (assumed): $-\psi'(0+) > 0$ ensures that $||X_t||$ reaches $+\infty$ before 0 with positive probability which is equivalent to survival of X with positive probability.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Supercritical (assumed): $-\psi'(0+) > 0$ ensures that $||X_t||$ reaches $+\infty$ before 0 with positive probability which is equivalent to survival of X with positive probability.

ション ふゆ アメリア メリア しょうくう

• Finite expected growth (assumed): General theory for superprocesses generally excludes the case that $-\psi'(0+) < \infty$ for $||X_t||$.

- **Supercritical (assumed):** $-\psi'(0+) > 0$ ensures that $||X_t||$ reaches $+\infty$ before 0 with positive probability which is equivalent to survival of X with positive probability.
- Finite expected growth (assumed): General theory for superprocesses generally excludes the case that $-\psi'(0+) < \infty$ for $||X_t||$.
- No explosion (assumed): As a process, we also want ||X_t|| to be conservative

$$\int_{0+} |\psi(\lambda)|^{-1} \mathrm{d}\lambda = \infty.$$

ション ふゆ アメリア メリア しょうくう

• When $-\psi'(0+) > 0$ we are interested in conditioning on the event that $\lim_{t\uparrow\infty} ||X_t|| = 0.$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- When $-\psi'(0+) > 0$ we are interested in conditioning on the event that $\lim_{t\uparrow\infty} ||X_t|| = 0.$
- It turns out that $\mathbb{P}_{y\delta_x}(\lim_{t\uparrow\infty} ||X_t|| = 0) = e^{-\lambda_* y}$ for all y > 0 and $x \in E$ where $\psi(\lambda_*) = 0$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- When $-\psi'(0+) > 0$ we are interested in conditioning on the event that $\lim_{t\uparrow\infty} ||X_t|| = 0.$
- It turns out that $\mathbb{P}_{y\delta_x}(\lim_{t\uparrow\infty} ||X_t|| = 0) = e^{-\lambda_* y}$ for all y > 0 and $x \in E$ where $\psi(\lambda_*) = 0$.
- Straightforward computation:

$$\mathbb{E}^*_{\delta_x}(e^{-\langle f, X_t \rangle}) := \mathbb{E}_{\delta_x}(e^{-\langle f, X_t \rangle} |\lim_{s \uparrow \infty} ||X_{t+s}|| = 0)$$
$$= e^{-u_f^*(x,t)}$$
$$u_f^*(x,t) = \mathcal{P}_t[f](x) - \int_0^t \mathrm{d}s \cdot \mathcal{P}_s[\psi^*(u_f^*(\cdot, t-s))](x)$$

and

$$\psi^*(\lambda) = \psi(\lambda + \lambda^*).$$

'/ 17

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2 (-\psi'(0+) = a > 0).$

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{a}{b}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{a}{b}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

Backbone decomposition: For finite and compactly supported μ , (X, \mathbb{P}_{μ}) has the same law as the following superposition (everything independent)

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{a}{b}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

Backbone decomposition: For finite and compactly supported μ , (X, \mathbb{P}_{μ}) has the same law as the following superposition (everything independent)

Run a copy of (X, \mathbb{P}^*_{μ})

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{a}{b}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

- **Backbone decomposition:** For finite and compactly supported μ , (X, \mathbb{P}_{μ}) has the same law as the following superposition (everything independent)
 - Run a copy of (X, \mathbb{P}^*_{μ})
 - Create a Poisson field of points in E using intensity μ

17 /8

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{\mathbf{a}}{\mathbf{b}}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

- **Backbone decomposition:** For finite and compactly supported μ , (X, \mathbb{P}_{μ}) has the same law as the following superposition (everything independent)
 - Run a copy of (X, \mathbb{P}^*_{μ})
 - Create a Poisson field of points in E using intensity μ
 - From each of these points run a branching Markov process with dyadic branching.

うくう いんしょう ふいしょう ふしゃ

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{3}{b}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

- **Backbone decomposition:** For finite and compactly supported μ , (X, \mathbb{P}_{μ}) has the same law as the following superposition (everything independent)
 - Run a copy of (X, \mathbb{P}^*_{μ})
 - Create a Poisson field of points in E using intensity μ
 - From each of these points run a branching Markov process with dyadic branching.
 - In each ds "immigrate" independent copies of (X, \mathbb{P}^*) , having initial mass $2\beta ds$ at the spatial positions of particles in Z.

