Spines, backbones and orthopedic surgery.

Simon Harris, Marion Hesse and Andreas Kyprianou

Department of Mathematical Sciences, University of Bath

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ��?

Motivation

 Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

many

 Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

・ロト ・ 『 ・ ・ ヨ ・ ・ ヨ ・ うらう

 Their analysis revolves around the behaviour of branching Brownian motion conditioned to stay in a strip next to the origin.

 Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

- Their analysis revolves around the behaviour of branching Brownian motion conditioned to stay in a strip next to the origin.
- It is also a natural question to ask how such a process behaves as the strip becomes thinner.

・ロト ・ 『 ・ ・ ヨ ・ ・ ヨ ・ うらう

 Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

- Their analysis revolves around the behaviour of branching Brownian motion conditioned to stay in a strip next to the origin.
- It is also a natural question to ask how such a process behaves as the strip becomes thinner.
- Specifically, is there a critical width below which there is no possibility of surviving and how does the process behave at criticality?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

 $\blacksquare \mathbb{P}^K_x$ denotes the law of the process with one initial ancestor issued from $x \in (0,K).$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

■ \mathbb{P}_x^K denotes the law of the process with one initial ancestor issued from $x \in (0, K)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Particles execute Brownian motion with killing on exiting (0, K).

- \mathbb{P}_x^K denotes the law of the process with one initial ancestor issued from $x \in (0, K)$.
- Particles execute Brownian motion with killing on exiting (0, K).
- Particles undergo dyadic branching at constant rate $\beta > 0$.

|/17|

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

- \mathbb{P}_x^K denotes the law of the process with one initial ancestor issued from $x \in (0, K)$.
- Particles execute Brownian motion with killing on exiting (0, K).
- Particles undergo dyadic branching at constant rate $\beta > 0$.
- $Z = \{Z_t(\cdot) : t \ge 0\}$, where $Z_t(\cdot) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(\cdot)$, is the sequence of random measures which describes the evolution of particles.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

- \mathbb{P}_x^K denotes the law of the process with one initial ancestor issued from $x \in (0, K)$.
- Particles execute Brownian motion with killing on exiting (0, K).
- Particles undergo dyadic branching at constant rate $\beta > 0$.
- $Z = \{Z_t(\cdot) : t \ge 0\}$, where $Z_t(\cdot) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(\cdot)$, is the sequence of random measures which describes the evolution of particles.
- The process becomes extinct at time $\zeta^K := \inf\{t > 0 : Z_t(0, K) = 0\}.$

• The Engländer-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- The Engländer-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.
- Critical width: K^* such that $\lambda_c(K^*) = 0$ where $\lambda_c(K)$ is the generalised principle eigen-value of the operator $\frac{1}{2}\Delta + \beta$ on (0, K).

- The Engländer-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.
- Critical width: K^* such that $\lambda_c(K^*) = 0$ where $\lambda_c(K)$ is the generalised principle eigen-value of the operator $\frac{1}{2}\Delta + \beta$ on (0, K).
- A straightforward exercise to show that $\lambda_c(K) = \beta \pi^2/2K^2$ [coming from the 'ground state' positive eigen-function $\sin(\pi x/K)$] and hence $K^* = \pi/\sqrt{2\beta}$.

ション ふゆ アメリア メリア しょうくう

- The Engländer-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.
- Critical width: K^* such that $\lambda_c(K^*) = 0$ where $\lambda_c(K)$ is the generalised principle eigen-value of the operator $\frac{1}{2}\Delta + \beta$ on (0, K).
- A straightforward exercise to show that $\lambda_c(K) = \beta \pi^2/2K^2$ [coming from the 'ground state' positive eigen-function $\sin(\pi x/K)$] and hence $K^* = \pi/\sqrt{2\beta}$.
- **Theorem:** (i) When $K > K^*$ then $\phi_K \in (0, 1)$ on (0, K) and is the unique solution to the ODE

$$\frac{1}{2}f'' + \beta(f^2 - f) = 0 \text{ on } (0, K) \text{ and } f(0) = f(K) = 1.$$
 (1)

(ii) When $K \leq K^*$ then $\phi_K \equiv 1$ and the ODE (1) has no solutions valued in [0,1] other than the trivial ones.

