Deep factorisation of the stable process: Part I: Lagrange lecture, Torino University Part II: Seminar, Collegio Carlo Alberto.

Andreas E. Kyprianou, University of Bath, UK.

Stable processes

Definition

A Lévy process X is called (strictly) α -stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

Necessarily $\alpha \in (0,2]$. [$\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

ullet The characteristic exponent $\Psi(heta) := -t^{-1}\log \mathbb{E}(\mathsf{e}^{\mathsf{i} heta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathsf{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathsf{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

Assume jumps in both directions.

The Wiener-Hopf factorisation

• For a given characteristic exponent of a Lévy process, Ψ , there exist unique Bernstein functions, κ and $\hat{\kappa}$ such that, up to a multiplicative constant,

$$\Psi(\theta) = \hat{\kappa}(i\theta)\kappa(-i\theta), \qquad \theta \in \mathbb{R}.$$

- As Bernstein functions, κ and $\hat{\kappa}$ can be seen as the Laplace exponents of (killed) subordinators.
- The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of X and of -X respectively.

The Wiener-Hopf factorisation

- Explicit Wiener-Hopf factorisations are extremely rare!
- For the stable processes we are interested in we have

$$\kappa(\lambda) = \lambda^{\alpha\rho} \text{ and } \hat{\kappa}(\lambda) = \lambda^{\alpha\hat{\rho}}, \qquad \lambda \geq 0$$

where $0 < \alpha \rho, \alpha \hat{\rho} < 1$.

• Hypergeometric Lévy processes are another recently discovered family of Lévy processes for which the factorisation are known explicitly: For appropriate parameters $(\beta, \gamma, \hat{\beta}, \hat{\gamma})$

$$\Psi(z) = \frac{\Gamma(1-\beta+\gamma-iz)}{\Gamma(1-\beta-iz)} \frac{\Gamma(\hat{\beta}+\hat{\gamma}+iz)}{\Gamma(\hat{\beta}+iz)}.$$

Deep factorisation of the stable process

- Another factorisation also exists, which is more 'deeply' embedded in the stable process.
- Based around the representation of the stable process as a real-valued self-similar Markov process (rssMp):

An \mathbb{R} -valued regular strong Markov process $(X_t:t\geq 0)$ with probabilities \mathbb{P}_x , $x\in\mathbb{R}$, is a rssMp if, there is a stability index $\alpha>0$ such that, for all c>0 and $x\in\mathbb{R}$,

$$(cX_{tc^{-\alpha}}: t \geq 0)$$
 under P_x is P_{cx} .

Markov additive processes (MAPs)

- E is a finite state space
- $(J(t))_{t\geq 0}$ is a continuous-time, irreducible Markov chain on E
- process (ξ, J) in $\mathbb{R} \times E$ is called a *Markov additive process* (MAP) with probabilities $\mathbf{P}_{x,i}$, $x \in \mathbb{R}$, $i \in E$, if, for any $i \in E$, $s, t \geq 0$: Given $\{J(t) = i\}$,
 - $(\xi(t+s)-\xi(t),J(t+s)) \perp \{(\xi(u),J(u)): u \leq t\},$
 - $(\xi(t+s) \xi(t), J(t+s)) \stackrel{d}{=} (\xi(s), J(s))$ with $(\xi(0), J(0)) = (0, i)$.

Pathwise description of a MAP

The pair (ξ, J) is a Markov additive process if and only if, for each $i, j \in E$,

- there exist a sequence of iid Lévy processes $(\xi_i^n)_{n\geq 0}$
- and a sequence of iid random variables $(U_{ij}^n)_{n\geq 0}$, independent of the chain J,
- such that if $T_0 = 0$ and $(T_n)_{n \ge 1}$ are the jump times of J,

the process ξ has the representation

$$\xi(t) = \mathbb{1}_{(n>0)}(\xi(T_n-) + U_{J(T_n-),J(T_n)}^n) + \xi_{J(T_n)}^n(t-T_n),$$

for $t \in [T_n, T_{n+1}), n \ge 0$.