イロト イ理ト イヨト イヨト ニヨー わへで

- Supercritical quadratic branching mechanism: $\psi(\lambda) = -a\lambda + b\lambda^2$ $(-\psi'(0+) = a > 0).$
- **Evans-O'Connell (1994):** Showed the following semi-group decomposition for finite and compactly supported μ,

$$\mathbb{E}_{\mu}(e^{-\langle f, X_t \rangle}) = e^{-\langle u_f^*(\cdot, t), \mu \rangle} \mathbb{E}_{\mathcal{P}(\frac{a}{b}\mu)} \left[\exp\left\{ -\int_0^t 2\beta \langle u_f^*(\cdot, t-s), Z_s \rangle \mathrm{d}s \right\} \right]$$

where Z under $\mathbb{P}_{\mathcal{P}(\frac{a}{b}\mu)}$ is a branching Markov process with dyadic branching and initial configuration which is generated by an independent Poisson random field in E with intensity $\frac{a}{b}\mu$.

- **Backbone decomposition:** For finite and compactly supported μ , (X, \mathbb{P}_{μ}) has the same law as the following superposition (everything independent)
 - Run a copy of (X, \mathbb{P}^*_{μ})
 - Create a Poisson field of points in E using intensity μ
 - From each of these points run a branching Markov process with dyadic branching.
 - In each ds "immigrate" independent copies of (X, \mathbb{P}^*) , having initial mass $2\beta ds$ at the spatial positions of particles in Z.
 - Alternative: "immigrate at rate 2β " independent copies of (X, \mathbb{P}^*) along the path of Z.

Pathwise backbone construction for supercritical $(\mathcal{P},\psi,E)\text{-superprocess}$

Pathwise backbone construction for supercritical (\mathcal{P}, ψ, E) -superprocess

Key ingredient 1: Dynkin-Kuzentsov measure. Let *M* be the space of finite measures on *E*. Think of P_{δx} as a measure on *M*^{[0,∞)}. Branching property implies "infinite divisibility"

$$\mathbb{P}^*_{\delta_x} = \mathbb{P}^*_{\frac{1}{n}\delta_x} \star \cdots \star \mathbb{P}^*_{\frac{1}{n}\delta_x}.$$

Dynkin and Kuznetsov (2004) describe the "Lévy measure" of $\mathbb{P}^*_{\delta_x}$ and call it \mathbb{N}^*_x and can be thought of an "excursion measure" on path space of the superprocess. We have

$$e^{-u_f^*(x,t)} = \mathbb{E}_{\delta_x}^*(e^{-\langle f, X_t \rangle}) = \exp\left\{-\int (1 - e^{-\langle f, X_t \rangle}) \mathrm{d}\mathbb{N}_x^*\right\}$$

・ロト ・ 『 ・ ・ ヨ ・ ・ ヨ ・ うらう

Pathwise backbone construction for supercritical (\mathcal{P}, ψ, E) -superprocess

Key ingredient 1: Dynkin-Kuzentsov measure. Let *M* be the space of finite measures on *E*. Think of P_{δx} as a measure on *M*^{[0,∞)}. Branching property implies "infinite divisibility"

$$\mathbb{P}^*_{\delta_x} = \mathbb{P}^*_{\frac{1}{n}\delta_x} \star \cdots \star \mathbb{P}^*_{\frac{1}{n}\delta_x}.$$

Dynkin and Kuznetsov (2004) describe the "Lévy measure" of $\mathbb{P}^*_{\delta_x}$ and call it \mathbb{N}^*_x and can be thought of an "excursion measure" on path space of the superprocess. We have

$$e^{-u_f^*(x,t)} = \mathbb{E}_{\delta_x}^*(e^{-\langle f, X_t \rangle}) = \exp\left\{-\int (1 - e^{-\langle f, X_t \rangle}) \mathrm{d}\mathbb{N}_x^*\right\}$$

• Key ingredient 2: A measure on $\{2, 3, \ldots\} \times (0, \infty)$ in the form $\eta_n(dx) = p_n(dx)/p_n$ with $p_n = p_n(0, \infty)$ and

$$p_n(\mathrm{d}x) = \frac{1}{\lambda_* \psi'(\lambda_*)} \left\{ \beta(\lambda_*)^2 \delta_0(\mathrm{d}x) \mathbf{1}_{\{n=2\}} + (\lambda_*)^n \frac{x^n}{n!} e^{-\lambda^* x} \Pi(\mathrm{d}x) \right\}.$$

こう (1) /6

For finite and compactly supported $\mu,\,(X,\mathbb{P}_{\mu})$ is equal in law to the following superposition

