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Backbone decomposition for superprocesses and applications.

(P, F ;E)-Branching Markov process

Atomic-measure valued Markov process: Z = {Zt : t ≥ 0} with
probabilities denoted by Pµ where µ(·) =

∑n
i=1 δxi(·) with xi ∈ E.

Path construction: Under Pµ, from each xi ∈ E initiate: iid copies of a
nice2 conservative3 E-valued Markov process whose semi-group is denoted
by P = {Pt : t ≥ 0}, each of which have a branching generator given by

F (s) = q

(
∞∑
n=0

snpn − s

)
.

Markov property: Zt+s is equal in law to an independent copy of Zs
under PZt .
Branching property: For atomic measures µ1 and µ2, (Z,Pµ1+µ2) has the
same law as Z(1) + Z(2) where Z(i) has law Pµi for i = 1, 2.
Notation: 〈f, Zt〉 =

∫
E
f(x)Zt(dx) =

∑Nt
i=1 f(zi(t)) when

Zt(·) =
∑Nt
i=1 δzi(t)(·).

Total mass: The process {〈1, Zt〉 : t ≥ 0} is a continuous time
Galton-Watson process.

2At the moment, the word ‘nice’ means any E-valued Markov process for which the
mathematics in this talk can be carried out! However this is a very large class of processes
including, for example many conservative diffusions in E = Rd.

3Pt[1] = 1 for all t ≥ 0.
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Backbone decomposition for superprocesses and applications.

(P, ψ;E)-Superprocess

Measure valued Markov process: X = {Xt : t ≥ 0} with probabilities Pµ
where µ is now a finite measure on E.

Path construction: X can be recovered as the result of rescaling and
re-weighting an (P, F ;E)-branching diffusion. (Not discussed here!).

Notation: 〈f,Xt〉 =
∫
E
f(y)Xt(dy).

Markov property: For all f ∈ C+
c (E),

E(e−〈f,Xt+s〉|{Xs : s ≤ t}) = Eµ(e−〈f,Xs〉)
∣∣∣
µ=Xt

.

Branching property: (X,Pµ1+µ2) has the same law as X(1) +X(2) where
X(i) has the law Pµi for i = 1, 2.
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Backbone decomposition for superprocesses and applications.

Evolution equations

Semigroup: For positive, bounded measurable f ,

Eµ(e−〈f,Xt〉) = e−
∫
uf (x,t)µ(dx) where e−uf (x,t) = Eδx(e−〈f,Xt〉),

uf (x, t) = Pt[f ](x)−
∫ t

0

ds · Ps[ψ(uf (·, t− s))](x).

and
ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx),

such that
∫

(0,∞)
(x ∧ x2)Π(dx) <∞.

Total mass: ||Xt|| := {〈1, Xt〉 : t ≥ 0} is a continuous state branching
process (CSBP) with branching mechanism ψ.



5/ 17

Backbone decomposition for superprocesses and applications.

Evolution equations

Semigroup: For positive, bounded measurable f ,

Eµ(e−〈f,Xt〉) = e−
∫
uf (x,t)µ(dx) where e−uf (x,t) = Eδx(e−〈f,Xt〉),

uf (x, t) = Pt[f ](x)−
∫ t

0

ds · Ps[ψ(uf (·, t− s))](x).

and
ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx),

such that
∫

(0,∞)
(x ∧ x2)Π(dx) <∞.

Total mass: ||Xt|| := {〈1, Xt〉 : t ≥ 0} is a continuous state branching
process (CSBP) with branching mechanism ψ.



5/ 17

Backbone decomposition for superprocesses and applications.

Evolution equations

Semigroup: For positive, bounded measurable f ,

Eµ(e−〈f,Xt〉) = e−
∫
uf (x,t)µ(dx) where e−uf (x,t) = Eδx(e−〈f,Xt〉),

uf (x, t) = Pt[f ](x)−
∫ t

0

ds · Ps[ψ(uf (·, t− s))](x).

and
ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx),

such that
∫

(0,∞)
(x ∧ x2)Π(dx) <∞.

Total mass: ||Xt|| := {〈1, Xt〉 : t ≥ 0} is a continuous state branching
process (CSBP) with branching mechanism ψ.



6/ 17

Backbone decomposition for superprocesses and applications.

Long-term behaviour of CSBP (total mass process)

Supercritical (assumed): −ψ′(0+) > 0 ensures that ||Xt|| reaches +∞
before 0 with positive probability which is equivalent to survival of X with
positive probability.

