
I. Introduction

Example

Catching a bus

Each day you arrive at the bus stop at a random time, evenly
distributed between 5pm and 6pm.

Bus A runs at 5:05, 5:25 and 5:45.

Bus B runs at 5:00, 5:30 and 6:00.

You observe that you take bus A 2/3 of the time.

Why is this so?

-

Minutes

after 5pm

0 10 20 30 40 50 60

B B B
Next Bus = B

A A A
Next Bus = A
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Mathematical model of a probability space

Definition

The sample space Ω is the set of all possible outcomes.

In the Bus example, let elements of Ω be the outcomes

ω = Time of arrival measured in minutes after 5pm.

Then Ω = [0, 60].

Definition

Events are subsets of Ω.

Some events in the Bus example are

Arrive at a time to catch bus B = {0} ∪ (25, 30] ∪ (45, 60],

Wait at least 8 minutes = (5, 17] ∪ (30, 37] ∪ (45, 52].
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Mathematical model of a probability space

Definition

Denote the set of events by F .

Definition

Probability is a function P : F → [0, 1].

How should we define P in our example?

If E = (a, b) ⊂ Ω, set

P(E) =
b− a

60
.

If E = (a1, b1) ∪ . . . ∪ (ak, bk) ⊂ Ω, where the intervals (aj , bj) are
disjoint, set

P(E) =
k∑
j=1

bj − aj
60

=
Total length of E

60
.
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Mathematical model of a probability space

The probability of a single outcome

For every ω ∈ Ω,

P{ω} =
Length of (ω, ω)

60
= 0.

Each individual outcome ω has probability zero — but P(Ω) = 1.

Why does this not contradict the axioms of probability?

The set Ω is uncountable, so it makes no sense to write

P(Ω) =
∑
ω

P(ω) = . . .

Corollary

In the bus example,

P([a, b)) = P((a, b)) = P((a, b]).
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Random variables

A random variable (RV) is a real-valued function defined on the
sample space,

X : Ω→ R.

Outcome ω gives the value X(ω).

-

Minutes
after 5pm

0 10 20 30 40 50 60

B B BA A A

Examples of RVs in the bus example are

a) X = Time until bus B arrives

X(ω) =


0 if ω = 0,

30− ω if 0 < ω ≤ 30,

60− ω if 30 < ω ≤ 60.
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Random variables

b) Y = Arrival time of next bus B

Y (ω) =


0 if ω = 0,

30 if 0 < ω ≤ 30,

60 if 30 < ω ≤ 60.

c) Z = Your arrival time at the bus stop

Z(ω) = ω.

d) Let B be the event that Bus B is the next bus to arrive, so

B = {0} ∪ (25, 30] ∪ (45, 60]

and define the indicator variable

IB(ω) =

{
1 if ω ∈ B,

0 if ω /∈ B.
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Random variables

Note that Y and IB are discrete RVs:

P(Y = 30) =
1

2
, P(Y = 60) =

1

2

and

P(IB = 0) =
2

3
, P(IB = 1) =

1

3
.

In contrast, X and Z are continuous RVs.

This course unit is concerned with developing a way to describe
continuous RVs and to calculate their properties.
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II Random variables and cumulative distribution functions

II.a Probability density functions (PDFs)

Recall that a random variable is a function X : Ω→ R.

A discrete RV takes values in a set which is finite or countable,

X(ω) ∈ {x1, x2, . . .} for ω ∈ Ω,

and
P(a ≤ X ≤ b) =

∑
xi: a≤xi≤b

P(X = xi).

Definition

We say X is a continuous RV if there exists a piecewise
continuous function fX : R→ [0,∞) such that for all a ≤ b

P(a ≤ X ≤ b) =

∫ b

a
fX(x) dx.

Then, fX(x) is the probability density function (PDF) of X.
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Probability density functions

The probability that X lies in an interval is given by the area under
the curve fX(x) over that interval.

x

f
X
(x)

a b

P(a ≤ X ≤ b) =

∫ b

a
fX(x) dx.
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Probability density functions

Since

P(a ≤ X ≤ b) =

∫ b

a
fX(x) dx,

it is necessary that

(i) fX(x) ≥ 0 for all x ∈ R

(ii)
∫∞
−∞ fX(x) dx = 1.

Note that, in general, fX(x) 6= P(X = x).

In fact,

P(X = a) =

∫ a

a
fX(x) dx = 0

and
P(a < X < b) = P(a ≤ X ≤ b).
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Probability density functions

x

f
X
(x)

a a+δ

Consider the event that X lies in the interval (a, a+ δ).

If fX(x) is continuous at a, then for small δ

P(a < X < a+ δ) =

∫ a+δ

a
fX(x) dx ≈ δ fX(a).
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Probability density functions

The uniform distribution

Definition

The random variable X has a uniform distribution on (a, b),
written as X ∼ Unif(a, b) or X ∼ U(a, b), if it has PDF

fX(x) =

{
1
b−a for a < x < b,

0 otherwise.

-
x

6
fX(x)

a b

1
b−a
@R
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The uniform distribution

Example

In the bus example

-

Minutes

after 5pm

0 10 20 30 40 50 60

B B BA A A

Your arrival time Z is a Unif(0, 60) RV.

Example

Suppose X ∼ Unif(0, 60).

Find P(2 < X < 15).

See calculations on board
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II.b Expectation and variance

Recall that if X is a discrete RV, its expectation is

E(X) =
∑
xi

xi P (X = xi).

Definition

The expectation of a continuous random variable X is

E(X) =

∫ ∞
−∞

x fX(x) dx,

as long as ∫ ∞
−∞
|x| fX(x) dx < ∞.

Question: How should we define E(X2) ?
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Properties of E(X)

Proposition

The law of the unconscious statistician

For a function g : R→ R,

E[g(X)] =

∫ ∞
−∞

g(x) fX(x) dx

whenever the integral exists.

Proof

Treat Y = g(X) as a random variable. Find fY (y), the PDF of Y ,
then use the original definition of expectation:

E(Y ) =

∫ ∞
−∞

y fY (y) dy,

and show this equals
∫∞
−∞ g(x) fX(x) dx — see Ch. IV for details.
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Properties of E(X)

Proposition

Whenever the integrals exist:

(i) E(aX + b) = aE(X) + b

(ii) E[g(X) + h(X)] = E[g(X)] + E[h(X)].

Proof

Apply the law of the unconscious statistician.

See calculations on board

Andreas Kyprianou Lecture 2



Variance

The variance of X is defined to be

Var(X) = E[ (X − E(X))2 ]

— just as for a discrete RV.

The standard deviation of X is

SD(X) =
√

Var(X).
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Variance

Lemma

Var(X) = E(X2)− [E(X)]2.

Proof

Using previous propositions (i) and (ii),

Var(X) = E[ (X − E(X))2 ]

= E[X2 − 2X E(X) + [E(X)]2 ]

= E(X2)− 2E(X)E(X) + [E(X)]2

= E(X2)− [E(X)]2.

Andreas Kyprianou Lecture 2



Variance SELF STUDY SLIDE

Lemma

Var(a+ bX) = b2 Var(X)

Proof

Check in your own time:

Var(a+ bX) = E[ (a+ bX)2 ]− [E(a+ bX)]2

= E[a2 + 2abX + b2X2]− [a+ bE(X)]2

= a2 + 2abE(X) + b2 E(X2)

−a2 − 2abE(X)− b2[E(X)]2

= b2( E(X2)− [E(X)]2 )

= b2 Var(X).
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Variance SELF STUDY SLIDE

Example

Suppose X has PDF

fX(x) =

{
3
4(1− x2) −1 < x < 1,

0 otherwise.

In your own time, show that

E(X) = 0 and E(X2) =
1

5
.

Hence, conclude

Var(X) = E(X2)− [E(X)]2 =
1

5
.
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Where we are Lecture 3

I Introduction – An example of a non-discrete probability space

II Random variables and cumulative distribution functions

II.a Probability density functions

II.b Expectation and variance

II.c Independence of random variables

II.d Cumulative distribution functions

In this lecture, we shall cover sections II.c and II.d.
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II.c Independence of random variables

Definition

Events A and B are independent if

P(A ∩B) = P(A) P(B).

Definition

The random variables X and Y are independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x) P(Y ≤ y) for all x and y. (1)

Note: This definition applies to both discrete and continuous RVs.

However, for continuous RVs, the property

P(X = x, Y = y) = P(X = x) P(Y = y) for all x and y

does not imply independence — both sides are automatically zero.
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Independence of random variables

We might instead have defined RVs X and Y to be independent if

P(X∈(x1, x2], Y ∈(y1, y2]) = P(X∈(x1, x2]) P(Y ∈(y1, y2])

for all x1, x2, y1 and y2 ∈ R. (2)

In fact, condition (1) ⇔ condition (2).

So we could use either definition.

(Proof: In the next Problems Class).

For continuous RVs, independence can be stated in terms of PDFs

— but this involves the joint PDF of two RVs X and Y , which we

have not yet introduced.

We shall return to this later in the course.
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II.d Cumulative distribution functions

Definition

The cumulative distribution function (CDF) of the random variable
X is the function FX : R→ [0, 1] defined by

FX(x) = P(X ≤ x).

Note: This definition applies to both discrete and continuous RVs.

We may sometimes omit the subscript X and write F (x) if it is
clear from the context that we are referring to the RV X.
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Cumulative distribution functions

Theorem

The CDF of the random variable X has the following properties

(i) FX is increasing, i.e., if x ≤ y, then FX(x) ≤ FX(y),

(ii) limx→−∞ FX(x) = 0,

(iii) limx→∞ FX(x) = 1,

(iv) FX is right-continuous, i.e., if xn ↓ x, then FX(xn) ↓ FX(x).

Notation: Here, an ↓ a means that {an} is a decreasing sequence
with an > a for all n and limn→∞ an = a.

See calculations on board
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Cumulative distribution functions

Proof of (i): FX(x) ≤ FX(y) for x < y

We have

FX(x) = P(X ≤ x) = P{ω : X(ω) ≤ x},

FX(y) = P(X ≤ y) = P{ω : X(ω) ≤ y}.

Now, x < y ⇒ {ω : X(ω) ≤ x} ⊆ {ω : X(ω) ≤ y}.

So
P{ω : X(ω) ≤ x} ≤ P{ω : X(ω) ≤ y},

i.e.,
FX(x) ≤ FX(y).
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Cumulative distribution functions

Before proving the rest of the Theorem, we prove a Lemma.

Lemma

(i) If A1 ⊂ A2 ⊂ . . . are events, then

P(∪∞n=1An) = lim
n→∞

P(An),

(ii) If B1 ⊃ B2 ⊃ . . . are events, then

P(∩∞n=1Bn) = lim
n→∞

P(Bn).
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Cumulative distribution functions

Proof of Lemma

The proof uses the axioms of probability:

P(E) ∈ [0, 1] for any event E.

P(Ω) = 1, P(∅) = 0.

If E1 and E2 are disjoint,

P(E1 ∪ E2) = P(E1) + P(E2).

If E1, E2, . . . are disjoint,

P(∪∞i=1Ei) =

∞∑
i=1

P(Ei).
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Cumulative distribution functions

Proof of Lemma

Suppose we write E1 = A1

and, for n ≥ 2, En = An\An−1 = An\(A1 ∪ · · · ∪An−1)
Note that the Ei are disjoint
Note also An =

⋃n
i=1Ai =

⋃n
i=1Ei

Last axiom tells us that

P(An) = P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P(Ei)

And hence using last axiom again

lim
n→∞

P(An) =

∞∑
i=1

P(Ei) = P

( ∞⋃
i=1

Ei

)
= P

( ∞⋃
i=1

Ai

)
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Cumulative distribution functions

Proof of Lemma

Note that 1 = P(A+Ac) = P(A) + P(Ac) so

P(A) = 1− P(Ac)

Now note that

ω ∈
∞⋃
i=1

Bc
i ⇐⇒ ω ∈ Bc

j for some j

Hence

ω ∈

( ∞⋃
i=1

Bc
i

)c
⇐⇒ ω 6∈ Bc

j for all j ⇐⇒ ω ∈
∞⋂
i=1

Bi
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Cumulative distribution functions

Proof of Lemma

Hence

P

( ∞⋂
i=1

Bi

)
= P

(( ∞⋃
i=1

Bc
i

)c)
= 1− P

( ∞⋃
i=1

Bc
i

)

As Bc
1 ⊂ Bc

2 ⊂ Bc
3 because B1 ⊃ B2 ⊃ B3 · · ·

we can use part (i) to deduce

P

( ∞⋂
i=1

Bi

)
= 1− lim

n→∞
P(Bc

n) = lim
n→∞

1− P(Bc
n) = lim

n→∞
P(Bn).
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Cumulative distribution functions

We are now ready to prove the rest of the Theorem.

Proof of (iv): FX(x) is right-continuous at x

Let xn ↓ x

-

x

x1x2xn . . .

Define

Bn = {ω : X(ω) ≤ xn}, n = 1, 2, . . . ,

B = {ω : X(ω) ≤ x}.

Then B1 ⊃ B2 ⊃ . . . and, I claim,

∩∞n=1 Bn = B.
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Cumulative distribution functions SELF STUDY SLIDE

Proof of the claim that ∩∞n=1 Bn = B.

(a) Suppose ω ∈ B,

then X(ω) ≤ x ≤ xn for all n

so ω ∈ Bn for all n

and ω ∈ ∩∞n=1Bn.

(b) Suppose ω ∈ ∩∞n=1Bn,

then X(ω) ≤ xn for all n

therefore X(ω) ≤ limn→∞ xn = x

so ω ∈ B.

Thus, the claim is proved.
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Cumulative distribution functions SELF STUDY SLIDE

Now we use Lemma (ii).

Since B1 ⊃ B2 ⊃ . . . ,

P{∩∞n=1 Bn} = lim
n→∞

P(Bn) (3)

The RHS of (3) is

lim
n→∞

P(X ≤ xn) = lim
n→∞

FX(xn).

The LHS of (3) is

P(B) = P(X ≤ x) = FX(x).

So we have limn→∞ FX(xn) = FX(x), as required.