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For finite and compactly supported $\mu,\,(X,\mathbb{P}_{\mu})$ is equal in law to the following superposition

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Run an independent copy of (X, \mathbb{P}^*_{μ})

For finite and compactly supported $\mu,\,(X,\mathbb{P}_{\mu})$ is equal in law to the following superposition

- Run an independent copy of (X, \mathbb{P}^*_{μ})
- Independently, run a copy of a $(\mathcal{P}, F; E)$ branching Markov process, Z with branching generator $F(s) = \psi(\lambda_*(1-s))/\lambda_*$ and with initial configuration independently determined by $\mathcal{P}(\lambda_*\mu)$, a Poisson random field with intensity $\lambda_*\mu$. What happens when this number is zero?

ション ふゆ アメリア メリア しょうくう

For finite and compactly supported $\mu,\,(X,\mathbb{P}_{\mu})$ is equal in law to the following superposition

- Run an independent copy of (X, \mathbb{P}^*_{μ})
- Independently, run a copy of a $(\mathcal{P}, F; E)$ branching Markov process, Z with branching generator $F(s) = \psi(\lambda_*(1-s))/\lambda_*$ and with initial configuration independently determined by $\mathcal{P}(\lambda_*\mu)$, a Poisson random field with intensity $\lambda_*\mu$. What happens when this number is zero?
- Independently, **dress**⁴ each spatial branch { $\xi_t : \tau_{\text{birth}} \leq t < \tau_{\text{death}}$ } of Z, with an $\mathcal{M}^{[0,\infty)}$ trajectory rooted at space time point (ξ_t, t) according to an independent Poisson random field with intensity $2\beta dt \times d\mathbb{N}^*_{\xi_t}$.

For finite and compactly supported $\mu,\,(X,\mathbb{P}_{\mu})$ is equal in law to the following superposition

- Run an independent copy of (X, \mathbb{P}^*_{μ})
- Independently, run a copy of a $(\mathcal{P}, F; E)$ branching Markov process, Z with branching generator $F(s) = \psi(\lambda_*(1-s))/\lambda_*$ and with initial configuration independently determined by $\mathcal{P}(\lambda_*\mu)$, a Poisson random field with intensity $\lambda_*\mu$. What happens when this number is zero?
- Independently, dress⁴ each spatial branch $\{\xi_t : \tau_{\text{birth}} \leq t < \tau_{\text{death}}\}$ of Z, with an $\mathcal{M}^{[0,\infty)}$ trajectory rooted at space time point (ξ_t, t) according to an independent Poisson random field with intensity $2\beta dt \times d\mathbb{N}_{\xi_t}^*$.
- Independently, dress each spatial branch { $\xi_t : \tau_{\text{birth}} \leq t < \tau_{\text{death}}$ } of Z, with an $\mathcal{M}^{[0,\infty)}$ trajectory rooted at space time point (ξ_t, t) according to an independent Poisson random field with intensity $dt \times \int_{y \in (0,\infty)} y e^{-\lambda^* y} \Pi(dy) \times d\mathbb{P}_{y\delta_{\xi_t}}^*$.

For finite and compactly supported $\mu,\,(X,\mathbb{P}_{\mu})$ is equal in law to the following superposition

- Run an independent copy of (X, \mathbb{P}^*_{μ})
- Independently, run a copy of a $(\mathcal{P}, F; E)$ branching Markov process, Z with branching generator $F(s) = \psi(\lambda_*(1-s))/\lambda_*$ and with initial configuration independently determined by $\mathcal{P}(\lambda_*\mu)$, a Poisson random field with intensity $\lambda_*\mu$. What happens when this number is zero?
- Independently, **dress**⁴ each spatial branch { $\xi_t : \tau_{\text{birth}} \leq t < \tau_{\text{death}}$ } of Z, with an $\mathcal{M}^{[0,\infty)}$ trajectory rooted at space time point (ξ_t, t) according to an independent Poisson random field with intensity $2\beta dt \times d\mathbb{N}^*_{\xi_t}$.
- Independently, dress each spatial branch $\{\xi_t : \tau_{\text{birth}} \leq t < \tau_{\text{death}}\}$ of Z, with an $\mathcal{M}^{[0,\infty)}$ trajectory rooted at space time point (ξ_t, t) according to an independent Poisson random field with intensity $dt \times \int_{y \in (0,\infty)} y e^{-\lambda^* y} \Pi(dy) \times d\mathbb{P}_{y\delta_{\xi_t}}^*$.
- Independently, at each branch point of Z, if there are n offspring as well as a rooted an independent copy of $(X, \mathbb{P}^*_{x\delta_{\xi_{\tau_{\text{death}}}}})$ with random initial mass x with probability $\eta_n(dx)$.