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

- Take the statespace of the MAP to be $E = \{1, -1\}$.
- Let

$$X_t = |x| e^{\xi(\tau(t))} J(\tau(t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf \left\{ s > 0 : \int_0^s \exp(\alpha \xi(u)) du > t|x|^{-\alpha} \right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

- Then X_t is a real-valued self-similar Markov process in the sense that the law of $(cX_{tc^{-\alpha}}: t \ge 0)$ under P_x is P_{cx} .
- The converse (within a special class of rssMps) is also true.

Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $\mathbf{Q} = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.
- Let

$$\mathbf{F}(z) = \operatorname{diag}(\psi_1(z), \dots, \psi_N(z)) + \mathbf{Q} \circ G(z),$$

(when it exists), where o indicates elementwise multiplication.

• The matrix exponent of the MAP (ξ, J) is given by

$$\mathbb{E}_i(e^{z\xi(t)};J(t)=j)=\left(e^{\mathbf{F}(z)t}\right)_{i,j},\qquad i,j\in E,$$

(when it exists).

An α -stable process is a rssMp

- An α -stable process is a rssMp. Remarkably (thanks to work of Chaumont, Panti and Rivero) we can compute precisely its matrix exponent explicitly
- Denote the underlying MAP (ξ, J) , we prefer to give the matrix exponent of (ξ, J) as follows:

$$\mathbf{F}(z) = \begin{bmatrix} -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{bmatrix},$$

for $Re(z) \in (-1, \alpha)$.

Ascending ladder MAP

- Observe the process (ξ, J) only at times of increase of new maxima of ξ . This gives a MAP, say $(H^+(t), J^+(t))_{t\geq 0}$, with the property that H is non-decreasing with the same range as the running maximum.
- Its exponent can be identified by $-\kappa(-z)$, where

$$\kappa(\lambda) = \mathsf{diag}(\Phi_1(\lambda), \cdots, \Phi_N(\lambda)) - \mathbf{\Lambda} \circ \mathbf{K}(\lambda), \qquad \lambda \geq 0.$$

• Here, for $i=1,\cdots,N$, Φ_i are Bernstein functions (exponents of subordinators), $\mathbf{\Lambda}=(\Lambda_{i,j})_{i,j\in E}$ is the intensity matrix of J^+ and $\mathbf{K}(\lambda)_{i,j}=\mathbf{E}[\mathrm{e}^{-\lambda U_{i,j}^+}]$, where $U_{i,j}^+\geq 0$ are the additional discontinuities added to the path of ξ each time the chain J^+ switches from i to j, and $U_{i,j}^+:=0$, $i\in E$.

MAP WHF

Theorem

For $\theta \in \mathbb{R}$, up to a multiplicative factor,

$$-\mathbf{F}(\mathrm{i}\theta) = \mathbf{\Delta}_{\pi}^{-1}\hat{\boldsymbol{\kappa}}(\mathrm{i}\theta)^{\mathsf{T}}\mathbf{\Delta}_{\pi}\boldsymbol{\kappa}(-\mathrm{i}\theta),$$

where $\Delta_{\pi} = diag(\pi)$, π is the stationary distribution of \mathbf{Q} , $\hat{\kappa}$ plays the role of κ , but for the dual MAP to (ξ, J) .

The dual process, or time-reversed process is equal in law to the MAP with exponent

$$\hat{\mathbf{F}}(z) = \mathbf{\Delta}_{\pi}^{-1} \mathbf{F}(-z)^{\mathsf{T}} \mathbf{\Delta}_{\pi},$$

$$\alpha \in (0,1]$$

Define the family of Bernstein functions

$$\kappa_{q+i,p+j}(\lambda) := \int_0^\infty (1 - e^{-\lambda x}) \frac{((q+i) \vee (p+j) - 1)}{(1 - e^{-x})^{q+i} (1 + e^{-x})^{p+j}} e^{-\alpha x} dx,$$

where $q, p \in \{\alpha \rho, \alpha \hat{\rho}\}$ and $i, j \in \{0, 1\}$ such that $q + p = \alpha$ and i + j = 1.

