Problem	Tools	The symmetric case	The non-symmetric case	The law of T_0	Applications
0000	0000	00	0000000	0000	000

Law of the time to absorption at zero of a (not-necessarily) symmetric stable Lévy process

Alexey Kuznetsov¹ Andreas E. Kyprianou² Juan-Carlos Pardo³ Alex Watson²

¹York University, Toronto, Canada. ²Unversity of Bath, UK. ³CIMAT, Mexico.

Problem ●000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
Stable	proce	sses			

Definition I

A Lévy process X is called (strictly) α -stable if it satisfies the scaling property

$$\left(cX_{c^{-\alpha}t}\right)_{t\geq 0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Necessarily $\alpha \in (0,2]$. $[\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

Problem ●000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
Stable	proce	sses			

Definition I

A Lévy process X is called (strictly) α -stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_{x}}\stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \quad c>0.$$

Necessarily $\alpha \in (0, 2]$. $[\alpha = 2 \rightarrow BM$, exclude this.] The quantity $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

Definition II

Let α, ρ be admissible parameters, X the Lévy process with Lévy density

$$c_+ x^{-(\alpha+1)} \mathbbm{1}_{(x>0)} + c_- |x|^{-(\alpha+1)} \mathbbm{1}_{(x<0)}, \qquad x \in \mathbb{R},$$

no Gaussian part.

Problem 0●00	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Stable	proces	sses			

Additional notes:

- X does not have one-sided jumps,
- We assume that $\alpha \in (1, 2)$, in which case X is point-recurrent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem 00●0	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Proble	em: sta	tement			

The problem

Let

$$T_0 = \inf\{t > 0 : X_t = 0\}$$

be the first hitting time of $\{0\}$. Can we find an explicit expression for

 $p(t)dt := \mathsf{P}_1(T_0 \in dt)?$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Problem	Tools	The symmetric case	The non-symmetric case	The law of T ₀	Applications
000●	0000	00		0000	000
Problem	n: histo	ory			

- G. Peskir (2008) The law of the hitting times to points by a stable Lévy process with no negative jumps. Electron. Commun. Probab., 13, 653–659.
- K. Yano, Y. Yano, and M. Yor. (2009) On the laws of first hitting times of points for one-dimensional symmetric stable Lévy processes. In *Séminaire de Probabilités XLII*, volume 1979 of *Lecture Notes in Math.*, pages 187–227. Springer, Berlin.
- F. Cordero. (2010) On the excursion theory for the symmetric stable Lévy processes with index α ∈]1,2] and some applications. PhD thesis, Université Pierre et Marie Curie – Paris VI, 2010.

Problem 0000	Tools ●000	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Positive	e, self-s	similar Marko	v processes		

α -pssMp

 $[0, \infty)$ -valued Markov process, equipped with initial measures P_x , x > 0, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\Big|_{\mathsf{P}_x} \stackrel{d}{=} X|_{\mathsf{P}_{cx}}, \qquad x, c>0$$

Problem 0000	Tools 0●00	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
Lampe	erti trai	nsform			

$$\begin{split} & (X, \mathsf{P}_x)_{x>0} \text{ pssMp} & \leftrightarrow & (\xi, \mathbb{P}_y)_{y \in \mathbb{R}} \text{ killed Lévy} \\ & X_t = \exp(\xi_{\mathcal{S}(t)}), & & \xi_s = \log(X_{\mathcal{T}(s)}), \end{split}$$

S a random time-change

T a random time-change

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem 0000	Tools 0●00	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Lampe	erti tra	nsform			

$$\begin{array}{ll} (X, \mathsf{P}_x)_{x>0} \ \mathsf{pssMp} & \leftrightarrow & (\xi, \mathbb{P}_y)_{y \in \mathbb{R}} \ \mathsf{killed} \ \mathsf{Lévy} \\ \\ X_t = \exp(\xi_{\mathcal{S}(t)}), & \xi_s = \log(X_{\mathcal{T}(s)}), \end{array}$$

S a random time-change

T a random time-change

X never hits zero X hits zero continuously X hits zero by a jump

$$\leftrightarrow$$

$$\begin{cases} \xi \to \infty \text{ or } \xi \text{ oscillates} \\ \xi \to -\infty \\ \xi \text{ is killed} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Problem 0000	Tools 00●0	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Examp	le 1				

Problem 0000	Tools 00●0	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Exampl	e 1				

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Problem 0000	Tools 00●0	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Exampl	e 1				

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Then X^* is a pssMp, with Lamperti transform ξ^* .