Finite expected growth (assumed): General theory for superprocesses
generally excludes the case that −ψ′(0+) <∞ for ||Xt||.
No explosion (assumed): As a process, we also want ||Xt|| to be
conservative ∫

0+

|ψ(λ)|−1dλ =∞.
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Backbone decomposition for superprocesses and applications.

Supercritical superprocess conditioned to die

When −ψ′(0+) > 0 we are interested in conditioning on the event that
limt↑∞ ||Xt|| = 0.

It turns out that Pyδx(limt↑∞ ||Xt|| = 0) = e−λ∗y for all y > 0 and x ∈ E
where ψ(λ∗) = 0.

Straightforward computation:

E∗δx(e−〈f,Xt〉) := Eδx(e−〈f,Xt〉| lim
s↑∞
||Xt+s|| = 0)

= e−u
∗
f (x,t)

u∗f (x, t) = Pt[f ](x)−
∫ t

0

ds · Ps[ψ∗(u∗f (·, t− s))](x)

and
ψ∗(λ) = ψ(λ+ λ∗).
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Backbone decomposition for superprocesses and applications.

Evans-O’Connell backbone decomposition

Supercritical quadratic branching mechanism: ψ(λ) = −aλ+ bλ2

(−ψ′(0+) = a > 0).

Evans-O’Connell (1994): Showed the following semi-group decomposition
for finite and compactly supported µ,

Eµ(e−〈f,Xt〉) = e−〈u
∗
f (·,t),µ〉EP( a

b
µ)

[
exp

{
−
∫ t

0

2β〈u∗f (·, t− s), Zs〉ds
}]

where Z under PP( a
b
µ) is a branching Markov process with dyadic

branching and initial configuration which is generated by an independent
Poisson random field in E with intensity a

b
µ.

Backbone decomposition: For finite and compactly supported µ, (X,Pµ)
has the same law as the following superposition (everything independent)

Run a copy of (X,P∗µ)
Create a Poisson field of points in E using intensity µ
From each of these points run a branching Markov process with dyadic
branching.
In each ds "immigrate" independent copies of (X,P∗· ), having initial mass
2βds at the spatial positions of particles in Z.
Alternative: "immigrate at rate 2β" independent copies of (X,P∗) along
the path of Z.
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[
exp

{
−
∫ t

0

2β〈u∗f (·, t− s), Zs〉ds
}]

where Z under PP( a
b
µ) is a branching Markov process with dyadic

branching and initial configuration which is generated by an independent
Poisson random field in E with intensity a

b
µ.

Backbone decomposition: For finite and compactly supported µ, (X,Pµ)
has the same law as the following superposition (everything independent)

Run a copy of (X,P∗µ)
Create a Poisson field of points in E using intensity µ
From each of these points run a branching Markov process with dyadic
branching.
In each ds "immigrate" independent copies of (X,P∗· ), having initial mass
2βds at the spatial positions of particles in Z.
Alternative: "immigrate at rate 2β" independent copies of (X,P∗) along
the path of Z.
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Backbone decomposition for superprocesses and applications.

Pathwise backbone construction for supercritical
(P, ψ,E)-superprocess

Key ingredient 1: Dynkin-Kuzentsov measure. LetM be the space of
finite measures on E. Think of Pδx as a measure onM[0,∞). Branching
property implies "infinite divisibility"

P∗δx = P∗1
n
δx
? · · · ? P∗1

n
δx
.

Dynkin and Kuznetsov (2004) describe the "Lévy measure" of P∗δx and call
it N∗x and can be thought of an “excursion measure" on path space of the
superprocess. We have

e−u
∗
f (x,t) = E∗δx(e−〈f,Xt〉) = exp

{
−
∫

(1− e−〈f,Xt〉)dN∗x
}

Key ingredient 2: A measure on {2, 3, . . .} × (0,∞) in the form
ηn(dx) = pn(dx)/pn with pn = pn(0,∞) and

pn(dx) =
1

λ∗ψ′(λ∗)

{
β(λ∗)

2δ0(dx)1{n=2} + (λ∗)
n x

n

n!
e−λ

∗xΠ(dx)

}
.
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Backbone decomposition for superprocesses and applications.

Pathwise backbone construction (Theorem):

For finite and compactly supported µ, (X,Pµ) is equal in law to the following
superposition

Run an independent copy of (X,P∗µ)

Independently, run a copy of a (P, F ;E) branching Markov process, Z
with branching generator F (s) = ψ(λ∗(1− s))/λ∗ and with initial
configuration independently determined by P(λ∗µ), a Poisson random
field with intensity λ∗µ. What happens when this number is zero?

