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Branching Brownian motion in a strip (0,K)

x

K

0

PKx denotes the law of the process with one initial ancestor issued from
x ∈ (0,K).

Particles execute Brownian motion with killing on exiting (0,K).

Particles undergo dyadic branching at constant rate β > 0.

Z = {Zt(·) : t ≥ 0}, where Zt(·) =
∑Nt
i=1 δxi(t)(·), is the sequence of

random measures which describes the evolution of particles.

The process becomes extinct at time ζK := inf{t > 0 : Zt(0,K) = 0}.
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Criticality: What can we say about φK(x) := PKx (ζK <∞)?

The Engländer-Pinsky local extinction criterion hints that we should
expect to see PKx (ζK <∞) = 1 for all K sufficiently small.

Critical width: K∗ such that λc(K∗) = 0 where λc(K) is the generalised
principle eigen-value of the operator 1

2
4+ β on (0,K).

A straightforward exercise to show that λc(K) = β − π2/2K2 [coming
from the ‘ground state’ positive eigen-function sin(πx/K)] and hence
K∗ = π/

√
2β.

Theorem: (i) When K > K∗ then φK ∈ (0, 1) on (0,K) and is the
unique solution to the ODE

1

2
f ′′ + β(f2 − f) = 0 on (0,K) and f(0) = f(K) = 1. (1)

(ii) When K ≤ K∗ then φK ≡ 1 and the ODE (1) has no solutions valued
in [0, 1] other than the trivial ones.



5/ 17

Spines, backbones and orthopedic surgery.

Criticality: What can we say about φK(x) := PKx (ζK <∞)?

The Engländer-Pinsky local extinction criterion hints that we should
expect to see PKx (ζK <∞) = 1 for all K sufficiently small.

Critical width: K∗ such that λc(K∗) = 0 where λc(K) is the generalised
principle eigen-value of the operator 1

2
4+ β on (0,K).

A straightforward exercise to show that λc(K) = β − π2/2K2 [coming
from the ‘ground state’ positive eigen-function sin(πx/K)] and hence
K∗ = π/

√
2β.

Theorem: (i) When K > K∗ then φK ∈ (0, 1) on (0,K) and is the
unique solution to the ODE

1

2
f ′′ + β(f2 − f) = 0 on (0,K) and f(0) = f(K) = 1. (1)

(ii) When K ≤ K∗ then φK ≡ 1 and the ODE (1) has no solutions valued
in [0, 1] other than the trivial ones.



5/ 17

Spines, backbones and orthopedic surgery.

Criticality: What can we say about φK(x) := PKx (ζK <∞)?

The Engländer-Pinsky local extinction criterion hints that we should
expect to see PKx (ζK <∞) = 1 for all K sufficiently small.

Critical width: K∗ such that λc(K∗) = 0 where λc(K) is the generalised
principle eigen-value of the operator 1

2
4+ β on (0,K).

A straightforward exercise to show that λc(K) = β − π2/2K2 [coming
from the ‘ground state’ positive eigen-function sin(πx/K)] and hence
K∗ = π/

√
2β.

Theorem: (i) When K > K∗ then φK ∈ (0, 1) on (0,K) and is the
unique solution to the ODE

1

2
f ′′ + β(f2 − f) = 0 on (0,K) and f(0) = f(K) = 1. (1)

(ii) When K ≤ K∗ then φK ≡ 1 and the ODE (1) has no solutions valued
in [0, 1] other than the trivial ones.



5/ 17

Spines, backbones and orthopedic surgery.

Criticality: What can we say about φK(x) := PKx (ζK <∞)?

The Engländer-Pinsky local extinction criterion hints that we should
expect to see PKx (ζK <∞) = 1 for all K sufficiently small.

Critical width: K∗ such that λc(K∗) = 0 where λc(K) is the generalised
principle eigen-value of the operator 1

2
4+ β on (0,K).

A straightforward exercise to show that λc(K) = β − π2/2K2 [coming
from the ‘ground state’ positive eigen-function sin(πx/K)] and hence
K∗ = π/

√
2β.

Theorem: (i) When K > K∗ then φK ∈ (0, 1) on (0,K) and is the
unique solution to the ODE

1

2
f ′′ + β(f2 − f) = 0 on (0,K) and f(0) = f(K) = 1. (1)

(ii) When K ≤ K∗ then φK ≡ 1 and the ODE (1) has no solutions valued
in [0, 1] other than the trivial ones.



5/ 17

Spines, backbones and orthopedic surgery.

Criticality: What can we say about φK(x) := PKx (ζK <∞)?

The Engländer-Pinsky local extinction criterion hints that we should
expect to see PKx (ζK <∞) = 1 for all K sufficiently small.

Critical width: K∗ such that λc(K∗) = 0 where λc(K) is the generalised
principle eigen-value of the operator 1

2
4+ β on (0,K).

A straightforward exercise to show that λc(K) = β − π2/2K2 [coming
from the ‘ground state’ positive eigen-function sin(πx/K)] and hence
K∗ = π/

√
2β.

Theorem: (i) When K > K∗ then φK ∈ (0, 1) on (0,K) and is the
unique solution to the ODE

1

2
f ′′ + β(f2 − f) = 0 on (0,K) and f(0) = f(K) = 1. (1)

(ii) When K ≤ K∗ then φK ≡ 1 and the ODE (1) has no solutions valued
in [0, 1] other than the trivial ones.



6/ 17

Spines, backbones and orthopedic surgery.

Intuition: finding a spine is equivalent to survival.

Martingale density to condition a Brownian motion {Bt : t ≥ 0} to stay in
the interval (0,K) is

eπ
2t/2K2

sin(πBt/K)1{t<τ(0,K)}, t ≥ 0.