Problem 0000	Tools 00●0	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
Exampl	e 1				

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t < \tau_0^-)}, \qquad t \ge 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$

Then X^* is a pssMp, with Lamperti transform ξ^* . ξ^* has Lévy density

$$c_+rac{e^{x}}{(e^{x}-1)^{lpha+1}}\mathbb{1}_{(x>0)}+c_-rac{e^{x}}{(1-e^{x})^{lpha+1}}\mathbb{1}_{(x<0)},$$

(日) (日) (日) (日) (日) (日) (日) (日)

and is killed at rate $c_{-}/\alpha = \frac{\Gamma(\alpha)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})}$.

Problem	Tools	The symmetric case	The non-symmetric case	The law of T ₀	Applications
0000	000●	00		0000	000
Exampl	e 2				

Let X be a symmetric α -stable process with $\alpha \in (1,2)$, and define

$$R_t = |X_t| \mathbb{1}_{(t < T_0)}, \qquad t \ge 0.$$

Problem 0000	Tools 000●	The symmetric case	The non-symmetric case	The law of T ₀ 0000	Applications 000
Example	e 2				

Let X be a symmetric α -stable process with $\alpha \in (1,2)$, and define

$$R_t = |X_t| \mathbb{1}_{(t < T_0)}, \qquad t \ge 0.$$

Then *R* is a pssMp with Lamperti-transform $\xi = \xi^{L} \oplus \xi^{C}$, such that

(i) The Lévy process ξ^{L} has characteristic exponent

$$\Psi^*(heta) - k/lpha, \qquad heta \in \mathbb{R},$$

where Ψ^* is the characteristic exponent of the process ξ^* .

(ii) The process ξ^{C} is a compound Poisson process whose jumps occur at rate k/α , whose Lévy density is

$$\pi^{\mathsf{C}}(y) = k \frac{e^{y}}{(1+e^{y})^{\alpha+1}}, \qquad y \in \mathbb{R}$$

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000	●○		0000	000
Exampl	e 2				

Let X be an α -stable process with $\alpha \in (1,2)$, and define

$$R_t = |X_t| \mathbb{1}_{(t < T_0)}, \qquad t \ge 0.$$

Then *R* is a pssMp with Lamperti-transform $\xi = \xi^{L} \oplus \xi^{C}$, such that (i)

$$\Psi(heta) = 2^{lpha} rac{\Gamma(lpha/2 - \mathrm{i} heta/2)}{\Gamma(-\mathrm{i} heta/2)} rac{\Gamma(1/2 + \mathrm{i} heta/2)}{\Gamma((1-lpha)/2 + \mathrm{i} heta/2)}, \qquad heta \in \mathbb{R}.$$

(ii) For later convenience we also note $\psi(z) := \log \mathbb{E} e^{-z \alpha \xi_1}$ is given by

$$\psi(z) = -2^{\alpha} \frac{\Gamma(1/2 - \alpha z/2)}{\Gamma(1/2 - \alpha(1+z)/2)} \frac{\Gamma(\alpha(1+z)/2)}{\Gamma(\alpha z/2)}, \qquad \text{Re}\, z \in (-1, 1/\alpha).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000	○●		0000	000
Standa	rd thec	ory for pssMp			

(i) (T_0, P_1) has the same law as $(I(\alpha\xi), \mathbb{P}_0)$, where

$$I(\alpha\xi) = \int_0^\infty e^{\alpha\xi_t} \,\mathrm{d}t$$

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000	○●		0000	000
Standa	rd the	ory for pssMp			

(i) (T_0, P_1) has the same law as $(I(\alpha\xi), \mathbb{P}_0)$, where

$$I(\alpha\xi) = \int_0^\infty e^{\alpha\xi_t} \,\mathrm{d}t$$

(ii) If $\mathcal{M}(s) := \mathbb{E}_0[I(\alpha\xi)^{s-1}]$, $s \in \mathbb{C}$, then when the right hand side is well defined,

$$\mathcal{M}(s+1) = -rac{s}{\psi(-s)}\mathcal{M}(s),$$

(日) (日) (日) (日) (日) (日) (日) (日)

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000	⊙●		0000	000
Standa	rd the	orv for pssMp			