Proofs of (ii) and (iii): see Problem Sheet 2.
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Where we are Lecture 4

I Introduction – An example of a non-discrete probability space

II Random variables and cumulative distribution functions

II.a Probability density functions

II.b Expectation and variance

II.c Independence of random variables

II.d Cumulative distribution functions

In this lecture, we continue with section II.d.
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Cumulative distribution functions

Example

A discrete random variable

Let X be the number of Hs in 4 tosses of a fair coin.

x P(X = x)

0 1/16

1 4/16

2 6/16

3 4/16

4 1/16

The CDF is defined as

FX(x) = P(X ≤ x), x ∈ R.
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Coin tossing example

The CDF is FX(x) = P(X ≤ x), x ∈ R.

FX(x) =



0 for x < 0

1/16 for 0 ≤ x < 1

5/16 for 1 ≤ x < 2

11/16 for 2 ≤ x < 3

15/16 for 3 ≤ x < 4

1 for x ≥ 4
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Coin tossing example

The CDF is FX(x) = P(X ≤ x), x ∈ R.

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

x

F
X
(x)

CDF of number of Hs in 4 coin tosses

°
• °

• °

• °

• °
•

The size of the jump at x is P(X = x), for x = 0, 1, 2, 3 and 4.
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Cumulative distribution functions

Example

A continuous random variable

Scrat the squirrel buries an acorn in a 1 metre square patch
of earth.

Scrat chooses the location uniformly over the square:

Define co-ordinates in the range 0 to 1.

Then, for any set A ⊂ [0, 1]× [0, 1],

P(Acorn is buried in area A) = Area(A).

Let Y be the distance from the acorn to the border of the square.

Question: What is the CDF of the random variable Y ?
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Buried acorn example

Answer: The CDF of Y is See calculations on board

FY (y) =


0 for y < 0

4y(1− y) for 0 ≤ y ≤ 1/2

1 for y > 1/2

0 0.25 0.5

0

0.2

0.4

0.6

0.8

1

y

F
Y
(y)

CDF of distance from acorn to border
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Relating the PDF and CDF

We restrict attention here to the case of continuous RVs.

Recalling the definition of a PDF, the following relationship holds
between the CDF FX(x) and PDF fX(x)

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du.

So, by the fundamental theorem of calculus,

fX(x) =
d

dx
FX(x). (4)

Note: To be precise, property (4) holds where fX(x) is continuous.

See calculations on board
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Buried acorn example

With Y = The distance from the acorn to the border of the square,

we found the CDF

FY (y) =


0 for y < 0

4y − 4y2 for 0 ≤ y ≤ 1/2

1 for y > 1/2.

Differentiating with respect to y, we find the PDF is

fY (y) =


0 for y < 0

4− 8y for 0 < y < 1/2

0 for y > 1/2.
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Buried acorn example

We did not define the PDF at y = 0 or y = 1/2.

0 0.25 0.5

0

0.2

0.4

0.6

0.8

1

y

F
Y
(y)

CDF of distance from acorn to border

We cannot differentiate FY (y) at y = 0.

Although the form of F changes at y = 1/2, it does have a
derivative there — of zero.

However, we can define fY (0) and fY (1/2) arbitrarily — since this
will not affect any probabilities

P(a ≤ Y ≤ b) =

∫ b

a
fY (y) dy.

Andreas Kyprianou Lecture 4



Buried acorn example

Let us find P(Y ≥ 1/4) in two ways:

(a) Using the CDF

See calculations on board

(b) Using the PDF

See calculations on board
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Expressing P(X < a)

Definition

If F is a CDF and a ∈ R, we define

F (a−) = lim
n→∞

F (an)

where {an} is a sequence such that an ↑ a.

Here, an ↑ a means that {an} is an increasing sequence with

an < a for all n and limn→∞ an = a.
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Expressing P(X < a) SELF STUDY SLIDE

Lemma

For any random variable X and a ∈ R,

P(X < a) = FX(a−).

Proof

Check in your own time:

Let an ↑ a.

Then

P(X < a) = P [∪∞n=1 {X ≤ an} ]

= lim
n→∞

P (X ≤ an)

= FX(a−).
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Where we are Lecture 5

I Introduction – An example of a non-discrete probability space

II Random variables and cumulative distribution functions

III Important families of continuous random variables

III.a The uniform distribution

III.b The normal distribution

III.c The exponential distribution

III.d Some other families of continuous random variables

In the next four lectures, we shall explore examples of distributions.

Today, we shall consider the uniform distribution and make a start
on the normal distribution.
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Terminology

By the distribution of a random variable, we mean

for a discrete RV:

its probability mass function,

for a continuous RV:

its PDF.

Alternatively, the CDF specifies a RV’s distribution in both the
discrete and continuous cases.
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III.a The uniform distribution

Definition

The RV X has a uniform distribution on (a, b), denoted

X ∼ Unif(a, b) or X ∼ U(a, b),

if it has PDF

fX(x) =


1
b−a a < x < b,

0 otherwise.

The uniform distribution provides a model for an observation which
must lie between a and b, and for which all parts of this range are
equally likely.

It is the archetypal “random” distribution.
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CDF of the uniform distribution

The CDF of a Unif(a, b) RV is given by

FX(x) =

∫ x

−∞
fX(u) du =

∫ x

a

1

b− a
du

=
x− a
b− a

for a ≤ x ≤ b.

So, for the whole range of x,

FX(x) =


0 if x < a

x−a
b−a if a ≤ x ≤ b,

1 if x > b.

a b

0

0.2

0.4

0.6

0.8

1

x

F
X
(x)

CDF of Unif(a,b) distribution
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The uniform distribution

Lemma

Let U ∼ Unif(0, 1) and

X = a+ (b− a)U,

where a ∈ R, b ∈ R and a < b.

Then

X ∼ Unif(a, b).

Proof

See calculations on board

Andreas Kyprianou Lecture 5



Mean and variance of a Unif(0, 1) RV

Let U ∼ Unif(0, 1). Then,

E(U) =

∫ ∞
−∞

u fU (u)du =

∫ 1

0
u 1 du =

1

2
.

Also,

E(U2) =

∫ ∞
−∞

u2 fU (u)du =

∫ 1

0
u2 1 du =

1

3
,

so

Var(U) = E(U2)− [E(U)]2 =
1

3
−
(

1

2

)2

=
1

12
.
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Mean and variance of a Unif(a, b) RV

If X ∼ Unif(a, b), we can write this RV as

X = a+ (b− a)U,

where U ∼ Unif(0, 1).

Hence,

E(X) =
1

2
(a+ b),

Var(X) =
(b− a)2

12
.

See calculations on board
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Example of a uniform RV

A stick of length 50cm is broken in two at a random point,
uniformly distributed along the stick.

Find the distribution of the longer piece of the stick.

See calculations on board
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III.b The normal distribution

−1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

x

f
X
(x)

PDF of a normal distribution

The normal or “Gaussian” distribution is a common choice for
modelling experimental data.

The normal distribution arises in theory as the limiting distribution
of the sum of a large number of independent RVs.
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PDF of the normal distribution

   
0

0.1

0.2

0.3

0.4

0.5

x

f
X
(x)

PDF of a normal distribution

µ−σ µ µ+σ

About 68% of the
N(µ, σ2) distribution lies
between µ−σ and µ+σ,

about 95% lies between
µ− 2σ and µ+ 2σ.

Definition

The RV X has a normal distribution with mean µ and variance σ2,
denoted X ∼ N(µ, σ2), if it has PDF

fX(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, x ∈ R.

We shall see this does indeed imply mean µ and variance σ2.
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PDF of the normal distribution

Definition

The random variable Z is said to be standard normal if it follows
a N(0, 1) distribution.

Thus, if Z is a standard normal RV, it has PDF

fZ(z) =
1√
2π

exp

{
−z2

2

}
, z ∈ R.

It is implicit in this definition of the PDF of a N(0, 1) RV that∫ ∞
−∞

1√
2π

exp

{
−z2

2

}
dz = 1.

This is true, although we shall not prove it here.
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Where we are Lecture 6

I Introduction – An example of a non-discrete probability space

II Random variables and cumulative distribution functions

III Important families of continuous random variables

III.a The uniform distribution

III.b The normal distribution

III.c The exponential distribution

III.d Some other families of continuous random variables

Today, we continue to look at the normal distribution.
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The normal distribution

Proposition

Suppose X ∼ N(µ, σ2) and Y = aX + b, where a, b ∈ R, a 6= 0.

Then
Y ∼ N(aµ+ b, a2 σ2).

Corollary

If X ∼ N(µ, σ2), then X − µ ∼ N(0, σ2) and

Z =
X − µ
σ

∼ N(0, 1).
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CDF of the normal distribution

Notation

The CDF of the standard normal distribution is denoted by Φ(z).

It is equal to

Φ(z) =

∫ z

−∞

1√
2π

e−u
2/2 du =

∫ z

−∞
φ(u) du,

where φ is used to denote the standard normal PDF.

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

PDF of a normal distribution
(z)

zz

The area under the

curve to the left of z

is the CDF Φ(z).

By symmetry, Φ(−z) = 1− Φ(z) for z ∈ R.
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Mean and variance of a N(0, 1) RV

We use the fact that∫ ∞
−∞

1√
2π

exp

{
−z2

2

}
dz = 1.

See calculations on board

Let Z ∼ N(0, 1).

Then,

E(Z) =

∫ ∞
−∞

z
1√
2π

exp

{
−z2

2

}
dz

=
1√
2π

[
− exp

{
−z2

2

}]∞
−∞

= 0.
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Mean and variance of a N(0, 1) RV

With Z ∼ N(0, 1),

E(Z2) =

∫ ∞
−∞

z2 1√
2π

exp

{
−z2

2

}
dz

=

[
−1√
2π

z exp

{
−z2

2

}]∞
−∞
−
∫ ∞
−∞

(
−1√
2π

)
exp

{
−z2

2

}
dz

= 0 + 1 = 1.

Here, we have used integration by parts:∫ b

a
u(z) v′(z) dz = [u(z) v(z)]ba −

∫ b

a
u′(z) v(z) dz

with u(z)=z and v(z)=− exp(−z2/2), so v′(z) = z exp(−z2/2).
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Mean and variance of normal RVs

For Z ∼ N(0, 1),

Var(Z) = E(Z2)− (E(Z))2 = 1− 02 = 1.

Now consider X ∼ N(µ, σ2).

We can write X = µ+ σ Z, where Z ∼ N(0, 1).

Thus,

E(X) = µ+ σ E(Z) = µ

and

Var(X) = σ2 Var(Z) = σ2.

So we do have mean µ and variance σ2.

Andreas Kyprianou Lecture 6



The deMoivre-Laplace Theorem

We state this theorem without proof.

Theorem

Let 0 < p < 1 and Sn ∼ Binom(n, p).

Then, for any a ∈ R,

P

(
Sn − np√
np(1− p)

≤ a

)
→ Φ(a) as n→∞.

Note that (Sn − np)/
√
np(1− p) has mean zero and variance one.
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Application of the deMoivre-Laplace Theorem

Example

A new diet is designed to reduce cholesterol levels.

A group of 200 subjects with high cholesterol are put into pairs
and one in each pair is randomly chosen to receive the new diet.

In 65 of the 100 pairs, the patient on the new diet shows the
greater reduction in cholesterol level.

Let X be the RV denoting the number of pairs in which the
patient on the new diet has the greater improvement.

If the new diet has no benefit, then X ∼ Binom (100, 0.5) and,
according to the deMoivre-Laplace Theorem, we can treat

X − 100× 0.5√
100× 0.5× 0.5

as approximately N(0, 1).
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Application of the deMoivre-Laplace Theorem

Calculating probabilities for the case X ∼ Binom (100, 0.5),

P(X ≥ 65) = P

(
X − 100× 0.5√
100× 0.5× 0.5

≥ 65− 100× 0.5√
100× 0.5× 0.5

)

≈ P(Z > 3.0) = 1− Φ(3.0) = 0.00135,

where Z denotes a N(0, 1) random variable.

The value of Φ(3.0) is found by the R command pnorm().

Since there is only a small probability of such a high value of X if
the new diet offers no advantage, we may conclude that the new
diet has at least some beneficial effect.
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Continuity correction

Using the deMoivre-Laplace theorem, we approximate the
distribution of X ∼ Binom (n, p) by that of a normal RV

Y ∼ N(np, np(1− p)).

Since X takes integer values, it it is tricky to match its distribution
to that of the continuous RV Y .

We can think of X = x for the discrete X as corresponding to
Y ∈ (x− 0.5, x+ 0.5) for the continuous Y .

See calculations on board

Consequently, we match the events

X ≤ x and Y ≤ x+ 0.5

and we match

X ≥ x and Y ≥ x− 0.5.
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Continuity correction

Applying this idea in making a normal approximation to a binomial
probability is known as making a “continuity correction”.

Using the continuity correction in our example we obtain:

P(X ≥ 65) = P(X > 64.5)

= P

(
X − 100× 0.5√
100× 0.5× 0.5

>
64.5− 100× 0.5√

100× 0.5× 0.5

)

≈ P(Z > 2.9) = 1− Φ(2.9) = 0.00187.

Without the continuity correction, we obtained the answer 0.00135.

The true probability, using the full binomial calculation, is 0.00176
— so the continuity correction has helped.
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Where we are Lecture 7

I Introduction – An example of a non-discrete probability space

II Random variables and cumulative distribution functions

III Important families of continuous random variables

III.a The uniform distribution

III.b The normal distribution

III.c The exponential distribution

III.d Some other families of continuous random variables

Today, we shall learn about the exponential distribution.
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III.c The exponential distribution

Definition

The RV X has an exponential distribution with rate parameter
λ (> 0), denoted Exp(λ), if it has PDF

fX(x) =

λ exp{−λx} x ≥ 0,

0 otherwise.

Uses of the exponential distribution

Survival times (medical)

Failure times (industrial)

Waiting times
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

f
X
(x)

x

PDF of an exponential distribution
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CDF of the Exp(λ) distribution

For x < 0, the CDF is FX(x) = 0 .

For x ≥ 0, the CDF is

FX(x) =

∫ x

0
fX(u) du

=

∫ x

0
λ exp{−λu} du

= [− exp{−λu} ]x0

= 1− exp{−λx}.

Note this implies FX(x)→ 1 as x→∞.

So, we have checked that the PDF does integrate to one.
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Mean and variance of an Exp(λ) RV

If X ∼ Exp(λ),

E(X) =
1

λ
,

E(X2) =
2

λ2
.

Hence,

Var(X) = E(X2)− [E(X)]2 =
1

λ2
.

See calculations on board
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The memoryless property of the exponential distribution

Suppose X ∼ Exp(λ) and consider the conditional probability that
X > t+ s given that X > t, where t > 0 and s > 0.