Independently, dress4 each spatial branch {ξt : τbirth ≤ t < τdeath} of Z,
with anM[0,∞) trajectory rooted at space time point (ξt, t) according to
an independent Poisson random field with intensity 2βdt× dN∗ξt .
Independently, dress each spatial branch {ξt : τbirth ≤ t < τdeath} of Z,
with anM[0,∞) trajectory rooted at space time point (ξt, t) according to
an independent Poisson random field with intensity
dt×

∫
y∈(0,∞)

ye−λ
∗yΠ(dy)× dP∗yδξt .

Independently, at each branch point of Z, if there are n offspring as well
as a rooted an independent copy of (X,P∗xδξτdeath ) with random initial
mass x with probability ηn(dx).

4Other acceptable verb: ’decorate’
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Backbone decomposition for superprocesses and applications.
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Backbone decomposition for superprocesses and applications.

Prolific Poissonization

An important feature of the backbone decomposition. Let ((Zt,Λt),Pµ) be
the backbone configuration and aggregation of the dressed mass at time t ≥ 0
so that (Λ,Pµ) = (X,Pµ)

Law(Zt(·)|Λt(·)) ∼ Poisson Random Field(λ∗Λt(·))
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Backbone decomposition for superprocesses and applications.

Additional remarks

This backbone decomposition is in some sense the final step following many
other steps taken by others as well as concurrent work:

Engländer and Pinsky (1999) consider a semi-group backbone
decomposition for superdiffusions with spatial quadratic branching
mechanism.

Fleishmann and Swart (2002) Consider semi-pathwise decomposition for
superdiffusions with spatially dependent quadratic branching mechanism.

Dusquene and Winkel (2007) Consider pathwise decomposition for CSBPs.

Bertoin, Fontbona & Martinez (2008) Consider semi-pathwise
decomposition for CSBPs

Abraham and Delmas (2009) Related decompositions for critical and
supercritical (see previous talks!!)

In principle the method we use should be able to handle

ψ(λ, x) = α(x)λ+ β(x)λ2+

∫
(0,∞)

(e−λy − 1 + λy)Π(x,dy)
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Backbone decomposition for superprocesses and applications.

Some straightforward applications

Suppose that we take P corresponding to Brownian motion with drift c
and quadratic branching mechanism ψ(λ) = −aλ+ bλ2.

Define ΛDx represents Dynkin’s exit measure from the space-time domain
(0,∞)× (0,∞) of (Λ,Pδx) where x > 0. Define ZDx similarly for the
backbone.

x
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The processes (〈1, ZDx〉, x ≥ 0) is a cts time Galton-Watson process
(observed by Neveu) and (〈1, XDx〉, x ≥ 0) is a CSBP:

supercritical for c ≤ −
√
2a

subcritical for c ≥
√
2a ⇒ max left (right) most speed −

√
2a (
√
2a).

Moreover Law(ZDx(·)|ΛDx(·)) ∼ Poisson Random Field(λ∗ΛDx(·)).
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Backbone decomposition for superprocesses and applications.

Growth of mass on the exit boundary

Maillard (2010) (see also Addario-Berry and Broutin (2009) for BRW)
show that when c = −

√
2a

Pδx(ZDx > n) ∼
√

2axe
√

2ax

n(logn)2
, n→∞

This follows from Tauberian theorems and the connection of ZDx to the
‘one-sided’ FKPP equation for monotone φ

1

2
φ′′(x)−

√
2aφ′(x) + F (φ(x)) = 0, φ(0) = 1, φ(+∞) = 1.

Through the Poissonization of ZDx by ΛDx it is easy to show that the
above asymptotic transfers through the above FKPP equation, into the
FKPP equation for Λ

1

2
Φ′′(x)−

√
2aΦ′(x)− ψ(Φ(x)) = 0, Φ(0) = 0, Φ(+∞) = λ∗.

to give

Pδx(ΛDx > t) ∼
√

2axe
√

2ax

t(log t)2
, t→∞.
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Right most speed of the support for killed superBM

Consider the case that we kill superBM with drift c >
√

2a at the origin.
RZt = inf{y > 0 : Zt(y,∞) = 0} and RΛ

t = inf{y > 0 : Λt(y,∞) = 0}
We already know that

lim sup
t→∞

RΛ
t

t
≤
√

2a

on survival.
From the backbone embedding and known results on killed branching
Brownian motion,

lim inf
t→∞

RΛ
t

t
≥ lim
t→∞

RZt
t

=
√

2a

on survival.
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