• Martingale density to condition a Brownian motion $\{B_t : t \ge 0\}$ to stay in the interval (0, K) is

$$e^{\pi^2 t/2K^2} \sin(\pi B_t/K) \mathbf{1}_{\{t < \tau^{(0,K)}\}}, \quad t \ge 0.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

• Martingale density to condition a Brownian motion $\{B_t : t \ge 0\}$ to stay in the interval (0, K) is

$$e^{\pi^2 t/2K^2} \sin(\pi B_t/K) \mathbf{1}_{\{t < \tau^{(0,K)}\}}, \quad t \ge 0.$$

 \blacksquare Martingale density to condition Z to survive

$$M_t := \int_{(0,K)} e^{(\pi^2/2K^2 - \beta)t} \sin(\pi x/K) Z_t(\mathrm{d}x), \qquad t \ge 0,$$

ション ふゆ アメリア メリア しょうくう

induces a spine decomposition:

■ Martingale density to condition a Brownian motion $\{B_t : t \ge 0\}$ to stay in the interval (0, K) is

$$e^{\pi^2 t/2K^2} \sin(\pi B_t/K) \mathbf{1}_{\{t < \tau^{(0,K)}\}}, \qquad t \ge 0.$$

 \blacksquare Martingale density to condition Z to survive

$$M_t := \int_{(0,K)} e^{(\pi^2/2K^2 - \beta)t} \sin(\pi x/K) Z_t(\mathrm{d}x), \qquad t \ge 0,$$

induces a spine decomposition:

(i) Run a Brownian motion conditioned to stay in (0, K) - the spine. (ii) At rate 2β dress the path of the spine with independent copies of \mathbb{P}^{K}_{\cdot} -BBMs.

• M is $L^1(\mathbb{P}^K)$ -convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = の��

- M is $L^1(\mathbb{P}^K)$ -convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
- Clearly $\{\zeta^K < \infty\} \subseteq \{M_\infty = 0\}$, but in fact they are equivalent events.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- M is $L^1(\mathbb{P}^K)$ -convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
- Clearly $\{\zeta^K < \infty\} \subseteq \{M_\infty = 0\}$, but in fact they are equivalent events.

Both

$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty) \text{ and } \psi_K(x) = \mathbb{P}_x^K(M_\infty = 0)$$

have the property that for $x \in (0, K)$

$$\prod_{i=1}^{N_t}\phi_K(x_i(t)) \text{ and } \prod_{i=1}^{N_t}\psi_K(x_i(t))$$

are bounded martingales and hence both ϕ_K and ψ_K solve (1).

- M is $L^1(\mathbb{P}^K)$ -convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
- Clearly $\{\zeta^K < \infty\} \subseteq \{M_\infty = 0\}$, but in fact they are equivalent events.

Both

$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty) \text{ and } \psi_K(x) = \mathbb{P}_x^K(M_\infty = 0)$$

have the property that for $x \in (0, K)$

$$\prod_{i=1}^{N_t}\phi_K(x_i(t)) \,\, \text{and} \,\, \prod_{i=1}^{N_t}\psi_K(x_i(t))$$

are bounded martingales and hence both ϕ_K and ψ_K solve (1).

• Conversely, for any solution f to (1),

$$\prod_{i=1}^{N_t} f(x_i(t))$$

is a bounded martingale with limit $\mathbf{1}_{\{\zeta^K < \infty\}}$.

7/17

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

What happens at criticality?

What happens at criticality?

■ When $K = K^*$ we have $\{M_{\infty} = 0\} = \{\zeta^K < \infty\}$ almost surely \Rightarrow cannot condition on survival and get a spine decomposition.

What happens at criticality?

- When $K = K^*$ we have $\{M_{\infty} = 0\} = \{\zeta^K < \infty\}$ almost surely \Rightarrow cannot condition on survival and get a spine decomposition.
- Look instead for a quasi-stationary type result and try to understand if there is any meaning to the limit

$$\lim_{K \downarrow K^*} \mathbb{P}_x^K(\cdot | \zeta^K = \infty)$$

 Colour in blue, all genealogical lines of decent which do not touch the side of the interval.

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

 Colour in blue, all genealogical lines of decent which do not touch the side of the interval.

▲ロト ▲圖ト ▲ヨト ▲ヨト - ヨー ろくで

Colour in red, all remaining life histories.

 Colour in blue, all genealogical lines of decent which do not touch the side of the interval.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

- Colour in red, all remaining life histories.
- Does the blue tree describe a branching diffusion?

 Colour in blue, all genealogical lines of decent which do not touch the side of the interval.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

- Colour in red, all remaining life histories.
- Does the blue tree describe a branching diffusion?
- Do the red subtrees describe branching diffusions?

 Colour in blue, all genealogical lines of decent which do not touch the side of the interval.

・ロット (雪) (日) (日)

-

- Colour in red, all remaining life histories.
- Does the blue tree describe a branching diffusion?
- Do the red subtrees describe branching diffusions?
- What happens if there is no blue tree?