Recall the definition of conditional probability,

P(A |B) =
P(A and B)

P(B)
.

So,

P{X > t+ s |X > t} =
P(X > t+ s and X > t)

P(X > t)

=
P(X > t+ s)

P(X > t)
=

1− FX(t+ s)

1− FX(t)

=
exp{−λ (t+ s)}

exp{−λ t}
= exp{−λ s}.
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The memoryless property of the exponential distribution

Since
P{X > t+ s |X > t} = exp{−λ s}

does not depend on t, we say the exponential distribution is
memoryless.

Example

An angler knows that the waiting time (in minutes) before he
catches a fish follows an Exp(0.02) distribution.

How long does he have to wait to have a probability of 0.5 of
catching a fish?

Suppose he has been waiting 30 minutes and not yet caught a fish,
how much longer does he need to wait to have a 0.5 probability of
catching a fish?

See calculations on board
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The “hazard rate” of the exponential distribution

Definition

The hazard rate at time t of a survival time distribution is

h(t) = lim
δt ↓ 0

1

δt
P{X ∈ (t, t+ δt] |X > t},

where X is a RV following the specified distribution.

This can be viewed as the instantaneous rate of failure at time t,
given survival up to time t.

The hazard rate is a very natural property of a lifetime distribution.

Risks from particular hazards are often expressed in terms of a
hazard rate: for example, in the statement

“The rate of incidence of lung cancer is higher by a
factor n for smokers than for non-smokers”.
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The hazard rate of a survival distribution

If fX is continuous at t,

P{X ∈ (t, t+ δt] and X > t} = P{X ∈ (t, t+ δt]} ≈ fX(t) δt.

Also,

P(X > t) = 1− FX(t).

Thus, we have

h(t) = lim
δt→0

1

δt
P{X ∈ (t, t+ δt] |X > t},

= lim
δt→0

1

δt

P{X ∈ (t, t+ δt]}
1− FX(t)

,

= lim
δt→0

P{X ∈ (t, t+ δt]}
δt

1

1− FX(t)
=

fX(t)

1− FX(t)
.
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The “hazard rate” of the exponential distribution

For an exponential RV, X ∼ Exp(λ),

h(t) =
fX(t)

1− FX(t)
=

λ exp{−λ t}
exp{−λ t}

= λ.

The constant hazard rate is in keeping with the memoryless
property.

Working in the other direction, suppose we know a positive RV
follows a continuous, “memoryless” distribution, and so has a
constant hazard rate.

What distribution does this RV follow?
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The “hazard rate” of the exponential distribution

Let X be a positive and continuous RV with hazard rate h(t) = k.

Then,
fX(t)

1− FX(t)
= k,

∫ x

0

fX(t)

1− FX(t)
dt =

∫ x

0
k dt,

and
[− log{1− FX(t)} ]x0 = k x.

It follows that
− log{1− FX(x)} = k x

and
FX(x) = 1− exp(−k x),

so X is an Exp(k) random variable — which is why I referred
to k as the “rate parameter”.
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Where we are Lecture 8

I Introduction – An example of a non-discrete probability space

II Random variables and cumulative distribution functions

III Important families of continuous random variables

III.a The uniform distribution

III.b The normal distribution

III.c The exponential distribution

III.d Some other families of continuous random variables

Today, we shall learn about the Gamma and Weibull distributions.

Andreas Kyprianou Lecture 8



III.d The Gamma distribution

First, we need to define the Gamma function.

Definition

The Gamma function is defined for t > 0 as

Γ(t) =

∫ ∞
0

xt−1 e−x dx.

Note that

Γ(t+ 1) =

∫ ∞
0

xt e−x dx

=
[
−xt e−x

]∞
0

+

∫ ∞
0

t xt−1 e−x dx

= tΓ(t) = t (t− 1) Γ(t− 1) = . . . .
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The Gamma function

For t = 1,

Γ(1) =

∫ ∞
0

e−x dx = 1.

For integer values of t, Γ(t+ 1) = tΓ(t) and Γ(1) = 1 imply

Γ(t) = (t− 1)!

For t = 1/2,

Γ(1/2) =

∫ ∞
0

x−1/2e−x dx =
√
π

— to see this, make a change of variable to y =
√

2x and use∫ ∞
0

1√
2π

exp(−y2/2) dy =
1

2
.
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The Gamma distribution

Definition

The RV X has a Gamma distribution with parameters λ and k
(λ > 0, k > 0), denoted Gamma (λ, k), if it has PDF

fX(x) =


1

Γ(k) λ
k xk−1 exp{−λx} x ≥ 0,

0 otherwise.

We can check:∫ ∞
0

fX(x) dx =

∫ ∞
0

1

Γ(k)
λk xk−1 exp{−λx} dx

=

∫ ∞
0

1

Γ(k)
uk−1 exp{−u} du = 1

— substituting u = λx, with “du = λ dx”.
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Mean and variance of the Gamma (λ, k) distribution

If X ∼ Gamma (λ, k),

E(X) =
k

λ

E(X2) =
(k + 1) k

λ2

Hence,

Var(X) = E(X2)− [E(X)]2 =
(k + 1) k

λ2
−
{
k

λ

}2

=
k

λ2

See calculations on board
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Properties of the Gamma distribution

Scaling

X ∼ Gamma (λ, k) ⇒ Y = cX ∼ Gamma (λ/c, k).

Proof.

See calculations on board

The parameter λ serves to scale the Gamma distribution, but the
mean is inversely proportional to λ.

So, the role of λ is similar to that of the rate parameter in the
exponential distribution — and we shall see more of a connection
in due course.
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Shape of the Gamma distribution

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

Gamma(0.5,k) PDFs
f
X

(x)

x

k=1/2
k=1
k=2
k=3

The parameter k determines the shape of the Gamma distribution.
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Relation between the Gamma and exponential distributions

Note that the Gamma (λ, 1) distribution has density

fX(x) = λ e−λx for x ≥ 0,

and so is an Exp(λ) distribution.

We state but do not prove here that:

If X1, . . . , Xk are independent Exp(λ) RVs, then

X1 + . . .+Xk ∼ Gamma (λ, k).

Hence, for integers k1 and k2, if Y1 ∼ Gamma (λ, k1) and

Y2 ∼ Gamma (λ, k2) are independent RVs, then

Y1 + Y2 ∼ Gamma (λ, k1 + k2).

(Express Y1 and Y2 as sums of independent Gamma (λ, 1) RVs.)
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Relation between the Gamma and normal distributions

We state but do not prove here that:

1. If X ∼ N(0, 1), then X2 ∼ Gamma (1
2 ,

1
2).

2. If X1, . . . , Xk are independent N(0, 1) RVs, then

X2
1 + . . .+X2

k ∼ Gamma

(
1

2
,
k

2

)
— this is also known as the χ2

k distribution, or χ2 (chi squared)
distribution on k degrees of freedom.

Thus, if X1 and X2 are independent N(0, 1) RVs, X2
1 +X2

2 is

the sum of two independent Gamma (1
2 ,

1
2) RVs, so

X2
1 +X2

2 ∼ Gamma

(
1

2
, 1

)
∼ Exp

(
1

2

)
.
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The Weibull distribution

Definition

The RV X has a Weibull distribution with parameters λ and β,
denoted Weib(λ, β), if it has PDF

fX(x) =

λβ x
β−1 exp{−λxβ} x ≥ 0,

0 otherwise.

The CDF of the Weib(λ, β) distribution is

FX(x) =

0 x < 0,

1− exp{−λxβ} x ≥ 0.
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The Weibull distribution

The hazard rate of the Weibull distribution at time t is

h(t) =
fX(t)

1− FX(t)
=

λβ tβ−1 exp{−λ tβ}
exp{−λ tβ}

= λβ tβ−1.

The value of β shapes the hazard rate function h(t).

For β = 1, h(t) is constant and the Weib(λ, β) distribution is
also the Exp(λ) distribution,

For β > 1, h(t) increases with t — old items are more likely to
fail than new ones,

For β < 1, h(t) decreases with t — old items are less likely to
fail than new ones.
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Where we are Lecture 9

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

IV.a Joint PDFs, marginal distributions and independence

IV.b Conditional PDFs

IV.c More on expectation

IV.d Covariance

Today, we start on joint distributions and marginal distributions.
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IV.a Joint PDFs

The joint distribution for discrete RVs is easily defined.

As an example, suppose we roll a die and set

Y = Score shown on the die.

Then we toss a coin once if Y is odd and twice if Y is even, and set

X = Number of Heads obtained.

The joint distribution of (X,Y ) is given by the table of

probabilities P(X = x and Y = y):

y
1 2 3 4 5 6

0 1/12 1/24 1/12 1/24 1/12 1/24

x 1 1/12 1/12 1/12 1/12 1/12 1/12

2 0 1/24 0 1/24 0 1/24
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Joint PDFs

With continuous RVs, we need a multi-dimensional version of the
probability density function that we have seen for a single RV.

We start by considering just two RVs, X and Y say.

The joint PDF needs to be able to capture connections between
the RVs X and Y , as seen in the previous discrete example.

Two RVs may vary together in a systematic way. E.g.,

X = Height, Y = Weight of the same individual.

Possible values of one RV may depend on the value of the other.

E.g., Y ≤ X if

X = Time spent working on Example Sheets,

Y = Time spent working on MA10212 Example Sheets.

As a preliminary, we need to discuss double integrals.
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Double integrals
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d

g(x,y)

Consider a function g: Q→ R, where Q = (a, b)× (c, d) ⊂ R2.

We define∫ ∫
Q
g(x, y) dy dx =

∫ b

a

[∫ d

c
g(x, y)dy

]
dx =

∫ d

c

[∫ b

a
g(x, y)dx

]
dy.
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Double integrals
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g(x,y)

The double integral represents the limit of a sum of volumes under
the surface g(x, y) — as the grid becomes finer and finer.

The order of integration — over x first or over y first —
corresponds to the order of summation of these volumes.

For a well-behaved function g, the answer is the same either way.
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Double integrals

Example
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g(x,y)

Q = (0, 2)× (0, 1) and

g(x, y) =
3

16
x2 +

1

2
y.
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Double integrals

With Q = (0, 2)× (0, 1) and g(x, y) = 3
16 x

2 + 1
2 y,

∫ ∫
Q
g(x, y) dy dx =

∫ 2

0

{∫ 1

0

(
3

16
x2 +

1

2
y

)
dy

}
dx = 1.

See calculations on board

Exercise: Check you get the same answer by writing this double
integral as

∫ ∫
Q
g(x, y) dx dy =

∫ 1

0

{∫ 2

0

(
3

16
x2 +

1

2
y

)
dx

}
dy

and integrating with respect to x first, then with respect to y.
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Double integrals

We can allow the region of integration to be something other than

a rectangle (a, b)× (c, d).

Example

Consider

T = {(x, y): 0 ≤ y ≤ x ≤ 1}

and

g(x, y) = 2 e−x e−2y.

Find ∫ ∫
T
g(x, y) dx dy.
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Double integrals

0 0.5 1 1.5
0

0.5

1

1.5

x

y

T = { (x,y): 0 ≤ y ≤ x ≤ 1 }

T

y=x

or

0 0.5 1 1.5
0

0.5

1

1.5

x

y

T = { (x,y): 0 ≤ y ≤ x ≤ 1 }

T

y=x

Exercise: Evaluate the integral of g(x, y) over T by writing∫ ∫
T
g(x, y) dx dy =

∫ 1

0

{∫ x

0
g(x, y) dy

}
dx = . . .

and also by∫ ∫
T
g(x, y) dx dy =

∫ 1

0

{∫ 1

y
g(x, y) dx

}
dy = . . . .
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Joint distribution for continuous RVs

Definition

We say X and Y are jointly continuous RVs if there exists a
function fX,Y (x, y): R2 → [0,∞) such that for any region A ⊂ R2,

P{(X,Y ) ∈ A} =

∫ ∫
A
fX,Y (x, y) dy dx.

The function fX,Y (x, y) is called the joint PDF of X and Y .

Example

fX,Y (x, y) =

{
3
16 x

2 + 1
2 y if 0 < x < 2 and 0 < y < 1,

0 otherwise.

The function fX,Y (x, y) is positive everywhere and we have seen
that it integrates to 1.
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Marginal distributions

Proposition

If X and Y have joint PDF fX,Y (x, y), then X and Y have PDFs

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy and fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

Here, fX(x) and fY (y) are called the marginal PDFs of X and Y .

Proof.

P(a ≤ X ≤ b) = P(a ≤ X ≤ b and −∞ < Y <∞)

=

∫ b

a

∫ ∞
−∞

fX,Y (x, y) dy dx =

∫ b

a
fX(x) dx

for fX(x) as defined above. So fX(x) is the PDF of X.

The proof that fY (y) is the PDF of Y follows similarly.
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Marginal distributions

Example

Consider the joint PDF

fX,Y (x, y) =

{
3
16 x

2 + 1
2 y if 0 < x < 2 and 0 < y < 1,

0 otherwise.

The marginal PDF of X is as follows:

fX(x) = 0 for x ≤ 0 or x ≥ 2,

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ 1

0

(
3

16
x2 +

1

2
y

)
dy

=

[
3

16
x2 y +

1

4
y2

]1

0

=
3

16
x2 +

1

4
for 0 < x < 2.
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Marginal distributions

For the same joint PDF,

fX,Y (x, y) =

{
3
16 x

2 + 1
2 y if 0 < x < 2 and 0 < y < 1,

0 otherwise,

the marginal PDF of Y is:

fY (y) = 0 for y ≤ 0 or y ≥ 1,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 2

0

(
3

16
x2 +

1

2
y

)
dx

=

[
x3

16
+

1

2
x y

]2

0

=
1

2
+ y for 0 < y < 1.
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Where we are Lecture 10

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

IV.a Joint PDFs, marginal distributions and independence

IV.b Conditional PDFs

IV.c More on expectation

IV.d Covariance

Today, we consider independence of two or more RVs in terms of

their joint PDF and marginal PDFs.
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IV.a Independence

Definition

The joint CDF of RVs X and Y is the function FX,Y : R2 → [0, 1]
defined by

FX,Y (x, y) = P(X ≤ x and Y ≤ y).

Recall that the marginal CDFs are

FX(x) = P(X ≤ x) and FY (y) = P(Y ≤ y).