Deep Factorisation $\alpha \in (0,1]$

Theorem

Fix $\alpha \in (0,1]$. Up to a multiplicative constant, the ascending ladder MAP exponent, κ , is given by

$$\begin{bmatrix} \kappa_{\alpha\rho+1,\alpha\hat{\rho}}(\lambda) + \frac{\sin(\pi\alpha\hat{\rho})}{\sin(\pi\alpha\rho)}\kappa'_{\alpha\hat{\rho},\alpha\rho+1}(0+) & -\frac{\sin(\pi\alpha\hat{\rho})}{\sin(\pi\alpha\rho)}\frac{\kappa_{\alpha\hat{\rho},\alpha\rho+1}(\lambda)}{\lambda} \\ -\frac{\sin(\pi\alpha\hat{\rho})}{\sin(\pi\alpha\hat{\rho})}\frac{\kappa_{\alpha\rho,\alpha\hat{\rho}+1}(\lambda)}{\lambda} & \kappa_{\alpha\hat{\rho}+1,\alpha\rho}(\lambda) + \frac{\sin(\pi\alpha\rho)}{\sin(\pi\alpha\hat{\rho})}\kappa'_{\alpha\rho,\alpha\hat{\rho}+1}(0+) \end{bmatrix}$$

Up to a multiplicative constant, the dual ascending ladder MAP exponent, $\hat{\kappa}$ is given by

$$\begin{bmatrix} \kappa_{\alpha\hat{\rho}+1,\alpha\rho}(\lambda+1-\alpha) + \frac{\sin(\pi\alpha\rho)}{\sin(\pi\alpha\hat{\rho})}\kappa'_{\alpha\rho,\alpha\hat{\rho}+1}(0+) & -\frac{\kappa_{\alpha\rho,\alpha\hat{\rho}+1}(\lambda+1-\alpha)}{\lambda+1-\alpha} \\ -\frac{\kappa_{\alpha\hat{\rho},\alpha\rho+1}(\lambda+1-\alpha)}{\lambda+1-\alpha} & \kappa_{\alpha\rho+1,\alpha\hat{\rho}}(\lambda+1-\alpha) + \frac{\sin(\pi\alpha\hat{\rho})}{\sin(\pi\alpha\rho)}\kappa'_{\alpha\hat{\rho},\alpha\rho+1}(0+) \end{bmatrix}$$

$$\alpha \in (1,2)$$

Define the family of Bernstein functions by

$$\begin{split} \phi_{q+i,p+j}(\lambda) &= \int_0^\infty (1 - \mathrm{e}^{-\lambda u}) \left\{ \frac{((q+i) \vee (p+j) - 1)}{(1 - \mathrm{e}^{-u})^{q+i} (1 + \mathrm{e}^{-u})^{p+j}} \right. \\ &\left. - \frac{(\alpha - 1)}{2(1 - \mathrm{e}^{-u})^q (1 + \mathrm{e}^{-u})^p} \right\} \mathrm{e}^{-u} \mathrm{d}u, \end{split}$$

for $q, p \in \{\alpha \rho, \alpha \hat{\rho}\}$ and $i, j \in \{0, 1\}$ such that $q + p = \alpha$ and i + j = 1.