⁴Other acceptable verb: 'decorate'

Prolific Poissonization

An important feature of the backbone decomposition. Let $((Z_t, \Lambda_t), \mathbf{P}_{\mu})$ be the backbone configuration and aggregation of the dressed mass at time $t \ge 0$ so that $(\Lambda, \mathbf{P}_{\mu}) = (X, \mathbb{P}_{\mu})$

 $Law(Z_t(\cdot)|\Lambda_t(\cdot)) \sim Poisson Random Field(\lambda^*\Lambda_t(\cdot))$

Additional remarks

This backbone decomposition is in some sense the final step following many other steps taken by others as well as concurrent work:

- Engländer and Pinsky (1999) consider a semi-group backbone decomposition for superdiffusions with spatial quadratic branching mechanism.
- Fleishmann and Swart (2002) Consider semi-pathwise decomposition for superdiffusions with spatially dependent quadratic branching mechanism.
- Dusquene and Winkel (2007) Consider pathwise decomposition for CSBPs.
- Bertoin, Fontbona & Martinez (2008) Consider semi-pathwise decomposition for CSBPs
- Abraham and Delmas (2009) Related decompositions for critical and supercritical (see previous talks!!)
- In principle the method we use should be able to handle

$$\psi(\lambda, x) = \alpha(x)\lambda + \beta(x)\lambda^2 + \int_{(0,\infty)} (e^{-\lambda y} - 1 + \lambda y)\Pi(x, \mathrm{d}y)$$

3/ 17

ション ふゆ アメリア メリア しょうくう

Suppose that we take \mathcal{P} corresponding to Brownian motion with drift c and quadratic branching mechanism $\psi(\lambda) = -a\lambda + b\lambda^2$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Suppose that we take \mathcal{P} corresponding to Brownian motion with drift c and quadratic branching mechanism $\psi(\lambda) = -a\lambda + b\lambda^2$.
- Define Λ_{D_x} represents Dynkin's exit measure from the space-time domain $(0,\infty) \times (0,\infty)$ of $(\Lambda, \mathbb{P}_{\delta_x})$ where x > 0. Define Z_{D_x} similarly for the backbone.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

- Suppose that we take \mathcal{P} corresponding to Brownian motion with drift c and quadratic branching mechanism $\psi(\lambda) = -a\lambda + b\lambda^2$.
- Define Λ_{D_x} represents Dynkin's exit measure from the space-time domain $(0,\infty) \times (0,\infty)$ of $(\Lambda, \mathbb{P}_{\delta_x})$ where x > 0. Define Z_{D_x} similarly for the backbone.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

- Suppose that we take \mathcal{P} corresponding to Brownian motion with drift cand quadratic branching mechanism $\psi(\lambda) = -a\lambda + b\lambda^2$.
- Define Λ_{D_x} represents Dynkin's exit measure from the space-time domain $(0,\infty) \times (0,\infty)$ of $(\Lambda, \mathbb{P}_{\delta_x})$ where x > 0. Define Z_{D_x} similarly for the backbone.

- The processes $(\langle 1, Z_{D_x} \rangle, x \ge 0)$ is a cts time Galton-Watson process (observed by Neveu) and $(\langle 1, X_{D_x} \rangle, x \ge 0)$ is a CSBP:
 - supercritical for $c \leq -\sqrt{2a}$
 - subcritical for $c \ge \sqrt{2a} \Rightarrow \max$ left (right) most speed $-\sqrt{2a}$ ($\sqrt{2a}$).

5/ 17

- Suppose that we take \mathcal{P} corresponding to Brownian motion with drift c and quadratic branching mechanism $\psi(\lambda) = -a\lambda + b\lambda^2$.
- Define Λ_{D_x} represents Dynkin's exit measure from the space-time domain $(0,\infty) \times (0,\infty)$ of $(\Lambda, \mathbb{P}_{\delta_x})$ where x > 0. Define Z_{D_x} similarly for the backbone.