Definition (from Lecture 3)

The RVs X and Y are independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x) P(Y ≤ y) for all x ∈ R, y ∈ R,

i.e., if

FX,Y (x, y) = FX(x)FY (y) for all x ∈ R, y ∈ R.
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Independence and joint PDFs

Theorem

The jointly continuous RVs X and Y are independent if and only if

fX,Y (x, y) = fX(x) fY (y) for all x ∈ R, y ∈ R. (5)

Note: Strictly speaking, we should allow fX,Y , fX and fY to fail
to satisfy (5) on a finite set of points — since changing the value
of a density at a point does not affect the probability of any event.

Proof.

(i) We need to show that (5) implies independence, according to
the definition in terms of FX,Y , FX and FY .

(ii) We also need to show that the definition of independence, in
terms of FX,Y , FX and FY , implies (5).

See calculations on board
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Independence of RVs

Example

Consider the joint PDF

fX,Y (x, y) =

{
2 e−x e−2y if x > 0 and y > 0,

0 otherwise.

Integrating over y gives

fX(x) =

{
e−x x > 0

0 x ≤ 0

and integrating over x gives

fY (y) =

{
2 e−2y y > 0

0 y ≤ 0.
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Independence of RVs

Example, continued

Since

fX,Y (x, y) = fX(x) fY (y) for all x ∈ R, y ∈ R,

the Theorem tells us that X and Y are independent.

By inspection, the marginal distribution of X is Exp(1) and the
marginal distribution of Y is Exp(2).

Thus, the pair (X,Y ) is made up of two independent exponential
RVs, with different rate parameters.

In fact, we can see that fX,Y (x, y) factorises into one term
involving x only and another term involving y only — and this is
enough to imply independence of X and Y .
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Independence of RVs

Example

Consider the joint PDF

fX,Y (x, y) =

{
3
16 x

2 + 1
2 y if 0 < x < 2 and 0 < y < 1,

0 otherwise.

Integrating over y gives

fX(x) =

{
3
16 x

2 + 1
4 0 < x < 2

0 x ≤ 0 or x ≥ 2

and integrating over x gives

fY (y) =

{
1
2 + y 0 < y < 1

0 y ≤ 0 or y ≥ 1.
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Independence of RVs

Example, continued
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f
X,Y

(x,y)

The Theorem tells us that X and Y are not independent, since

fX,Y (x, y) 6= fX(x) fY (y) for all x ∈ R, y ∈ R.

This is also evident from the form of fX,Y (x, y) and from the plot.
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More than two RVs

Definition

We say X1, . . . , Xn are jointly continuous RVs if there exists a

function fX1,...,Xn(x1, . . . , xn): Rn → [0,∞) such that for any

region A ⊂ Rn,

P{(X1, . . . , Xn) ∈ A} =∫
. . .

∫
A
fX1, ... ,Xn(x1, . . . , xn) dx1 . . . dxn.

The function fX1,...,Xn(x1, . . . , xn) is called the joint PDF

of X1, . . . , Xn.

If X1, . . . , Xn are independent,

fX1,...,Xn(x1, . . . , xn) =

n∏
i=1

fXi(xi).
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More than two RVs

Example

Suppose X1, . . . , Xn are independent RVs, each following

an Exp(λ) distribution.

Then

fX1, ... ,Xn(x1, . . . , xn) =

n∏
i=1

fXi(xi)

=

λn exp(−λ
∑n

i=1 xi) if x1 > 0, . . . , xn > 0,

0 otherwise.
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Properties of joint CDFs

Theorem

If X and Y are two RVs with joint CDF FX,Y (x, y), then

(i) For all x ∈ R,

lim
y→∞

FX,Y (x, y) = FX(x) and lim
y→−∞

FX,Y (x, y) = 0.

(ii) For all y ∈ R,

lim
x→∞

FX,Y (x, y) = FY (y) and lim
x→−∞

FX,Y (x, y) = 0.

(iii) limx, y→∞ FX,Y (x, y) = 1.

(iv) If xn ↓ x and yn ↓ y, limn→∞ FX,Y (xn, yn) = FX,Y (x, y).

(v) For every a < b and c < d,

FX,Y (b, d)− FX,Y (a, d)− FX,Y (b, c) + FX,Y (a, c) ≥ 0.
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Properties of joint CDFs SELF STUDY SLIDE

Proof

The methods used here are similar to those used in Lecture 3 to
prove properties of the CDF of a single RV.

In doing this, we also call on the Lemma from that lecture.

You should check the details fully in your own time.

(i) Pick a sequence yn ↑ ∞, then by part (i) of the Lemma

lim
n→∞

P(X ≤ x, Y ≤ yn) = P (∪∞n=1 {X ≤ x, Y ≤ yn})

= P(X ≤ x) = FX(x).

Now pick a sequence yn ↓ −∞, then by part (ii) of the Lemma

lim
n→∞

P(X ≤ x, Y ≤ yn) = P (∩∞n=1 {X ≤ x, Y ≤ yn})

= P(∅) = 0.
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Properties of joint CDFs SELF STUDY SLIDE

Proof, continued

The proof of (ii) is similar to that of (i) with the roles of X and Y
interchanged.

The proof of (iii) is similar to that of (i) and (ii) but we let both
xn ↑ ∞ and yn ↑ ∞ and note that

∪∞n=1 {X ≤ xn, Y ≤ yn} = Ω.

(iv) We use the fact that

∩∞n=1 {X ≤ xn, Y ≤ yn} = {X ≤ x, Y ≤ y}.

(v) The expression is equal to P(a < X ≤ b, c < Y ≤ d), which is
greater than or equal to zero.
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Where we are Lecture 11

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

IV.a Joint PDFs, marginal distributions and independence

IV.b Conditional PDFs

IV.c More on expectation

IV.d Covariance

Today, we consider the conditional distribution of one continuous

RV given the value of another.
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IV.b Conditional PDFs

Recall the definition of the conditional probability of event A given
event B

P(A |B) =
P(A ∩B)

P(B)
if P(B) > 0.

So, for discrete RVs

P(Y = y |X = x) =
P(Y = y, X = x)

P(X = x)
if PX(x) > 0.

We want a similar function for continuous RVs, which captures
how the value of one RV, X, is affected by that of another RV, Y .

Andreas Kyprianou Lecture 11



Conditional PDFs

Definition

Let X and Y be continuous RVs with joint PDF fX,Y (x, y) and
marginal PDFs fX(x) and fY (y).

For a value x with fX(x) > 0, the conditional PDF of Y given
X = x, written as fY |X(y|x) or fY |X(y |X = x), is

fY |X(y|x) = fY |X(y |X = x) =
fX,Y (x, y)

fX(x)
for y ∈ R.

Similarly, for values y with fY (y) > 0, the conditional PDF of X
given Y = y is

fX|Y (x|y) = fX|Y (x |Y = y) =
fX,Y (x, y)

fY (y)
for x ∈ R.
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Conditional PDFs

Note that fY |X(y|x) is a PDF for Y since it is positive and

∫ ∞
−∞

fY |X(y|x) dy =

∫ ∞
−∞

fX,Y (x, y)

fX(x)
dy

=
1

fX(x)

∫ ∞
−∞

fX,Y (x, y) dy

=
1

fX(x)
fX(x) = 1.

Similarly, fX|Y (x|y) is a PDF for X.

Motivation of this definition:

See calculations on board
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Conditional PDFs

For the distribution of Y given X = x, we can define conditional
probabilities, the conditional CDF, and conditional expectation —
based on the conditional PDF fY |X(y|x).

Conditional probabilities given X = x are of the form

P(a ≤ Y ≤ b |X = x) =

∫ b

a
fY |X(y|x) dy.

The conditional CDF of Y given X = x is

FY |X(y|x) = P(Y ≤ y |X = x) =

∫ y

−∞
fY |X(u|x) du.

The conditional expectation of Y given X = x is

E(Y |X = x) =

∫ ∞
−∞

y fY |X(y|x) dy,

when this integral exists.
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Conditional PDFs

Example

In a large college, 300 students sit exams in History and Geography.

Those scoring highly in one exam tend to do well in the other.
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Conditional PDFs
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Example

Consider the joint PDF

fX,Y (x, y) =

{
3
16 x

2 + 1
2 y if 0 < x < 2 and 0 < y < 1,

0 otherwise.
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Conditional PDFs

Example, continued

In lecture 10, we derived the marginal PDFs for this fX,Y (x, y),

fX(x) =

{
3
16 x

2 + 1
4 0 < x < 2

0 x ≤ 0 or x ≥ 2

and

fY (y) =

{
1
2 + y 0 < y < 1

0 y ≤ 0 or y ≥ 1.

Hence, the conditional PDF for Y when X = x ∈ (0, 2) is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

3x2/16 + y/2

3x2/16 + 1/4
=

3x2 + 8y

3x2 + 4

for 0 < y < 1, and 0 otherwise.
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Conditional PDFs

Example, continued

Similarly, the conditional PDF for X when Y = y ∈ (0, 1) is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

3x2/16 + y/2

1/2 + y
=

3x2 + 8y

8 + 16y

for 0 < x < 2, and 0 otherwise.

It is convenient to define fY |X(y|x) = 0 when fX(x) = 0, i.e., for
x < 0 or x > 2.

Likewise, we set fX|Y (x|y) = 0 for y < 0 or y > 1.
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Conditional PDFs
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The shapes of fX|Y (x|y) and

fY |X(y|x) can be seen in the

2D plot of fX,Y (x, y).

Dividing by fY (y) or fX(x)

scales the conditional PDFs,

so that
∫
fX|Y (x|y)dx = 1

and
∫
fY |X(y|x)dy = 1.
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Conditional PDFs

Suppose we wish to find the probability that Y > 0.5 given that we
know X = 1.5.

We simply calculate

∫ 1

1/2
fY |X

(
y |X =

3

2

)
dy =

∫ 1

1/2

3(3/2)2 + 8y

3(3/2)2 + 4
dy

=
1

43

∫ 1

1/2
27 + 32y dy =

51

86
.
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The multiplication rule

It follows from the definitions of fY |X(y|x) and fX|Y (x|y) that

fX,Y (x, y) = fX(x) fY |X(y|x)

= fY (y) fX|Y (x|y)

whenever fX(x) > 0 and fY (y) > 0.

Recall that X and Y are independent if and only if

fX,Y (x, y) = fX(x) fY (y) for all x ∈ R, y ∈ R.

So the property of independence is equivalent to

fY |X(y|x) = fY (y) for all y ∈ R, for all x such that fX(x) > 0

and to

fX|Y (x|y) = fX(x) for all x ∈ R, for all y such that fY (y) > 0.
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Multiplying conditional probabilities

Example

As part of a arbitration process in the ikh khural the following
division of wealth is agreed:

The Bogd Khan must take a random number X ∼ Unif(0, 1) and
give a fraction X of his gold to Queen Mandukhai.

Queen Mandukhai must take Y ∼ Unif(0, 1) and give a fraction Y
of the gold she received to Chinggis Khan.

Let Z be the fraction of the Bogd Khan’s gold that eventually
passes to Chinggis Khan (so Z = X Y ). Find the PDF of Z.

We have

fX(x) =

{
1 0 < x < 1

0 otherwise,
fZ|X(z|x) =

{
1/x 0 < z < x

0 otherwise.

See calculations on board
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Multiplying conditional probabilities

From fX(x) and fZ|X(z|x), non-zero values of the joint PDF are

fX,Z(x, z) = fX(x) fZ|X(z|x)

= 1 · 1

x
for 0 < x < 1 and 0 < z < x.

Note the triangular

shape of the region

where fX,Z(x, z) > 0.
-

61

1 x

z

�
�
�
�
�

Hence, for 0 < z < 1,

fZ(z) =

∫ 1

z
fX,Z(x, z) dx =

∫ 1

z

1

x
dx = [ log(x) ]1z = − log(z).
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Where we are Lecture 12

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

IV.a Joint PDFs, marginal distributions and independence

IV.b Conditional PDFs

IV.c More on expectation

IV.d Covariance

Today, we return to the Law of the Unconscious Statistician,

we consider expectation of a function of two continuous RVs,

and we tackle the topic of covariance.
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IV.c More on Expectation

Lemma

Suppose X is a continuous RV with P (X ≥ 0) = 1 and

E(X) <∞. Then

E(X) =

∫ ∞
0

P(X ≥ t) dt.

Proof

-

6

x

t

�
�
�
�

E(X) =

∫ ∞
0

x fX(x) dx =

∫ ∞
0

{∫ x

0
dt

}
fX(x) dx.
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Proof of the lemma

Proof, continued

Rearrange the integral and change the order of integration:

-

6

x

t

�
�
�
�
��

⇒

-

6

x

t

�
�
�
�
��

E(X) =

∫ ∞
0

x fX(x) dx =

∫ ∞
0

∫ x

0
fX(x) dt dx

=

∫ ∞
0

∫ ∞
t

fX(x) dx dt =

∫ ∞
0

P(X ≥ t) dt.
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Law of the Unconscious Statistician

Theorem

Suppose X is a continuous RV with PDF fX(x), g: R→ R is a

positive function, and g(X) is a continuous RV.

Then

E[ g(X) ] =

∫ ∞
−∞

g(x) fX(x) dx. (6)

Proof

Since g(X) is a positive, continuous RV, by the lemma,

E[ g(X) ] =

∫ ∞
0

P[ g(X) ≥ t ] dt =

∫ ∞
0

{∫
{x: g(x)≥t}

fX(x) dx

}
dt.

Andreas Kyprianou Lecture 12



Law of the Unconscious Statistician

Proof, continued

E[g(X)] =

∫ ∞
t=0

∫
{x: g(x)≥t}

fX(x) dx dt

=

∫ ∞
x=−∞

∫
{t: 0≤t≤g(x)}

fX(x) dt dx

=

∫ ∞
x=−∞

∫ g(x)

0
fX(x) dt dx

=

∫ ∞
x=−∞

{∫ g(x)

0
dt

}
fX(x) dx =

∫ ∞
−∞

g(x) fX(x) dx.

Andreas Kyprianou Lecture 12



Law of the Unconscious Statistician SELF STUDY SLIDE

The theorem can be extended to the case of a function g which
takes positive and negative values, as long as E(g(X)) is defined.

You should check the details below in your own time.

First, generalise the lemma to a general, continuous RV X.

Lemma

If E(|X|) <∞, then

E(X) = −
∫ 0

−∞
P(X ≤ t) dt+

∫ ∞
0

P(X ≥ t) dt.