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:
Blue:

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

Blue:

Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

- Blue:
 - Branch dyadically at rate $\beta(1 \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle -\frac{\phi_K'}{1-\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

- Blue:
 - Branch dyadically at rate $\beta(1 \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)$$

• This is **NOT** the generator of a Brownian motion conditioned to remain in (0, K).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

- Blue:
 - Branch dyadically at rate $\beta(1 \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle -\frac{\phi'_K}{1-\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)$$

• This is **NOT** the generator of a Brownian motion conditioned to remain in (0, K).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Red:

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

- Blue:
 - Branch dyadically at rate $\beta(1 \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle -\frac{\phi'_K}{1-\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)$$

• This is **NOT** the generator of a Brownian motion conditioned to remain in (0, K).

Red:

Branch dyadically at rate $\beta \phi_K(\cdot)$

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

- Blue:
 - Branch dyadically at rate $\beta(1 \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)$$

This is **NOT** the generator of a Brownian motion conditioned to remain in (0, K).

Red:

- Branch dyadically at rate $\beta \phi_K(\cdot)$
- Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^{\phi_K} - \frac{L\phi_K}{\phi_K} \right).$$

1/17

▲ロト ▲圖ト ▲ヨト ▲ヨト - ヨー ろくで

Recall
$$\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$$
:

- Blue:
 - Branch dyadically at rate $\beta(1 \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)$$

This is **NOT** the generator of a Brownian motion conditioned to remain in (0, K).

Red:

- Branch dyadically at rate $\beta \phi_K(\cdot)$
- Diffuse according to the Markov process with generator

$$\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \left(= L_0^w := L^{\phi_K} - \frac{L\phi_K}{\phi_K} \right)$$

• Can be shown that Red describes $\mathbb{P}^{K}_{\cdot}(\cdot|\zeta^{K} < \infty)$.

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of:

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of: Flip a coin with probability $\phi_K(x)$ of 'heads'.

▲ロト ▲圖ト ▲ヨト ▲ヨト - ヨー ろくで

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of: Flip a coin with probability $\phi_K(x)$ of 'heads'.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

If 'heads' then grow a Red tree.

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of: Flip a coin with probability $\phi_K(x)$ of 'heads'.

- If 'heads' then grow a Red tree.
- If 'tails' then grow a Blue tree and with rate $2\beta\phi_K(\cdot)$ 'dress' the spatial paths of the Blue tree with independent Red trees.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of: Flip a coin with probability $\phi_K(x)$ of 'heads'.

- If 'heads' then grow a Red tree.
- If 'tails' then grow a Blue tree and with rate $2\beta\phi_K(\cdot)$ 'dress' the spatial paths of the Blue tree with independent Red trees.

クレク ボー・イビッ イビッ イロッ

A significance convenience from this construction:

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of: Flip a coin with probability $\phi_K(x)$ of 'heads'.

- If 'heads' then grow a Red tree.
- If 'tails' then grow a Blue tree and with rate $2\beta\phi_K(\cdot)$ 'dress' the spatial paths of the Blue tree with independent Red trees.

うして ふゆう ふほう ふほう しょうく

- A significance convenience from this construction:
 - $\mathbb{P}^K_x(\cdot|\zeta^K = \infty)$ has the same law as observing a dressed Blue tree.

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of: Flip a coin with probability $\phi_K(x)$ of 'heads'.

- If 'heads' then grow a Red tree.
- If 'tails' then grow a Blue tree and with rate $2\beta\phi_K(\cdot)$ 'dress' the spatial paths of the Blue tree with independent Red trees.

うして ふゆう ふほう ふほう しょうく

- A significance convenience from this construction:
 - $\mathbb{P}^K_x(\cdot|\zeta^K = \infty)$ has the same law as observing a dressed Blue tree.
 - Equivalently $\mathbb{P}_x^K(\cdot|\zeta^K = \infty)$ has the same law as the backbone construction conditioned on throwing a 'tail'.

Orthopedic surgery ($K > K' > K^*$)

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Orthopedic surgery ($K > K' > K^*$)

16/17 ▲□▶ ▲륜▶ ▲콜▶ ▲콜▶ 콜 - 외숙은

 $\bullet \phi_K(\cdot) \uparrow 1$

16/17 《□▶《圖▶《콜▶《콜》 콜 - 외익종

•
$$\phi_K(\cdot) \uparrow 1$$

• (Blue motion) $\frac{1}{2} \bigtriangleup - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \xrightarrow{"} \frac{1}{2} \bigtriangleup + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{d}{dx}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ シュ ・

- $\bullet \phi_K(\cdot) \uparrow 1$
- (Blue motion) $\frac{1}{2} \triangle \frac{\phi'_K}{1 \phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \stackrel{"}{\to} \frac{1}{2} \triangle + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{\mathrm{d}}{\mathrm{d}x}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• (Blue branching rate) $\beta(1-\phi_K) \rightarrow 0$