- The processes $(\langle 1, Z_{D_x} \rangle, x \ge 0)$ is a cts time Galton-Watson process (observed by Neveu) and $(\langle 1, X_{D_x} \rangle, x \ge 0)$ is a CSBP:
 - supercritical for $c \leq -\sqrt{2a}$
 - subcritical for $c \ge \sqrt{2a} \Rightarrow \max$ left (right) most speed $-\sqrt{2a}$ ($\sqrt{2a}$).
- Moreover Law $(Z_{D_x}(\cdot)|\Lambda_{D_x}(\cdot)) \sim \text{Poisson Random Field}(\lambda^*\Lambda_{D_x}(\cdot)).$

15/ 17

• Maillard (2010) (see also Addario-Berry and Broutin (2009) for BRW) show that when $c=-\sqrt{2{\rm a}}$

$$\mathbf{P}_{\delta_x}(Z_{D_x} > n) \sim \frac{\sqrt{2\mathbf{a}x}e^{\sqrt{2\mathbf{a}x}}}{n(\log n)^2}, \ n \to \infty$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Maillard (2010) (see also Addario-Berry and Broutin (2009) for BRW) show that when $c=-\sqrt{2{\rm a}}$

$$\mathbf{P}_{\delta_x}(Z_{D_x} > n) \sim \frac{\sqrt{2\mathbf{a}x}e^{\sqrt{2\mathbf{a}x}}}{n(\log n)^2}, \ n \to \infty$$

This follows from Tauberian theorems and the connection of Z_{Dx} to the 'one-sided' FKPP equation for monotone ϕ

$$\frac{1}{2}\phi''(x) - \sqrt{2a}\phi'(x) + F(\phi(x)) = 0, \ \phi(0) = 1, \ \phi(+\infty) = 1.$$

ション ふゆ アメリア メリア しょうくう

• Maillard (2010) (see also Addario-Berry and Broutin (2009) for BRW) show that when $c=-\sqrt{2{\rm a}}$

$$\mathbf{P}_{\delta_x}(Z_{D_x} > n) \sim \frac{\sqrt{2\mathbf{a}x}e^{\sqrt{2\mathbf{a}x}}}{n(\log n)^2}, \ n \to \infty$$

This follows from Tauberian theorems and the connection of Z_{D_x} to the 'one-sided' FKPP equation for monotone ϕ

$$\frac{1}{2}\phi''(x) - \sqrt{2a}\phi'(x) + F(\phi(x)) = 0, \ \phi(0) = 1, \ \phi(+\infty) = 1.$$

• Through the Poissonization of Z_{D_x} by Λ_{D_x} it is easy to show that the above asymptotic transfers through the above FKPP equation, into the FKPP equation for Λ

$$\frac{1}{2}\Phi''(x) - \sqrt{2a}\Phi'(x) - \psi(\Phi(x)) = 0, \ \Phi(0) = 0, \ \Phi(+\infty) = \lambda^*.$$

to give

$$\mathbf{P}_{\delta_x}(\Lambda_{D_x} > t) \sim \frac{\sqrt{2\mathbf{a}}xe^{\sqrt{2\mathbf{a}}x}}{t(\log t)^2}, \ t \to \infty.$$

• Consider the case that we kill superBM with drift $c > \sqrt{2a}$ at the origin.

- Consider the case that we kill superBM with drift $c > \sqrt{2a}$ at the origin.
- $R_t^Z = \inf\{y > 0 : Z_t(y, \infty) = 0\}$ and $R_t^\Lambda = \inf\{y > 0 : \Lambda_t(y, \infty) = 0\}$

- Consider the case that we kill superBM with drift $c > \sqrt{2a}$ at the origin.
- $R_t^Z = \inf\{y > 0 : Z_t(y, \infty) = 0\}$ and $R_t^\Lambda = \inf\{y > 0 : \Lambda_t(y, \infty) = 0\}$
- We already know that

$$\limsup_{t \to \infty} \frac{R_t^{\Lambda}}{t} \le \sqrt{2\mathsf{a}}$$

on survival.

- Consider the case that we kill superBM with drift $c > \sqrt{2a}$ at the origin.
- $R_t^Z = \inf\{y > 0 : Z_t(y, \infty) = 0\}$ and $R_t^\Lambda = \inf\{y > 0 : \Lambda_t(y, \infty) = 0\}$
- We already know that

$$\limsup_{t \to \infty} \frac{R_t^{\Lambda}}{t} \le \sqrt{2\mathbf{a}}$$

on survival.

 From the backbone embedding and known results on killed branching Brownian motion,

$$\liminf_{t \to \infty} \frac{R_t^{\Lambda}}{t} \ge \lim_{t \to \infty} \frac{R_t^Z}{t} = \sqrt{2\mathbf{a}}$$

on survival.