Proof

Write

E(X) =

∫ ∞
−∞

x fX(x) dx =

∫ 0

−∞
x fX(x) dx+

∫ ∞
0

x fX(x) dx.
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Law of the Unconscious Statistician SELF STUDY SLIDE

Proof, continued

Apply the argument used to prove the original lemma to show that

∫ 0

−∞
x fX(x) dx = −

∫ 0

−∞
P(X ≤ t)dt.

We already have∫ ∞
0

x fX(x) dx =

∫ ∞
0

P(X ≥ t)dt,

so the result of the new lemma follows.
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Law of the Unconscious Statistician SELF STUDY SLIDE

Applying the new lemma to the continuous RV g(X) gives

E(g(X)) = −
∫ 0

−∞
P(g(X) ≤ t) dt+

∫ ∞
0

P(g(X) ≥ t) dt.

Similar arguments to those used to prove (6) imply the above
expression is equal to

−
∫ ∞
−∞

I[g(x) ≤ 0] (−g(x)) fX(x) dx

+

∫ ∞
−∞

I[g(x) ≥ 0] g(x) fX(x) dx

and the result follows.
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Expectation with two random variables

We now state, without proof, a 2-dimensional version of the Law
of the Unconscious Statistician.

A proof can be constructed following the same steps as in the
1-dimensional case.

Theorem

Suppose X and Y are continuous RVs with joint PDF fX,Y (x, y)

and h: R2 → R is a continuous function.

Then

E[h(X,Y ) ] =

∫ ∞
−∞

∫ ∞
−∞

h(x, y) fX,Y (x, y) dy dx

as long as E(|h(X,Y )|) is defined, i.e., finite.

Andreas Kyprianou Lecture 12



Expectation with two random variables

Proposition

If X and Y are jointly continuous RVs, a ∈ R and b ∈ R, then

E[ aX + b Y ] = aE(X) + bE(Y ).

Proof See calculations on board

Proposition

Suppose X and Y are independent, jointly continuous RVs, and g
and h are functions from R→ R. If the relevant integrals exist,

(i) E[XY ] = E(X) E(Y ),

(ii) E[ g(X)h(Y ) ] = E[g(X)] E[h(Y )].

Proof See calculations on board
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IV.d Covariance

Suppose X and Y are random variables and Var(X) and Var(Y )
both exist.

Definition

The covariance of X and Y is

Cov(X,Y ) = E{ [X − E(X)] [Y − E(Y )] }.

Note that

Cov(X,Y ) = E{ [X − E(X)] [Y − E(Y )] }

= E(X Y )− E(X) E(Y )− E(X) E(Y ) + E(X) E(Y )

= E(X Y )− E(X) E(Y ).

Andreas Kyprianou Lecture 12



Correlation

Definition

The correlation between X and Y is

Corr(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
.
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Properties of covariance and correlation SELF STUDY SLIDE

You should know these properties (proofs are on the Moodle page).

Proposition

(i) Cov(X,X) = Var(X)

(ii) Cov(X,Y ) = Cov(Y,X)

(iii) Cov(aX + b Y, Z) = aCov(X,Z) + bCov(Y,Z)

(iv) Var(aX + b Y ) = a2 V ar(X) + b2 Var(Y ) + 2 a bCov(X,Y )

(v) −1 ≤ Corr(X,Y ) ≤ 1

(vi) Corr(X,Y ) = 1 ⇔ Y = aX + b for some a > 0 and b ∈ R

(vii) Corr(X,Y ) = −1⇔ Y = aX + b for some a < 0 and b ∈ R

(viii) If X and Y are independent, then Cov(X,Y ) = 0 — but

Cov(X,Y ) = 0 does not imply X and Y are independent.
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Where we are Lecture 13

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

V.a Transforming random variables

V.b Applications to simulation

Today, we shall learn about the distribution of a transformation of
a random variable.

We shall then start to look at how transformations can be used in
simulating from tricky looking distributions.
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IV.a Transformations of random variables

Suppose X is a RV and g : R→ R is a function. We know the
distribution of X and we wish to find the distribution of Y = g(X).

If P(a < X < b) = 1, we may consider g : (a, b)→ R.

Example

If X ∼ N(0, 1) and Y = X2, what is the distribution of Y ?

Note that P(0 < Y <∞) = 1.

Take y > 0, then

P(Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √y)

= Φ(
√
y)− Φ(−√y) = Φ(

√
y)− {1− Φ(

√
y)}

= 2 Φ(
√
y)− 1.
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Example: Transformation of a random variable

Example, continued

So, if X ∼ N(0, 1) and Y = X2, the CDF of Y is

FY (y) =

{
2 Φ(
√
y)− 1 y > 0,

0 y ≤ 0.

Now differentiate FY (y) to find the PDF, fY (y). Recall that

Φ(x) =

∫ x

−∞

1√
2π

exp(−u2/2) du =

∫ x

−∞
φ(u) du.

The fundamental theorem of calculus implies that

d

dx
Φ(x) = φ(x) =

1√
2π

exp(−x2/2).
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Example: Transformation of a random variable

Example, continued

Hence, the PDF of Y at y > 0 is

fY (y) =
d

dy
{2 Φ(

√
y)− 1} = 2 Φ′(

√
y)

1

2
√
y

= φ(
√
y)

1
√
y

=
1√
2π

e−y/2 y−1/2,

and fY (y) = 0 for y < 0.

By inspection Y ∼ Gamma (1/2, 1/2), as Γ(1/2) =
√
π implies

fY (y) =


1

Γ(1/2)

(
1
2

)1/2
y−1/2 e−

1
2
y y > 0,

0 y ≤ 0.

The random variable Y is also said to have a χ2
1 distribution.
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The CDF method for finding the distribution of g(X)

The preceding example illustrates a general approach to finding the
CDF and PDF of g(X) from the distribution of X.

(i) Express the event {Y ≤ y} in terms of the RV X.

(ii) Find FY (y), the probability of {Y ≤ y}, from the CDF of X.

(iii) Differentiate FY (y) with respect to y to find the PDF fY (y).
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The transformation formula

Theorem

Let X be a continuous RV with PDF fX(x) and P(a<X<b) = 1.

Suppose g : (a, b)→ R is continuous, strictly increasing and
differentiable.

Then Y = g(X) is a continuous RV with PDF

fY (y) = fX(g−1(y))
d

dy
(g−1(y)).

If we set x = g−1(y), so y = g(x), then we can write

fY (y) = fX(x)
dx

dy
= fX(x)

(
dy

dx

)−1

.

Proof

See calculations on board
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The transformation formula

Example

Let X ∼ Exp(1) and Y =
√
X.

What is the distribution of Y ?

Define the function g(x) =
√
x for x ∈ (0,∞).

Then g(x) : (0,∞)→ (0,∞) is continuous, strictly increasing and
differentiable, and we can apply the theorem.

With x = g−1(y) = y2,
dx

dy
= 2 y

and

fY (y) = fX(x)
dx

dy
= e−x 2 y = 2 y e−y

2
for y > 0.

We recognise this distribution as Y ∼Weib(1, 2).
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Independence of transformed RVs

We state the following theorem without proof.

Theorem

Suppose X and Y are independent RVs and we have functions

g : R→ R and h : R→ R.

Then g(X) and h(Y ) are also independent.
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IV.b Applications of transformed RVs to simulation

There are good methods to simulate independent Unif(0, 1) RVs.

These “pseudo random number” generators lie at the heart of
methods for simulating from more complex distributions.

We can take
U ∼ Unif(0, 1)

then produce a new RV

X = h(U).

Example

Using the function h(u) = − log(1− u) gives values X ∼ Exp(1).

See calculations on board

The next challenge is how to choose the function h to obtain X
following a specified distribution.
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Where we are Lecture 14

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

V.a Transforming random variables

V.b Applications to simulation

We continue to study how transformations can be used in
simulating from a variety of distributions.
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The inverse CDF method for simulation

Suppose we have a way of generating Unif(0, 1) RVs but we wish
to generate a RV from a distribution with CDF G(x).

Consider the case where G(x) is a continuous, strictly increasing
function G : [a, b]→ [0, 1] with G(a) = 0 and G(b) = 1.

For b =∞, we write the function G as G : [a,∞)→ [0, 1).

If also a = −∞, we write G : (−∞,∞)→ (0, 1).

The function G−1 : (0, 1)→ (a, b) is well-defined.

a b

0.2

0.4

0.6

0.8

1
G(x)

x

 

y

G−1(y)

Note that

G(G−1(y)) = y.
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The inverse CDF method for simulation

A key fact:

Suppose the continuous random variable X has CDF G(x), where
G(x) is a continuous, strictly increasing function on [a, b].

Define the random variable Y = G(X) — so X = G−1(Y ).

Then, Y ∼ Unif(0, 1).

Proof

By definition, Y only takes values in the range [0, 1].

For 0 ≤ y ≤ 1,

P(Y ≤ y) = P{G(X) ≤ y}

= P{X ≤ G−1(y)}

= G(G−1(y)) = y. �

Andreas Kyprianou Lecture 14



The inverse CDF method for simulation

Theorem

Suppose G(x) is a continuous, strictly increasing function from

[a, b]→ [0, 1] with G(a) = 0 and G(b) = 1.

Cases a = −∞ and b =∞ are also allowed, as noted above.

Let U ∼ Unif(0, 1) and set X = G−1(U).

Then X is a RV with CDF G(x).

Proof

Since P(0 < U < 1) = 1, X is well-defined with probability 1.

For x ∈ (a, b),

FX(x) = P(X ≤ x) = P(G−1(U) ≤ x)

= P{G(G−1(U)) ≤ G(x)} = P(U ≤ G(x)) = G(x).
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Example of the inverse CDF method

Example

Generate a RV with CDF

G(x) =

{
1− exp{−λx2} x > 0

0 x ≤ 0,

where λ > 0.

See calculations on board

We find

G−1(u) =

√
− log(1− u)

λ
,

so take U ∼ Unif(0, 1) and

X = G−1(U) =

√
− log(1− U)

λ
.
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Another example of the inverse CDF method

Example

Generate a RV with PDF

fX(x) =


1

2
√
x

0 < x < 1

0 otherwise.

Integrate fX to obtain

FX(x) =


0 x ≤ 0
√
x 0 < x < 1

1 x ≥ 1.

We have FX(x) : (0, 1)→ (0, 1) and we see this is continuous and
strictly increasing. We need to find the inverse of FX .
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Another example of the inverse CDF method

Example, continued

We have

FX(x) =


0 x ≤ 0
√
x 0 < x < 1

1 x ≥ 1.

If
u = FX(x) =

√
x,

then

x = u2 = F−1
X (u).

So, by the theorem, we take U ∼ Unif(0, 1) and set X = U2.
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Creating a Cauchy RV: The novice tennis player

Example

A tennis player stands at a point P, 10m from a wall and hits balls
in random directions. The closest point on the wall is C.

��������������

C
•

P
•











�

SSo U

-
X

Denote by U the angle between the ball’s trajectory and a line
parallel to the wall.

Consider cases where 0 < U < π and let X be the distance (in m)
to the right of C that a ball hits the wall.

If U ∼ Unif(0, π), what is the distribution of X?
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The novice tennis player

Express X in terms of U and, hence, find an expression for
P(X ≤ x).

See calculations on board

We obtain

FX(x) =
1

2
+

1

π
tan−1

( x
10

)
for x ∈ R.

Differentiating gives

fX(x) =
1

π

1

10 (1 + x2/102)
for x ∈ R.

The RV X follows a Cauchy distribution.
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The Cauchy distribution

Definition

The RV Y follows a central Cauchy distribution with parameter 1 if

fY (y) =
1

π

1

1 + y2
for y ∈ R.

The RV Y follows a central Cauchy distribution with parameter θ if

fY (y) =
1

π

1

θ (1 + y2/θ2)
for y ∈ R.

We have seen a method to generate a Cauchy random variable:

Take U ∼ Unif(0, π) — e.g., let U be π times a Unif(0, 1) RV.

Then

X = θ tan
(π

2
− U

)
∼ Cauchy (θ).
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The Cauchy distribution

What is the mean of a Cauchy RV with parameter θ ?

See calculations on board

Calculation shows that∫ ∞
−∞

|y|
π (1 + y2)

dy = ∞.

We can (with care) write E(|Y |) =∞.

But E(Y ) is undefined.

Have we seen a previous example of a RV with infinite expectation?
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Where we are Lecture 15

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

VI Sums of random variables

VI.a Mean and variance of sums of RVs

VI.b The Central Limit Theorem

VI.c Distribution of a sum of RVs

VI.d Distribution of a sum of normal RVs

Our next topic is the distribution of a sum of random variables.

We start with the mean and variance of a sum of RVs.
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VI.a Mean and variance of a sum of RVs

Recall that
E(X1 +X2) = E(X1) + E(X2)

and

Var(X1 +X2) = Var(X1) + Var(X2) + 2 Cov(X1, X2).

Proposition

E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi).

Proposition

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n
Cov(Xi, Xj).

See calculations on board
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A sum of independent random variables

Proposition

Suppose X1, . . . , Xn are independent RVs. Then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

Proof.

Since X1, . . . , Xn are independent, we have

Cov(Xi, Xj) = 0 for each pair i and j.

Substituting this in the previous result gives the desired answer.
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Random samples

Definition

Let X1, . . . , Xn be independent RVs from the same distribution.

Then, X1, . . . , Xn are said to be independent and identically

distributed, or i.i.d. for short.

The values taken by these RVs, x1, . . . , xn , are said to form a

random sample from the distribution in question.

Example

An experiment is performed n times, independently. We define

Xi =

{
1 if a certain event occurs in experiment i

0 if the event does not occur in experiment i.

The set of values {x1, . . . , xn} is a random sample from the
Bernoulli(p) distribution, where p is the probability the event
occurs in a particular experiment.

Andreas Kyprianou Lecture 15



VI.b The Central Limit Theorem

In the preceding example, the sum of the Bernoulli RVs is

Sn = X1 + . . . +Xn ∼ Binom(n, p).

It is easy to check that, for a single Bernoulli RV,

E(Xi) = p and Var(Xi) = p (1− p).

Hence, by our earlier results

E(Sn) = n p and Var(Sn) = n p (1− p).

The deMoivre-Laplace theorem tells us that, for large n,
approximately

Sn − n p√
n p (1− p)

∼ N(0, 1).