Deep Factorisation $\alpha \in (1,2)$

Theorem

Fix $\alpha \in (1,2)$. Up to a multiplicative constant, the ascending ladder MAP exponent, κ , is given by

$$\begin{array}{c} \sin(\pi\alpha\rho)\phi_{\alpha\rho+1,\alpha\hat{\rho}}(\lambda+\alpha-1) \\ +\sin(\pi\alpha\rho)\phi_{\alpha\hat{\rho},\alpha\rho+1}'(0+) \end{array} \\ -\sin(\pi\alpha\hat{\rho})\frac{\phi_{\alpha\hat{\rho},\alpha\rho+1}(\lambda+\alpha-1)}{\lambda+\alpha-1} \\ -\sin(\pi\alpha\rho)\frac{\phi_{\alpha\rho,\alpha\hat{\rho}+1}(\lambda+\alpha-1)}{\lambda+\alpha-1} \\ \end{array} \\ \begin{array}{c} \sin(\pi\alpha\hat{\rho})\frac{\phi_{\alpha\rho,\alpha\hat{\rho}+1}(\lambda+\alpha-1)}{\lambda+\alpha-1} \\ +\sin(\pi\alpha\hat{\rho})\phi_{\alpha\rho,\alpha\hat{\rho}+1}'(\alpha+\alpha-1) \\ +\sin(\pi\alpha\hat{\rho})\phi_{\alpha\rho,\alpha\hat{\rho}+1}(0+) \end{array} \end{array}$$

for $\lambda \geq 0$.

Up to a multiplicative constant, the dual ascending ladder MAP exponent, $\boldsymbol{\hat{\kappa}}_{\!\scriptscriptstyle I}$ is given by

$$\begin{bmatrix} \sin(\pi\alpha\hat{\rho})\phi_{\alpha\hat{\rho}+1,\,\alpha\rho}(\lambda) + \sin(\pi\alpha\hat{\rho})\phi_{\alpha\rho,\,\alpha\hat{\rho}+1}'(0+) & -\sin(\pi\alpha\hat{\rho})\frac{\phi_{\alpha\rho,\,\alpha\hat{\rho}+1}(\lambda)}{\lambda} \\ \\ -\sin(\pi\alpha\rho)\frac{\phi_{\alpha\hat{\rho},\,\alpha\rho+1}(\lambda)}{\lambda} & \sin(\pi\alpha\rho)\phi_{\alpha\rho+1,\,\alpha\hat{\rho}}(\lambda) + \sin(\pi\alpha\rho)\phi_{\alpha\hat{\rho},\,\alpha\rho+1}'(0+) \end{bmatrix}$$

for $\lambda > 0$.

Tools: 1

Recall that

$$\kappa(\lambda) = \mathsf{diag}(\Phi_1(\lambda), \Phi_{-1}(\lambda)) - \begin{bmatrix} -\Lambda_{1,-1} & \Lambda_{1,-1} \int \mathrm{e}^{-\lambda x} F_{1,-1}^+(\mathrm{d} x) \\ \Lambda_{-1,1} \int \mathrm{e}^{-\lambda x} F_{-1,1}^+(\mathrm{d} x) & -\Lambda_{-1,1} \end{bmatrix}$$

In general, we can write

$$\Phi_i(\lambda) = n_i(\zeta = \infty) + \int_0^\infty (1 - e^{-\lambda x}) n_i(\varepsilon_\zeta \in dx, J(\zeta) = i, \zeta < \infty),$$

where $\zeta = \inf\{s \ge 0 : \varepsilon(s) > 0\}$ for the canonical excursion ε of ξ from its maximum.

Tools: 1

Lemma

Let $T_a=\inf\{t>0: \xi(t)>a\}$. Suppose that $\limsup_{t\to\infty}\xi(t)=\infty$ (i.e. the ladder height process (H^+,J^+) does not experience killing). Then for x>0 we have up to a constant

$$\begin{split} &\lim_{a\to\infty} \mathbf{P}_{0,i}(\xi(T_a) - a \in \mathsf{d} x, J(T_a) = 1) \\ &= \Big[\pi_1 n_1(\varepsilon(\zeta) > x, J(\zeta) = 1, \zeta < \infty) + \pi_{-1} \Lambda_{-1,1} (1 - F_{-1,1}^+(x)) \Big] \mathsf{d} x. \end{split}$$