Martingale density to condition Z to survive

Mt :=

∫
(0,K)

e(π
2/2K2−β)t sin(πx/K)Zt(dx), t ≥ 0,

induces a spine decomposition:
(i) Run a Brownian motion conditioned to stay in (0,K) - the spine.
(ii) At rate 2β dress the path of the spine with independent copies of
PK· -BBMs.

x

K

0
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Intuition: finding a spine is equivalent to survival.

M is L1(PK· )-convergent if and only if K > K∗ and if this condition fails
then M∞ ≡ 0 a.s.

Clearly {ζK <∞} ⊆ {M∞ = 0}, but in fact they are equivalent events.

Both
φK(x) = PKx (ζK <∞) and ψK(x) = PKx (M∞ = 0)

have the property that for x ∈ (0,K)

Nt∏
i=1

φK(xi(t)) and
Nt∏
i=1

ψK(xi(t))

are bounded martingales and hence both φK and ψK solve (1).

Conversely, for any solution f to (1),

Nt∏
i=1

f(xi(t))

is a bounded martingale with limit 1{ζK<∞}.
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What happens at criticality?

When K = K∗ we have {M∞ = 0} = {ζK <∞} almost surely ⇒ cannot
condition on survival and get a spine decomposition.

Look instead for a quasi-stationary type result and try to understand if
there is any meaning to the limit

lim
K↓K∗

PKx (·|ζK =∞)
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Blue and Red for K > K∗

x

K

0

Colour in blue, all genealogical lines of decent which do not touch the side
of the interval.

Colour in red, all remaining life histories.

Does the blue tree describe a branching diffusion?

Do the red subtrees describe branching diffusions?
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Blue and Red for K > K∗

0

K

x

Colour in blue, all genealogical lines of decent which do not touch the side
of the interval.

Colour in red, all remaining life histories.

Does the blue tree describe a branching diffusion?

Do the red subtrees describe branching diffusions?

What happens if there is no blue tree?
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Blue and Red for K > K∗

Recall φK(x) = PKx (ζK <∞):

Blue:

Branch dyadically at rate β(1− φK(·))
Diffuse according to the Markov process with generator

1

2
4−

φ′K
1− φK

d

dx

(
= Lw0 := Lw −

Lw

w
where L =

1

2
4 and w = 1− φK .

)

0 K

This is NOT the generator of a Brownian motion conditioned to remain in
(0,K).

Red:

Branch dyadically at rate βφK(·)
Diffuse according to the Markov process with generator

1

2
4+

φ′K
φK

d

dx

(
= Lw0 := LφK −

LφK

φK
.

)
Can be shown that Red describes PK· (·|ζK <∞).
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Diffuse according to the Markov process with generator

1

2
4+

φ′K
φK

d

dx

(
= Lw0 := LφK −

LφK

φK
.

)

Can be shown that Red describes PK· (·|ζK <∞).
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Spines, backbones and orthopedic surgery.

Blue and Red for K > K∗

Recall φK(x) = PKx (ζK <∞):
Blue:

Branch dyadically at rate β(1− φK(·))
Diffuse according to the Markov process with generator

1

2
4−

φ′K
1− φK

d

dx

(
= Lw0 := Lw −

Lw

w
where L =

1

2
4 and w = 1− φK .

)

0 K

This is NOT the generator of a Brownian motion conditioned to remain in
(0,K).

Red:
Branch dyadically at rate βφK(·)
Diffuse according to the Markov process with generator

1

2
4+

φ′K
φK

d

dx

(
= Lw0 := LφK −

LφK

φK
.

)
Can be shown that Red describes PK· (·|ζK <∞).
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Spines, backbones and orthopedic surgery.

Backbone decomposition for K > K∗

x

K

0

Theorem. For x ∈ (0,K), PKx has the same law as a colour blind view of:

Flip a coin with probability φK(x) of ‘heads’.

If ‘heads’ then grow a Red tree.

If ‘tails’ then grow a Blue tree and with rate 2βφK(·) ‘dress’ the spatial
paths of the Blue tree with independent Red trees.
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PKx (·|ζK =∞) has the same law as observing a dressed Blue tree.

Equivalently PKx (·|ζK =∞) has the same law as the backbone
construction conditioned on throwing a ’tail’.
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Spines, backbones and orthopedic surgery.

Orthopedic surgery (K > K ′ > K∗)

K

K'

0
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Spines, backbones and orthopedic surgery.

Quasi-stationary limit as K ↓ K∗

φK(·) ↑ 1

(Blue motion) 1
2
4− φ′K

1−φK

d
dx

“→” 1
2
4+ (sinπx/K∗)′

sinπx/K∗
d
dx

(Blue branching rate) β(1− φK)→ 0

(Red motion) 1
2
4+

φ′K
φK

d
dx

“→” 1
2
4

(Red branching rate) βφK → β

(rate of dressing Red on to Blue) 2βφK → 2β.

Theorem. The backbone becomes a spine through orthopedic surgery and
gives the quasi-stationary result:

lim
K↓K∗

PKx (·|ζK =∞) = P ∗x (·),

for x ∈ (0,K∗) where P ∗x is the law of a particle system consisting of
a spine behaving as a Brownian motion conditioned to stay in the interval
(0,K∗),
dressing of the spine at rate 2β with PK∗· branching diffusions.
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Spines, backbones and orthopedic surgery.

Quasi-stationary limit as K ↓ K∗

φK(·) ↑ 1: 1− φK(x) ∼ cK sin(πx/K) as K ↓ K∗.
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