The Central Limit Theorem is a more general form of this result.
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The Central Limit Theorem

We state without proof:

Theorem

Suppose X1, X2, . . . are i.i.d. RVs with finite expectation and
variance

E(Xi) = µ and Var(Xi) = σ2 > 0 for each i = 1, 2, . . . .

Let Sn = X1 + . . . +Xn. Then, for any a ∈ R,

P

(
Sn − nµ√

nσ2
< a

)
→ Φ(a) as n→∞,

where Φ(x) is the CDF at x of a standard normal distribution.

Previous results imply (Sn − nµ)/
√
nσ2 has mean zero and

variance 1. The Central Limit Theorem gives us the full
information about the shape of this distribution — for large n.
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An illustration of the Central Limit Theorem

Example

Suppose
Xi ∼ Exp(0.2), i = 1, 2, . . . .

We can look at the distribution of one observation Xi by taking
1000 realisations and plotting the histogram.

Suppose, instead, we draw a sample of 5 RVs X1, . . . , X5 and take
their sum. Now repeat this 1000 times and plot the histogram.

We see a distribution whose shape is somewhat like that of a
normal distribution. However, the left hand tail is rather short and
the right hand tail is rather long.

Repeating with sums of 20 or 100 Exp(0.2) RVs, the histograms
look to follow the shape of a normal density closely.
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Histograms of sums of Exp(0.2) RVs
Single Exp(0.2) observations
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Histograms of sums of Weib(1, 0.5) RVs

Single Weibull(1,0.5) observations
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Where we are Lecture 16

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

VI Sums of random variables

VI.a Mean and variance of sums of RVs

VI.b The Central Limit Theorem

VI.c Distribution of a sum of RVs

VI.d Distribution of a sum of normal RVs

We now consider the distribution of the sum of two RVs, finding

the precise PDF of the sum from the RVs’ joint distribution.
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VI.c Distribution of the sum of two RVs

Suppose X and Y are continuous RVs with joint PDF fX,Y (x, y).

Let W = X + Y .

What is the PDF, fW (w), of W ?

First consider the CDF,

P(W ≤ w) = P(X + Y ≤ w).

If we can write this in the form

P(W ≤ w) =

∫ w

−∞
h(v) dv,

then we can deduce fW (w) = h(w).
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Distribution of the sum of two RVs

Let Aw = { (x, y) : x+ y ≤ w }.

Then,

P(W ≤ w) =

∫
Aw

fX,Y (x, y) dy dx

=

∫ ∞
−∞

{∫ w−x

−∞
fX,Y (x, y) dy

}
dx

=

∫ ∞
−∞

{∫ w

−∞
fX,Y (x, v − x) dv

}
dx,

using the substitution v = y + x in the inner integral.

See calculations on board
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Distribution of the sum of two RVs

Re-arrange this equation as

P(W ≤ w) =

∫ ∞
−∞

{∫ w

−∞
fX,Y (x, v − x) dv

}
dx

=

∫ w

−∞

{∫ ∞
−∞

fX,Y (x, v − x) dx

}
dv.

Convolution formula, general case

Comparing the above formula with

P(W ≤ w) =

∫ w

−∞
fW (v) dv,

we can deduce that W = X + Y has PDF

fW (w) =

∫ ∞
−∞

fX,Y (x,w − x) dx.
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The convolution formula for two independent RVs

Convolution formula, independent RVs

If X and Y are independent, continuous RVs, then

their sum W = X + Y has PDF

fW (w) =

∫ ∞
−∞

fX,Y (x,w − x) dx

=

∫ ∞
−∞

fX(x) fY (w − x) dx.

This is known as the “convolution formula”.
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VI.d The sum of two normal random variables

Proposition

If X and Y are independent and

X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ),

then
W = X + Y ∼ N(µX + µY , σ

2
X + σ2

Y ).

Proof: We first consider the case where µX = µY = 0.

Using the convolution formula,

fW (w) =

∫ ∞
−∞

fX(x) fY (w − x) dx

=

∫ ∞
−∞

1√
2πσ2

X

exp

(
−x2

2σ2
X

)
1√

2πσ2
Y

exp

(
−(w − x)2

2σ2
Y

)
dx.
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The sum of two normal random variables

Hence,

fW (w) =
1

2π

1√
σ2
X σ

2
Y

∫ ∞
−∞

exp

(
−1

2

[
x2

σ2
X

+
w2 − 2w x+ x2

σ2
Y

])
dx.

We can re-arrange the terms in the exponential as a quadratic in x
(which involves w) plus a term in w2.

This gives an expression of the form

fW (w) = k

∫ ∞
−∞

exp{−a(x− bw)2 − cw2} dx,

= k e−cw
2

∫ ∞
−∞

exp{−a(x− bw)2} dx,

where k, a, b and c are constants (not involving x or w).
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The sum of two normal random variables

We have

fW (w) = k e−cw
2

∫ ∞
−∞

exp{−a(x− bw)2} dx.

Note that in ∫ ∞
−∞

exp{−a(x− bw)2} dx

the integrand is a multiple of the PDF of a normal RV X with
mean bw, so the answer is a constant which does not involve w.

It follows that fW (w) has the form

fW (w) = h e−cw
2

for a constant h — so W is normally distributed (with mean 0).
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The sum of two normal random variables

Given that W is normally distributed, all that remains is to find

E(W ) and Var(W ).

Using standard results for independent RVs X and Y ,

E(W ) = E(X) + E(Y ) = 0

and

Var(W ) = Var(X) + Var(Y ) = σ2
X + σ2

Y .

Thus, we have

W ∼ N(0, σ2
X + σ2

Y ) = N(µX + µY , σ
2
X + σ2

Y ),

which proves the result for the case µX = µY = 0.
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The sum of two normal random variables SELF STUDY SLIDE

An algebraic derivation giving E(W ) and Var(W ) is possible

— check this in your own time.

We have

fW (w) =
1

2π

1√
σ2
Xσ

2
Y

∫ ∞
−∞

exp

(
−1

2

[
x2

σ2
X

+
(w − x)2

σ2
Y

])
dx. (7)

First, note that

x2

σ2
X

+
(w − x)2

σ2
Y

= σ−2
X x2 + σ−2

Y (x2 − 2w x+ w2)

= (σ−2
X + σ−2

Y )x2 − 2σ−2
Y w x+ σ−2

Y w2

= (σ−2
X + σ−2

Y )

{
x2 −

2σ−2
Y w

σ−2
X + σ−2

Y

x

}
+ σ−2

Y w2.
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The sum of two normal random variables SELF STUDY SLIDE

The algebra, continued:

We have

x2

σ2
X

+
(w − x)2

σ2
Y

= (σ−2
X + σ−2

Y )

{
x2 −

2σ−2
Y w

σ−2
X + σ−2

Y

x

}
+ σ−2

Y w2

= (σ−2
X + σ−2

Y )

{
x−

σ−2
Y w

σ−2
X + σ−2

Y

}2

−
σ−4
Y w2

σ−2
X + σ−2

Y

+ σ−2
Y w2

=
(σ2
X + σ2

Y )

σ2
X σ

2
Y

{
x−

σ−2
Y w

σ−2
X + σ−2

Y

}2

+
w2

(σ2
X + σ2

Y )
.
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The sum of two normal random variables SELF STUDY SLIDE

Algebra continued:

Substituting into (7), we get

fW (w) =
1√

2π(σ2
X + σ2

Y )
exp

(
−1

2

w2

(σ2
X + σ2

Y )

)∫ ∞
−∞

gX(x) dx,

where

gX(x) =

√
(σ2
X + σ2

Y )

2π(σ2
X σ

2
Y )

exp

 −(σ2
X + σ2

Y )

2 σ2
X σ

2
Y

{
x−

σ−2
Y w

σ−2
X + σ−2

Y

}2


is the PDF of a random variable

X ∼ N

(
σ−2
Y

σ−2
X + σ−2

Y

w,
σ2
X σ

2
Y

(σ2
X + σ2

Y )

)
.
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The sum of two normal random variables SELF STUDY SLIDE

Algebra continued:

Since ∫
gX(x) dx = 1,

we have

fW (w) =
1√

2π(σ2
X + σ2

Y )
exp

(
−1

2

w2

(σ2
X + σ2

Y )

)

and we see that

W ∼ N(0, σ2
X + σ2

Y ).

Thus, if X ∼ N(0, σ2
X) and Y ∼ N(0, σ2

Y ) are independent,

X + Y ∼ N(0, σ2
X + σ2

Y ).
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The sum of two normal random variables

Proof of proposition continued: Let X and Y be independent,

X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ).

Recall that if Z ∼ N(µ, σ2), then Z + a ∼ N(µ+ a, σ2).

Let X ′ = X − µX ∼ N(0, σ2
X) and Y ′ = Y − µY ∼ N(0, σ2

Y ).

These RVs are independent with mean zero, so we have proved
that

X ′ + Y ′ ∼ N(0, σ2
X + σ2

Y ).

Hence

X + Y = X ′ + µX + Y ′ + µY

∼ N(µX + µY , σ
2
X + σ2

Y ).
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The sum of n i.i.d. normal random variables

Proposition

Suppose X1, . . . , Xn are independent, identically distributed with

Xi ∼ N(µ, σ2), i = 1, . . . , n. Then

n∑
i=1

Xi ∼ N(nµ, n σ2).

Proof.

By induction.

The previous result covers the case n = 2.

Given
n−1∑
i=1

Xi ∼ N((n− 1)µ, (n− 1)σ2),

apply the previous result to the two RVs
∑n−1

i=1 Xi and Xn.
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The mean of n i.i.d. normal (or other) random variables

Suppose X1, . . . , Xn are independent, identically distributed with

Xi ∼ N(µ, σ2), i = 1, . . . , n.

Then

X̄ =
1

n

n∑
i=1

Xi ∼ N(µ,
σ2

n
).

More generally, for any i.i.d. RVs X1, . . . , Xn, with E(Xi) = µ and
Var(Xi) = σ2, i = 1, . . . , n,

E(X̄) = µ and Var(X̄) =
σ2

n

and the Central Limit Theorem implies the distribution of X̄ is
approximately normal for large n.
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Where we are Lecture 17

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

VI Sums of random variables

VII Estimation

VII.a Introduction to model fitting

VII.b Estimation by the method of moments

VII.c Estimates and estimators

VII.d Maximum likelihood estimation

VII.e Sampling distributions, bias and mean square error

VII.f Assessment of goodness of fit
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VII Estimation

We have seen how a specified model leads to random samples.

Model → Data

We now consider the situation where we have observed data and
wish to learn about the model that produced them.

This is the transition from Probability to Statistics.

Note that the word “data” is plural.

Definition

Datum One piece of information

Data Several or many pieces of information

So, write “the data are”, not “the data is”.
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Learning about the model that generated the data

The problem is most interesting when data concern several
variables.

We could consider the relation between the variables

H = Height

W = Weight

S = Systolic blood pressure

measured on a set of individuals.

We can add the variable

X = Subject has a heart attack in the next 5 years

and consider the dependence of X on H, W and S.
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Learning about the model that generated the data

Suppose the analysis of these data shows that the likelihood of a
heart attack is increased if an individual has a high value of

S = Systolic Blood Pressure

or a high value of

Body Mass Index =
W

H2
,

where W is measured in kg and H in m.

If interventions (diet or medication) are made to reduce S or
BMI, will this reduce the risk of a heart attack?

In a study of such interventions, care should be taken to allow for
other risk factors, e.g., age and family history of heart disease.

Cholesterol level is another risk factor — this could be treated too.

For proper control of variation between the individuals in a study, a
Randomised Clinical Trial is the best approach.
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VII.a Introduction to model fitting

We start with the simple case of modelling the distribution of a
single random variable.

Here, we have to choose a suitable distribution and estimate
parameters of this distribution.

Example

Two fish are randomly positioned in a 30cm× 50cm× 100cm
aquarium, and their positions are independent.

The random variable Y is the distance (in cm) between the fish.

This is a similar example to the distance between two flies on a
sphere (Computer Lab Sheet 3, Problem 1) but the distribution
has a rather different shape.

Can we model the distribution of Y , at least approximately, as
some standard distribution?
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The distance between two fish

A histogram of 1000 realisations of the distance variable Y .
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The distance between two fish

In these data, the minimum observed value of Y was 1.6 and the
maximum was 108.8.

The range of possible values for Y is from 0 to
√
{302 + 502 + 1002} = 115.8.

We define the standardised
distance between the fish to
be

X =
Y

115.8

and re-draw the histogram.

Standardised distance between two fish
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The distance between two fish

One standard distribution for a random variable taking values in
the interval (0, 1) is the Beta distribution.

The Beta (a, b) distribution has PDF

fX(x) =
Γ(a+ b)

Γ(a) Γ(b)
xa−1 (1− x)b−1 for x ∈ (0, 1),

and fX(x) = 0 otherwise.
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Fitting a Beta distribution

We want to find values
for the parameters a
and b such that the
Beta (a, b) distribution
matches the histogram
for our data.

Standardised distance between two fish
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We could use trial and error to find values for a and b for which
the PDF fX(x) follows the histogram (plotted as a density by
giving the prob=TRUE command).

We shall take a more systematic approach.
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Fitting a Beta distribution

We shall match properties of the Beta (a, b) distribution to
properties of our sample.

This is known as estimation by “The Method of Moments”.

If X ∼ Beta (a, b), it can be shown that

E(X) =
a

a+ b
and Var(X) =

ab

(a+ b+ 1) (a+ b)2
.

Hence

E(X2) = Var(X) + [E(X)]2 =
ab

(a+ b+ 1) (a+ b)2
+

a2

(a+ b)2
.

The average of the observed values x1, . . . , x1000 is 0.368.

The average value of x2
i for our sample is 0.167.
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Fitting a Beta distribution

Equating sample averages of xi and x2
i to E(X) and E(X2) gives

a

a+ b
= 0.368 (8)

and
ab

(a+ b+ 1) (a+ b)2
+

a2

(a+ b)2
= 0.167. (9)

Substituting (8) into (9), gives

ab

(a+ b+ 1) (a+ b)2
= 0.167− 0.3682 = 0.032.

Hence

a+ b+ 1 =

(
a

a+ b

) (
b

a+ b

)
1

0.032
=

0.368× (1− 0.368)

0.032
,

which implies a+ b = 6.3.
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Fitting a Beta distribution

Combining a/(a+ b) = 0.368 and a+ b = 6.3, we get

a = 2.3 and b = 4.0.