- $\bullet \phi_K(\cdot) \uparrow 1$
- (Blue motion) $\frac{1}{2} \triangle \frac{\phi'_K}{1 \phi_K} \frac{\mathrm{d}}{\mathrm{d}x}$ " \rightarrow " $\frac{1}{2} \triangle + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{\mathrm{d}}{\mathrm{d}x}$
- (Blue branching rate) $\beta(1-\phi_K) \to 0$
- (Red motion) $\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} " \rightarrow " \frac{1}{2} \triangle$

- $\bullet \phi_K(\cdot) \uparrow 1$
- (Blue motion) $\frac{1}{2} \bigtriangleup \frac{\phi'_K}{1-\phi_K} \frac{\mathrm{d}}{\mathrm{d}x}$ " \rightarrow " $\frac{1}{2} \bigtriangleup + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{\mathrm{d}}{\mathrm{d}x}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- (Blue branching rate) $\beta(1-\phi_K) \to 0$
- (Red motion) $\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} " \rightarrow " \frac{1}{2} \triangle$
- (Red branching rate) $\beta \phi_K \rightarrow \beta$

- $\bullet \phi_K(\cdot) \uparrow 1$
- (Blue motion) $\frac{1}{2} \bigtriangleup \frac{\phi'_K}{1 \phi_K} \frac{\mathrm{d}}{\mathrm{d}x}$ " \rightarrow " $\frac{1}{2} \bigtriangleup + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{\mathrm{d}}{\mathrm{d}x}$
- (Blue branching rate) $\beta(1-\phi_K) \rightarrow 0$
- (Red motion) $\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} " \rightarrow " \frac{1}{2} \triangle$
- (Red branching rate) $\beta \phi_K \rightarrow \beta$
- (rate of dressing Red on to Blue) $2\beta\phi_K \rightarrow 2\beta$.

- $\bullet \phi_K(\cdot) \uparrow 1$
- (Blue motion) $\frac{1}{2} \bigtriangleup \frac{\phi'_K}{1 \phi_K} \frac{\mathrm{d}}{\mathrm{d}x}$ " \rightarrow " $\frac{1}{2} \bigtriangleup + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{\mathrm{d}}{\mathrm{d}x}$
- (Blue branching rate) $\beta(1-\phi_K) \to 0$
- (Red motion) $\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \quad " \rightarrow " \quad \frac{1}{2} \triangle$
- (Red branching rate) $\beta \phi_K \rightarrow \beta$
- (rate of dressing Red on to Blue) $2\beta\phi_K \rightarrow 2\beta$.
- **Theorem**. The backbone becomes a spine through orthopedic surgery and gives the quasi-stationary result:

$$\lim_{K \downarrow K^*} \mathbb{P}_x^K(\cdot | \zeta^K = \infty) = P_x^*(\cdot),$$

for $x \in (0, K^*)$ where P_x^* is the law of a particle system consisting of

• a spine behaving as a Brownian motion conditioned to stay in the interval $(0, K^*)$,

• dressing of the spine at rate 2β with $\mathbb{P}^{K^*}_{\cdot}$ branching diffusions.

- $\phi_K(\cdot) \uparrow 1$: $1 \phi_K(x) \sim c_K \sin(\pi x/K)$ as $K \downarrow K^*$.
- (Blue motion) $\frac{1}{2} \bigtriangleup \frac{\phi'_K}{1 \phi_K} \frac{\mathrm{d}}{\mathrm{d}x}$ " \rightarrow " $\frac{1}{2} \bigtriangleup + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{\mathrm{d}}{\mathrm{d}x}$
- (Blue branching rate) $\beta(1-\phi_K) \to 0$
- (Red motion) $\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{\mathrm{d}}{\mathrm{d}x} \quad " \rightarrow " \quad \frac{1}{2} \triangle$
- (Red branching rate) $\beta \phi_K \rightarrow \beta$
- (rate of dressing Red on to Blue) $2\beta\phi_K \rightarrow 2\beta$.
- **Theorem**. The backbone becomes a spine through orthopedic surgery and gives the quasi-stationary result:

$$\lim_{K \downarrow K^*} \mathbb{P}_x^K(\cdot | \zeta^K = \infty) = P_x^*(\cdot),$$

for $x \in (0, K^*)$ where P_x^* is the law of a particle system consisting of

- a spine behaving as a Brownian motion conditioned to stay in the interval $(0, K^*)$,
- dressing of the spine at rate 2β with $\mathbb{P}^{K^*}_{\cdot}$ branching diffusions.