- (π_{-1}, π_1) is easily derived by solving $\pi \mathbf{Q} = 0$.
- We can work with the LHS in the above lemma e.g. via

$$\begin{split} &\lim_{a \to \infty} \mathbf{P}_{0,1}(\xi(T_a) - a > u, J(T_a) = 1) \\ &= \lim_{a \to \infty} \mathbb{P}_{e^{-a}}(X_{\tau_1^+ \wedge \tau_{-1}^-} > e^u; \ \tau_1^+ < \tau_{-1}^-). \end{split}$$

Tools: 2

- The problem with applying the Markov additive renewal in the case that $\alpha \in (1,2)$ is that (H^+, J^+) does experience killing.
- It turns out that $\det \mathbf{F}(z) = 0$ has a root at $z = \alpha 1$. Moreover the exponent of a MAP (Esscher transform of \mathbf{F})

$$\mathbf{F}^{\circ}(z) = \mathbf{\Delta}_{\boldsymbol{\pi}^{\circ}}^{-1} \mathbf{F}(z + \alpha - 1) \mathbf{\Delta}_{\boldsymbol{\pi}^{\circ}},$$

where $\pi^{\circ} = (\sin(\pi\alpha\hat{\rho}), \sin(\pi\alpha\rho))$ is the stationary distribution of $\mathbf{F}^{\circ}(0)$.

- And $\kappa^{\circ}(\lambda) = \Delta_{\pi^{\circ}}^{-1} \kappa(\lambda \alpha + 1) \Delta_{\pi^{\circ}}$ does not experience killing.
- However, in order to use Markov additive renewal theory to compute κ° , need to know something about the rssMp to which the MAP with exponent \mathbf{F}° corresponds.

Riesz-Bogdan-Zak transform

Theorem (Riesz–Bogdan–Zak transform)

Suppose that X is a stable process as outlined in the introduction. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0$$

Then, for all $x \in \mathbb{R} \setminus \{0\}$, $(-1/X_{\eta(t)})_{t \geq 0}$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}_{-1/x}^{\circ})$, where

$$\frac{\mathsf{d}\mathbb{P}_{\mathsf{x}}^{\lozenge}}{\mathsf{d}\mathbb{P}_{\mathsf{x}}}\bigg|_{\mathcal{F}_t} = \left(\frac{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathsf{sgn}(X_t)}{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathsf{sgn}(x_t)}\right) \bigg|\frac{X_t}{\mathsf{x}}\bigg|^{\alpha-1} \mathbf{1}_{(t<\tau^{\{0\}})}$$

and $\mathcal{F}_t := \sigma(X_s : s \le t)$, $t \ge 0$. Moreover, the process $(X, \mathbb{P}_x^{\circ})$, $x \in \mathbb{R} \setminus \{0\}$ is a self-similar Markov process with underlying MAP via the Lamperti-Kiu transform given by $\mathbf{F}^{\circ}(z)$.

Riesz-Bogdan-Zak
$$(X,\mathbb{P}) \qquad \text{Doob } \overset{\text{Riesz-Bogdan-Zak}}{h\text{-transform}} \qquad (X,\mathbb{P}^{\circ})$$

$$\uparrow \qquad \qquad \qquad \uparrow$$
Lamperti-Kiu
$$\downarrow \qquad \qquad \qquad \downarrow$$

$$MAP: \mathbf{F}(z) \qquad \overset{\text{Esscher}}{\longleftrightarrow} \qquad MAP: \mathbf{F}^{\circ}(z)$$