Superimposing the Beta (2.3, 4.0) distribution on the histogram of
X values gives a reasonably good fit.
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Fitting a Beta distribution

The R command help(rbeta) provides information about a
“Non-central Beta distribution”.

Experimenting with this, we find a = 2.3 and b = 5.0 along with a
non-centrality parameter of 0.5 fits the mode of the sample better.

The same is true for further sets of simulated data.

Superimposing the Beta (2.3, 5.0, 0.5) distribution for our example
produces the blue curve in the figure below.
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Fitting a Beta distribution

We have modelled X = Y/115.8 as X ∼ Beta (a, b).

A model for the original distance Y follows since

Y ∼ 115.8 Beta (a, b).

Even using a Non-central Beta distribution, it is difficult to match
both the mode and the upper tail of the histogram.

We conclude that the data do not follow a Beta distribution exactly
— but this might be a useful approximation for some purposes.

Suppose you are asked to estimate E(Y ):

Having a particular distribution in mind does not necessarily help
— in fitting the Beta distribution we effectively estimated E(X)
by (x1 + . . .+ x1000)/1000 in order to fit values for a and b.

However, in other cases, there may be better ways to estimate
E(X) than by the sample mean.
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Mean and variance of a Beta distribution SELF STUDY SLIDE

The Beta (a, b) distribution has PDF fX(x) = 0 for x < 0 and
x > 1, and

fX(x) =
Γ(a+ b)

Γ(a) Γ(b)
xa−1 (1− x)b−1 for x ∈ (0, 1).

Hence

E(X) =

∫ 1

0
x

Γ(a+ b)

Γ(a) Γ(b)
xa−1 (1− x)b−1 dx

= . . . =
a

a+ b
and

E(X2) =

∫ 1

0
x2 Γ(a+ b)

Γ(a) Γ(b)
xa−1 (1− x)b−1 dx

= . . . =
a(a+ 1)

(a+ b)(a+ b+ 1)
.

See calculations on board
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I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

VI Sums of random variables
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VII.b Estimation by the method of moments

VII.c Estimates and estimators
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VII.e Sampling distributions, bias and mean square error

VII.f Assessment of goodness of fit
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VII.a Introduction to model fitting

Given observed data, we want to set up a statistical model that
describes the data, then use this model to make inferences or guide
future actions.

Data -

Model

fitting Statistical

model
-

Computation,

simulation Inferences,

actions

With i.i.d. observations of a single random variable, we need to

• Choose a suitable distribution:

Discrete or continuous

Real valued, positive, or taking values in an interval

• Estimate parameters of this distribution
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Estimating parameter values

Suppose a graphical display suggests that the data follow an
exponential distribution.

Lifetimes of light bulbs
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How should we estimate the rate parameter λ ?

We shall look at two methods of estimation:

The Method of Moments,

Maximum Likelihood Estimation.
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Method of Moments: “Distance between fish” example

We assumed observations, X1, . . . , Xn, to be i.i.d. RVs following a
Beta (a, b) distribution. We needed two pieces of information to
estimate two parameters, a and b.

We found formulae for E(X) and E(X2) when X ∼ Beta (a, b),

E(X) =
a

a+ b
, E(X2) =

ab

(a+ b+ 1) (a+ b)2
+

(
a

a+ b

)2

.

With observed values x1, . . . , xn, we set up equations matching the
sample means of xi and x2

i to expected values E(X) and E(X2),

a

a+ b
=

1

n

n∑
i=1

xi,
ab

(a+ b+ 1) (a+ b)2
+

(
a

a+ b

)2

=
1

n

n∑
i=1

x2
i .

Denoting the solutions of this pair of equations by â and b̂, we

concluded that, approximately, each Xi ∼ Beta (â, b̂).
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VII.b Estimation: the Method of Moments

Definition

For k > 0, the kth moment of a RV X is

µk = E(Xk) (if this exists).

So µ0 = 1, µ1 = E(X), µ2 = E(X2), etc.

Suppose we observe random variables X1, . . . , Xn.

Denote the observed values of these variables by x1, . . . , xn.

We assume X1, . . . , Xn are i.i.d. and follow a specific form of
distribution which involves unknown parameters θ1, . . . , θp.

We estimate the values of µ1, . . . , µp from the observed data.

Then, we find θ1, . . . , θp that give these values for µ1, . . . , µp.
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Estimating µ1

Assume E(X1) = µ1 and Var(X1) = σ2 both exist.

Each Xi has mean µ1 and variance σ2, so

E

(
n∑
i=1

Xi

)
= nµ1 and Var

(
n∑
i=1

Xi

)
= nσ2.

Thus,

E

(
1

n

n∑
i=1

Xi

)
= µ1 and Var

(
1

n

n∑
i=1

Xi

)
= σ2/n.

By the Central Limit Theorem,

X =
1

n

n∑
i=1

Xi

behaves like a N(µ1, σ
2/n) RV, for large n.
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Estimating µ1

We have, approximately, for large n,

X − µ1 ∼ N(0,
σ2

n
) and ( X − µ1)

√
n

σ
∼ N(0, 1).

Thus, for large n,

P
(∣∣X− µ1

∣∣ > ε
)

= P

(∣∣X− µ1

∣∣ √n
σ

> ε

√
n

σ

)
≈ P

(
|Z| > ε

√
n

σ

)
,

where Z ∼ N(0, 1), and this probability → 0 as n→∞.

Hence, for large n, with high probability X ≈ µ1.

Thus, it is reasonable to approximate µ1 by x = 1
n

∑n
i=1 xi,

where x1, . . . , xn are the observed values of X1, . . . , Xn.
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Estimating µk for k > 1

We can apply the same reasoning to RVs Xk
i , i = . . . , n, assuming

both E(Xk
i ) = µk and Var(Xk

i ) exist

We conclude that, with high probability,

1

n

n∑
i=1

Xk
i ≈ µk

and it is reasonable to approximate µk by 1
n

∑n
i=1 x

k
i .
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Method of Moments estimation

Suppose a probability distribution has unknown parameters
θ1, . . . , θp and we observe i.i.d. observations X1, . . . , Xn.

Definition

Method of Moments Estimates of θ1, . . . , θp are the solutions to

1

n

n∑
i=1

xki = µk = µk(θ1, . . . , θp) for k = 1, . . . , p,

where x1, . . . , xn denote the observed values of X1, . . . , Xn.

For large n, there is a high probability that each 1
n

∑n
i=1 X

k
i is

close to the true value of µk, k = 1, . . . , p.

Hence, it is also likely that the estimates θ̂1, . . . , θ̂p are close to the
true values θ1, . . . , θp.
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Fitting an exponential distribution

Suppose X1, . . . , Xn are i.i.d. Exp(λ) RVs and we wish to
estimate the parameter λ.

The first moment of each Xi, i = 1, . . . , n, is

E(Xi) =
1

λ
.

With observed values x1, . . . , xn, we solve

1

n

n∑
i=1

xi =
1

λ
. (10)

It is standard practice to denote an estimate by placing a “hat”
over the name of the parameter.

So, from (10), we obtain the estimate

λ̂ =
n

x1 + . . .+ xn
.
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Fitting a Uniform distribution

Suppose X1, . . . , Xn are i.i.d. Unif(0, θ) RVs and we wish to
estimate the parameter θ.

The first moment of each Xi, i = 1, . . . , n, is

E(Xi) =
θ

2
.

With observed values x1, . . . , xn, we solve

1

n

n∑
i=1

xi =
θ

2

to obtain the estimate

θ̂ =
2 (x1 + . . .+ xn)

n
.
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Fitting a normal distribution

Suppose X1, . . . , Xn are i.i.d. N(µ, σ2) RVs and we wish to
estimate the parameters µ and σ2.

The first moment of each Xi, i = 1, . . . , n, is

E(Xi) = µ.

The second moment of each Xi is

E(X2
i ) = Var(Xi) + [E(Xi)]

2 = σ2 + µ2.

So, we need to solve

1

n

n∑
i=1

xi = µ (11)

and
1

n

n∑
i=1

x2
i = σ2 + µ2. (12)
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Fitting a normal distribution

Defining the random variable

X =
1

n

n∑
i=1

Xi

and the observed value of this RV,

x =
1

n

n∑
i=1

xi.

From (11), we have
µ̂ = x

and substituting this into (12) gives

σ̂2 =
1

n

n∑
i=1

x2
i − x2.
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VII.c Estimates and estimators

We have used upper and lower case letters to distinguish between:

the name of a random variable, X, and

the value x that this variable takes.

Similarly, we wish to distinguish between:

a parameter estimate viewed as a random variable and

the value (i.e., a number) this estimate takes for given data.

The first of these is defined in terms of the RVs X1, . . . , Xn.

The second is defined in terms of observed values x1, . . . , xn.
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Estimates and estimators

Definition

An estimate is a real number computed from the data.

An estimate of the parameter θ based on observations x1, . . . , xn
can be written as

θ̂ = h(x1, . . . , xn)

for the appropriate function h.

Definition

An estimator is a random variable, a function of the random
variables X1, . . . , Xn that comprise the data.

If the estimate of θ based on observations x1, . . . , xn is
θ̂ = h(x1, . . . , xn), the estimator is the random variable

h(X1, . . . , Xn).
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A notational quandary

What name should we give to the estimator h(X1, . . . , Xn) ?

For consistency, we ought to use the upper case version of the
estimate θ̂ — which would be Θ̂.

However, it is not usual to use upper case Greek letters in this way.

We can introduce a new name altogether, e.g.,

T = h(X1, . . . , Xn).

This enables to talk about the estimator as a random variable and
write down its “sampling distribution”, e.g.,

T ∼ N(θ,
σ2

n
). (13)

It is tempting to use θ̂ in place of T in (13) — but then we would
be using the same symbol both for the name of a random variable
and for the value it takes.
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VII.d Maximum likelihood estimation

Suppose the random variables X1, . . . , Xn follow a certain type of
distribution but the parameters of that distribution are unknown.

As an example, if we assume Xi ∼ Exp(λ), i = 1, . . . , n, there is
one unknown parameter, λ, to estimate.

Definition

Let X1, . . . , Xn be i.i.d. continuous RVs with PDF fX(θ, x),
where θ denotes a parameter or a vector of parameters.

Suppose values Xi = xi, i = 1, . . . , n, are observed, and define
x
:

= (x1, . . . , xn).

The likelihood function for these continuous RVs is

L(θ, x
:
) =

n∏
i=1

fX(θ, xi).
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Maximum likelihood estimation

Definition

Let X1, . . . , Xn be i.i.d. discrete RVs for which

P(X = x) = pX(θ, x), x ∈ Ω,

where θ denotes a parameter or a vector of parameters.

Suppose values Xi = xi, i = 1, . . . , n, are observed, and let
x
:

= (x1, . . . , xn).

The likelihood function for these discrete RVs is

L(θ, x
:
) =

n∏
i=1

pX(θ, xi).
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Maximum likelihood estimation

Definition

In both the continuous and discrete cases, the log-likelihood
function is

L(θ, x
:
) = log{L(θ, x

:
)}.

Definition

The Maximum Likelihood Estimate (MLE) of a parameter or
vector of parameters, θ, is the value of θ that maximises the
likelihood function L(θ, x

:
) for the observed data.

Equivalently, the MLE is the value of θ that maximises the
log-likelihood, L(θ, x

:
).
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Maximum likelihood estimation

Why is the Maximum Likelihood Estimate (MLE) a good choice?

A parameter value under which the observed data are “likely”
seems plausible.

Case by case, one can usually show this estimate has good
properties.

Theory for large sample sizes shows that maximum likelihood
estimation is an efficient, all purpose method (see Statistics 2a
and later courses where maximum likelihood estimation is used
in more complex models).

There are exceptional situations where other methods may be
preferable, even with large sample sizes: this tends to be the case
when the set of values for which fX(θ, x) > 0 depends on θ.
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Maximum likelihood estimation: Bernoulli observations

Example

Suppose X1, . . . , Xn are i.i.d. Bernoulli(p) random variables, so

P(Xi = x) =


1− p if x = 0

p if x = 1

0 otherwise

Let
S =

n∑
i=1

Xi and s =

n∑
i=1

xi.

Calculations show the maximum likelihood estimate is

p̂ =
s

n
=

1

n

n∑
i=1

xi.

See calculations on board
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Maximising L(θ, x
:
) over possible values of θ

In many cases (but not all), we find the MLE of θ by solving

d

dθ
L(θ, x

:
) = 0.

We still need to prove this gives a maximum of L(θ, x
:
).

Possible arguments are:

(i) d2 L(θ, x
:
)/dθ2 < 0 for all θ;

(ii) dL(θ, x
:
)/dθ = 0 at θ = θ̃,

dL(θ, x
:
)/dθ > 0 for θ < θ̃, and

dL(θ, x
:
)/dθ < 0 for θ > θ̃;

(iii) L(θ, x
:
) > 0 for all θ, L(θ, x

:
)→ 0 as θ → −∞ and θ →∞,

and there is only one solution to dL(θ, x
:
)/dθ = 0.
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Maximising L(θ, x
:
) over possible values of θ

Sometimes it is simpler to work with L(θ, x
:
) = log{L(θ, x

:
)}.

Consider the Bernoulli example, where

L(p, x
:
) = s log(p) + (n− s) log(1− p).

For 1 ≤ s ≤ n− 1,

d

dp
L(p, x

:
) =

s

p
− n− s

1− p
and

d2

dp2
L(p, x

:
) =

−s
p2
− n− s

(1− p)2
< 0.

The solution to dL(p, x
:
)/dp = 0 is p̂ = s/n.

Since d2L(p, x
:
)/dp2 < 0, p̂ = s/n gives the maximum of L(θ, x

:
)

— and therefore of L(θ, x
:
).
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Maximum likelihood estimation: Normal observations

Example

Suppose X1, . . . , Xn are i.i.d. N(µ, σ2) random variables.

Find the maximum likelihood estimate of θ = (µ, σ2).

We have

L(θ, x
:
) =

n∏
i=1

fX(θ, xi)

= (2πσ2)−n/2 exp{− 1

2σ2

n∑
i=1

(xi − µ)2},

and

L(θ, x
:
) = constant − n log(σ) − 1

2σ2

n∑
i=1

(xi − µ)2.
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Maximum likelihood estimation: Normal observations

We shall find the value of θ = (µ, σ2) that maximises L(θ, x
:
).

First, we consider the problem of maximising L(θ, x
:
) with respect

to µ for a fixed value of σ2.

Then we shall maximise over σ2.

Step 1

For given σ2, we maximise

L(θ, x
:
) = constant − n log(σ) − 1

2σ2

n∑
i=1

(xi − µ)2

over µ. To do this, we need to minimise

n∑
i=1

(xi − µ)2.
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Maximum likelihood estimation: Normal observations

Note that

d

dµ

n∑
i=1

(xi − µ)2 = −
n∑
i=1

2(xi − µ)

and

d2

dµ2

n∑
i=1

(xi − µ)2 = −
n∑
i=1

(−2) > 0.

So, the minimum of
∑n

i=1(xi − µ)2 is the solution to

d

dµ

n∑
i=1

(xi − µ)2 = 0,

which has nµ =
∑n

i=1 xi, i.e., µ = 1
n

∑n
i=1 xi = x.
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Maximum likelihood estimation: Normal observations

Step 2

Remember, our aim is to maximise the log likelihood over values of
θ = (µ, σ2).

We have seen that, for a given value of σ2, the log likelihood is
maximised by taking µ = x.

Since we get the same answer for any σ2, the MLE of µ is µ̂ = x.

We now maximise the log likelihood over σ2 when µ = x, so

L(θ, x
:
) = constant − n log(σ) − 1

2σ2

n∑
i=1

(xi − x)2

= c − n log(σ)−A/(2σ2),

where A =
∑n

i=1(xi − x)2.
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Maximum likelihood estimation: Normal observations
SELF STUDY SLIDE

Consider minimising

h(σ) = n log(σ) +A/(2σ2),

where A is positive.

The minimum occurs when

σ2 =
A

n
.

See calculations on board

So, we have

σ̂2 =
1

n

n∑
i=1

(xi − x)2

to go with µ̂ = x.
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Maximum likelihood estimation: Normal observations

We have derived the maximum likelihood estimates of µ and σ2,

µ̂ = x =
1

n

n∑
i=1

xi and σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.

Recall that the method of moments gave

µ̂ = x =
1

n

n∑
i=1

xi and σ̂2 =
1

n

n∑
i=1

x2
i − µ̂2.

The two versions of σ̂2 are, in fact, the same since

n∑
i=1

(xi − x)2 =
n∑
i=1

(x2
i − 2xi x + x2) =

(
n∑
i=1

x2
i

)
− n x2.

In general, these two methods can lead to different estimates.
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VII.e Sampling distributions, bias and mean square error

Example

Suppose X1, . . . , Xn are i.i.d. Unif(0, θ) RVs, where the parameter
θ > 0 is unknown.

Method of moments estimation

We saw in Lecture 19, the method of moments estimator for θ is

T1(X1, . . . , Xn) =
2

n

n∑
i=1

Xi.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

Maximum likelihood estimation

We can write

fX(x) =

{
1
θ I(x ≤ θ) for x ≥ 0

0 for x < 0

where I(x ≤ θ) = 1 if x ≤ θ and 0 otherwise.

Let x
:

= (x1, . . . , xn), where each xi ≥ 0.

The likelihood function is

L(θ, x
:
) =

n∏
i=1

1

θ
I(xi ≤ θ)

=
1

θn
I(θ ≥ max i=1,...,n{xi}).
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

We have

L(θ, x
:
) =

1

θn
I(θ ≥ max i=1,...,n{xi}).

With observed data

x
:

= (0.4, 0.12, 0.8, 1.05, 0.23, 1.2),

the maximum of L(θ, x
:
) is at

θ̂ = max i=1,...,6{xi} = 1.2.
0 1 2

0

0.1

0.2

0.3

0.4

L(θ,x)

θ

Likelihood function, X
i
 ~ Unif(0,θ), i=1,…,6

In general, for data x
:

= (x1, . . . , xn), the maximum likelihood

estimate is max i=1,...,n {xi}.
Thus, the maximum likelihood estimator of θ is

T2(X1, . . . , Xn) = max i=1,...,n {Xi}.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

So, we now have two possible estimators:

Method of moments

T1(X1, . . . , Xn) =
2

n

n∑
i=1

Xi

Maximum likelihood

T2(X1, . . . , Xn) = max i=1,...,n {Xi}

What should we consider when choosing between these estimators?
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Sampling distribution of an estimator

Definition

The sampling distribution of an estimator T (X1, . . . , Xn) is the
distribution of the random variable T — which follows from the
definition of T and the joint distribution of X1, . . . , Xn.

Example

Simulations of X1, . . . , X6 ∼ i.i.d. Unif(0, θ), with θ = 1.5, gave
1000 values of the method of moments estimator T1(X1, . . . , X6)
and the maximum likelihood estimator T2(X1, . . . , X6):
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We always have T2 ≤ θ.

On average, T2 is
closer to the true θ
than T1.
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Bias and precision

Definition

An estimator T (X1, . . . , Xn) of θ is unbiased if

E(T ) = θ for all θ.

The bias of an estimator T (X1, . . . , Xn) of θ is

Bias(T ) = E(T )− θ.

Note: Since E(T ) and Bias(T ) depend on θ, we could indicate this

by writing Eθ(T ) and Biasθ(T ).

Definition

The precision of an estimator T (X1, . . . , Xn) of θ is

Precision(T ) =
1

Var(T )
.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

In our example, the method of moments estimator is

T1 =
2

n

n∑
i=1

Xi.

This has expected value

E(T1) =
2

n
n
θ

2
= θ,

so T1 is an unbiased estimator of θ.

Since

Var(T1) =
4

n2
n
θ2

12
=

θ2

3n
,

the precision of T1 is

Precision(T1) =
3n

θ2
.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

In the same example, the maximum likelihood estimator is

T2 = max i=1,...,n{Xi}.

This estimator has CDF

FT2(t2) = P(T2 ≤ t2) =

(
t2
θ

)n
,

and its PDF is

fT2(t2) =
dFT2(t2)

d t2
=

n tn−1
2

θn
for 0 ≤ t2 ≤ θ.

Hence, we can calculate

E(T2) =
n

n+ 1
θ and Var(T2) =

n

(n+ 1)2 (n+ 2)
θ2.

See calculations on board
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

The maximum likelihood estimator T2 has expectation

E(T2) =
n

n+ 1
θ

so this estimator has bias

Bias(T2) = E(T2)− θ =
−θ
n+ 1

.

The variance of T2 is

Var(T2) =
n θ2

(n+ 1)2 (n+ 2)
<

θ2

3n
= Var(T1).

However, low variance (and high precision) is not so helpful if an
estimator’s distribution is not centred on the true parameter value.
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Mean square error

Definition

The mean square error of an estimator T (X1, . . . , Xn) of θ is

MSE(T ) = E{(T − θ)2}.

Now

MSE(T ) = E{ ([T − E(T )] + [E(T )− θ])2 }

= E{[T − E(T )]2} + 2 E{T − E(T )} [E(T )− θ]

+ [E(T )− θ]2

= Var(T ) + 0 + (Bias(T ))2.

So, the MSE combines bias and variance as

MSE(T ) = Var(T ) + (Bias(T ))2.

Andreas Kyprianou Lecture 20



Mean square error

In our example, the method of moments estimator is unbiased
and so has mean square error

MSE(T1) = Var(T1) =
θ2

3n
.

The maximum likelihood estimator has mean square error

MSE(T2) = Var(T2) + (Bias(T2))2

=
n θ2

(n+ 1)2 (n+ 2)
+

θ2

(n+ 1)2

=
2 θ2

(n+ 1) (n+ 2)
.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

In our example, simulations were conducted with n = 6, for which

MSE(T1)/MSE(T2) = 14/9.
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This ratio increases with n, so maximum likelihood estimation
appears to be superior to the method of moments for this problem.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

There is a simple way to modify the maximum likelihood estimate
to make it unbiased. We know that

E(T2) =
n

n+ 1
θ.

Thus, defining

T3 =
n+ 1

n
T2 =

n+ 1

n
max i=1,...,n {Xi}

gives an unbiased estimator with variance

Var(T3) =

(
n+ 1

n

)2

Var(T2) =
θ2

n (n+ 2)
.

Since T3 is unbiased, it has mean square error

MSE(T3) = Var(T3) =
θ2

n (n+ 2)
,

which can be seen to be lower that that of T1 and T2.
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Example: X1, . . . , Xn ∼ i.i.d. Unif(0, θ)

The histogram shows result of 1000 simulated values of the
modified maximum likelihood estimator, T3.
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Note that the true value θ = 1.5 is now at the “centre of mass” of
the distribution.
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Finding the best estimator

Later statistics courses will address the issues:

Finding the best possible estimator in terms of bias or MSE,

General theory of maximum likelihood estimation,

Proof that MLE gives best the possible estimators (for most
problems) when the sample size is large,

Estimation in complex models involving several parameters.
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Where we are Lecture 21

I Introduction

II Random variables and cumulative distribution functions

III Important families of continuous random variables

IV Joint distributions, independence and expectation

V Transformations of random variables and simulation

VI Sums of random variables

VII Estimation

VII.a Introduction to model fitting

VII.b Estimation by the method of moments

VII.c Estimates and estimators

VII.d Maximum likelihood estimation

VII.e Sampling distributions, bias and mean square error

VII.f Assessment of goodness of fit
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VII.f Assessment of goodness of fit

Recall the scheme for modelling data and drawing inferences:

Data -

Model

fitting Statistical

model
-

Computation,

simulation Inferences,

actions

Within “Model fitting” we have taken a two step approach to
model a random variable:

1. Select a family of distributions, e.g., exponential or normal

2. Estimate the parameter or parameters of this distribution.

We can extend this approach to allow validation of the choice of
distribution to check that the model agrees with the observed data.
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Goodness of fit

An iterative approach to model fitting:

1. Select a family of distributions, e.g., exponential or normal

2. Estimate the parameter or parameters for this distribution.

3. Check whether the data are typical for the fitted distribution:

If the data follow the fitted distribution well, STOP HERE.

If not, go back to (1) and try another distribution.

One option on returning to step (1) is to consider a larger family:

The Weibull distribution contains the exponential as a special
case but allows other possibilities too,

The Gamma family contains cases close to the normal
distribution — plus a variety of asymmetric distributions.
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Goodness of fit

In Problems Class 9, we looked at data comprising the petal length
(in cm) for 50 specimens of Iris versicolor.

Supposing these lengths follow a N(µ, σ2) distribution, the
method of moments (or maximum likelihood) estimates are

µ̂ = 4.26 and σ̂2 = 0.216.

Superimposing a N(4.26, 0.216) PDF on the data histogram gives

Petal lengths of Iris Versicolor
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Quantile-quantile plots

Quantile-quantile plots (q-q plots) avoid the “blocking” effect of
histograms and so present data in more detail.

Suppose we observe i.i.d. RVs X1, . . . , Xn.

Denote the ordered values of the observed data x1, . . . , xn by

x(1) ≤ . . . ≤ x(n).

Let FX(x) be the CDF of a distribution proposed for the RVs Xi.

A q-q plot is a graph of

x(i) against F−1
X

(
i

n+ 1

)
.

If the RVs do indeed come from the distribution with CDF FX(x),
then the q-q plot should be, approximately, a straight line through
the origin with slope 1.
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Quantile-quantile plots

The q-q plot for the petal lengths of Iris versicolor is shown below.
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Questions to consider:

1. Why do we expect a line, y = x, if the model is correct?

2. How close should a q-q plot be to a straight line?

3. What do departures from a straight line tell us?
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1. Why we expect to see x(i) ≈ F−1
X {i/(n+ 1)}

For given x, the number of observations out of X1, . . . , Xn taking
values less than or equal to x is

Binom(n, FX(x)).

The expected value of a Binom(n, FX(x)) RV is nFX(x), so we
“expect” this many observations to be ≤ x — and the binomial
variance indicates the likely variation in this number.

Applying this argument with x = x(i), we might expect nFX(x(i))
observations ≤ x(i).

Since i observations are less than or equal to x(i), this implies

i

n
≈ FX(x(i)) and so x(i) ≈ F−1

X

(
i

n

)
.
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Why we expect to see x(i) ≈ F−1
X {i/(n+ 1)}

Usually, we can ignore the probability that a continuous RV is
exactly equal to a particular value.

However, we have just considered x = x(i) where, by definition,
one of the RVs X1, . . . , Xn has this as an observed value.

If we do not “count” the observation at x(i) we get

x(i) ≈ F−1
X

(
i− 1

n

)
.

In fact, it can be shown (see Example Sheet 6, Question 5) that

E{FX(X(i)) } =
i

n+ 1
,

suggesting we might “expect” to see

x(i) ≈ F−1
X

(
i

n+ 1

)
.
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2. How close should a q-q plot be to a straight line?

We can use simulation to see how a typical q-q plot might appear
when a fitted model is actually correct. The following q-q plots are
for the real iris data and three sets of fifty N(4.26, 0.216) RVs:
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3. What a q-q plot can tell us

If the points in a q-q plot do not follow a straight line with slope 1,
their pattern should indicate the failings of the assumed model.

Suppose observations from a Unif(3.0, 5.0) distribution are
modelled by a normal distribution:
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The “S” shaped q-q plots reflect the fact that the Unif(3.0, 5.0)
distribution does not extend as far outwards as the normal.

Thus, the ordered values, x(1), . . . , x(50), flatten off just above 3.0
and just below 5.0.
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What a q-q plot can tell us

Now consider observations from a Cauchy distribution centred
on 4, with shape parameter 0.5.

The q-q plot tests whether these data can be fitted by a N(4, 1)
distribution.
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The N(4, 1) distribution matches the Cauchy (4, 0.5) distribution
reasonably well at its centre, but the Cauchy PDF has heavier tails.

In fact, the tails are so long that in both simulated data sets, a few
data points were off the vertical scale — by a long way!
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The role of simulation

Simulation plays a large role in modern statistics.

It is nice to derive exact formulae for probabilities and other
properties of distributions — but that can be just about impossible
for complex models.

Simulation provides a very powerful way to carry out calculations
— basically, high dimensional integrals.

For some problems, even simulation is difficult — there is much
current research on methods for simulating from complex, high
dimensional distributions.
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What next?

Statistics

Modelling a response distribution in terms of other variables

Time series and forecasting — sequences of random variables

Multivariate data — multiple observations on each subject

Formal statistical inference

Applications of statistics:

Medicine — drug development, clinical trials

The environment, agriculture, biostatistics, social science,

psychology, assessing risk . . .
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