Computing $\Phi_1^{\circ}(\lambda)$ from $\kappa^{\circ}(\lambda)$

If we write $\overline{X}_t = \sup_{s \le t} X_s$ and $\underline{X}_t = \inf_{s \le t} X_s$, $t \ge 0$, then we also have

$$\begin{split} &\pi_1^{\circ} n_1^{\circ}(\varepsilon(\zeta) > u, J(\zeta) = 1, \zeta < \infty) \\ &= -\frac{\mathrm{d}}{\mathrm{d}u} \lim_{x \to 0} \mathbb{P}_x^{\circ} \left(X_{\tau_1^+} > \mathrm{e}^u, \overline{X}_{\tau_1^{+-}} > |\underline{X}_{\tau_1^{+-}}|, \tau_1^+ < \tau_{-1}^- \right) \\ &= -\lim_{x \to 0} \frac{\mathrm{d}}{\mathrm{d}u} \int_0^1 \mathbb{P}_x^{\circ} (X_{\tau_1^+} > \mathrm{e}^u, \overline{X}_{\tau_1^{+-}} \in \mathrm{d}z, \tau_1^+ < \tau_{-z}^-) \\ &= -\lim_{x \to 0} \int_0^1 \frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}u} \, \mathbb{P}_x^{\circ} (X_{\tau_1^+} > \mathrm{e}^u, \overline{X}_{\tau_1^{+-}} \le y, \tau_1^+ < \tau_{-z}^-) \Big|_{y=z} \, \mathrm{d}z \\ &= -\lim_{x \to 0} \int_0^1 \frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}u} \, \mathbb{P}_x^{\circ} (X_{\tau_y^+} > \mathrm{e}^u, \tau_y^+ < \tau_{-z}^-) \Big|_{y=z} \, \mathrm{d}z \end{split}$$

Computing $\Phi_1^{\circ}(\lambda)$ from $\kappa^{\circ}(\lambda)$

For 0 < x < y < 1 and u > 0,

$$\begin{split} -\frac{\mathsf{d}}{\mathsf{d}u} \lim_{x \to 0} \mathbb{P}_{x}^{\circ} \left(X_{\tau_{y}^{+}} > \mathsf{e}^{u}, \tau_{y}^{+} < \tau_{-z}^{-} \right) \\ &= -\frac{\mathsf{d}}{\mathsf{d}u} \lim_{x \to 0} \mathbb{P}_{-1/x} (X_{\tau^{(-1/y,1/z)}} \in (-\mathsf{e}^{-u}, 0)) \\ &= -\frac{\mathsf{d}}{\mathsf{d}u} \lim_{x \to 0} \hat{\mathbb{P}}_{1/x} (X_{\tau^{(-1/z,1/y)}} \in (0, \mathsf{e}^{-u})) \\ &= \hat{p}_{\pm \infty} \left(\frac{2yz\mathsf{e}^{-u} - z + y}{y + z} \right) \frac{2yz}{y + z} \mathsf{e}^{-u}, \end{split}$$

where

$$\hat{p}_{\pm\infty}(y) = 2^{\alpha-1} \frac{\Gamma(2-\alpha)}{\Gamma(1-\alpha\hat{\rho})\Gamma(1-\alpha\rho)} (1+y)^{-\alpha\hat{\rho}} (1-y)^{-\alpha\rho}$$

was computed recently in a paper by K. Pardo & Watson (2014).

Computing $\Phi_1^{\circ}(\lambda)$ from $\kappa^{\circ}(\lambda)$

Putting the pieces together, we have, up to a constant

$$\begin{split} \Phi_1^{\circ}(\lambda) &= \int_0^{\infty} (1 - \mathrm{e}^{-\lambda x}) n_1^{\circ}(\varepsilon_{\zeta} \in \mathsf{d} x, J(\zeta) = 1, \zeta < \infty) \\ &= \lambda \int_0^{\infty} \mathrm{e}^{-\lambda x} n_1^{\circ}(\varepsilon_{\zeta} > x, J(\zeta) = 1, \zeta < \infty) \\ &= \phi_{\alpha \rho + 1, \alpha \hat{\rho}}(\lambda) \end{split}$$

Thank you!