(i) (T_0, P_1) has the same law as $(I(\alpha\xi), \mathbb{P}_0)$, where

$$I(\alpha\xi) = \int_0^\infty e^{\alpha\xi_t} \,\mathrm{d}t$$

(ii) If $\mathcal{M}(s) := \mathbb{E}_0[I(\alpha\xi)^{s-1}]$, $s \in \mathbb{C}$, then when the right hand side is well defined,

$$\mathcal{M}(s+1) = -rac{s}{\psi(-s)}\mathcal{M}(s),$$

(iii) Because of the explicit form of ψ , we can guess (and then prove) that

$$\mathsf{E}_{1}[T_{0}^{s-1}] = \sin(\pi/\alpha) \frac{\cos(\frac{\pi\alpha}{2}(s-1))}{\sin(\pi(s-1+\frac{1}{\alpha}))} \frac{\Gamma(1+\alpha-\alpha s)}{\Gamma(2-s)},$$

for Re $s \in \left(-\frac{1}{\alpha}, 2-\frac{1}{\alpha}\right).$

Let *E* be a finite state space and $(\mathscr{G}_t)_{t\geq 0}$ a standard filtration. A càdlàg process (ξ, J) in $\mathbb{R} \times E$ with law \mathbb{P} is called a *Markov* additive process (MAP) with respect to $(\mathscr{G}_t)_{t\geq 0}$ if $(J(t))_{t\geq 0}$ is a continuous-time, irreducible Markov chain in *E*, and the following property is satisfied, for any $i \in E, s, t \geq 0$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Given
$$\{J(t) = i\}$$
, the pair $(\xi(t+s) - \xi(t), J(t+s))$ is
independent of \mathscr{G}_t , and has the same distribution as
 $(\xi(s) - \xi(0), J(s))$ given $\{J(0) = i\}$.

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
Pathw	ise des	cription of a	MAP		

The pair (ξ, J) is a Markov additive process if and only if, for each $i, j \in E$, there exist a sequence of iid Lévy processes $(\xi_i^n)_{n\geq 0}$ and a sequence of iid random variables $(U_{ij}^n)_{n\geq 0}$, independent of the chain J, such that if $T_0 = 0$ and $(T_n)_{n\geq 1}$ are the jump times of J, the process ξ has the representation

$$\xi(t) = \mathbb{1}_{(n>0)}(\xi(T_n) + U^n_{J(T_n),J(T_n)}) + \xi^n_{J(T_n)}(t-T_n),$$

for $t \in [T_n, T_{n+1}), n \ge 0$.

• Take the statespace of the MAP to be $E = \{1, 2\}$.

N 4			. (C)	D D'	>
0000	0000	00	000000	0000	000
Problem Tools	The symmetric case The non-symmetric case	The non-symmetric case	The law of T ₀	Applications	

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

- Take the statespace of the MAP to be $E = \{1, 2\}$.
- Let

$$X_t = x \exp \{\xi(\tau(t)) + i\pi(J(\tau(t)) + 1) \qquad 0 \le t < T_0, \}$$

where

$$au(t) = \inf\left\{s > 0: \int_0^s \exp(lpha \xi(u)) \mathrm{d}u > t|x|^{-lpha}
ight\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty \mathrm{e}^{\alpha\xi(u)} \mathrm{d}u.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

N 4			. (C)	D D'	>
0000	0000	00	000000	0000	000
Problem Tools	The symmetric case The non-symmetric case	The non-symmetric case	The law of T ₀	Applications	

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

- Take the statespace of the MAP to be $E = \{1, 2\}$.
- Let

$$X_t = x \exp \{\xi(\tau(t)) + i\pi(J(\tau(t)) + 1) \qquad 0 \le t < T_0, \}$$

where

$$au(t) = \inf\left\{s > 0: \int_0^s \exp(lpha \xi(u)) \mathrm{d}u > t|x|^{-lpha}
ight\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty \mathrm{e}^{\alpha\xi(u)} \mathrm{d}u.$$

 Then X_t is a real-valued self-similar Markov process in the sense that the law of (cX_{tc^{-α}} : t ≥ 0) under P_x is P_{cx}.

N 4					``
0000	0000	00	0000000	0000	000
Problem Tools	The symmetric case The	The non-symmetric case	The law of T_0	Applications	

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

- Take the statespace of the MAP to be $E = \{1, 2\}$.
- Let

$$X_t = x \exp \{\xi(\tau(t)) + i\pi(J(\tau(t)) + 1) \qquad 0 \le t < T_0, \}$$

where

$$au(t) = \inf\left\{s > 0: \int_0^s \exp(lpha \xi(u)) \mathrm{d}u > t|x|^{-lpha}
ight\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty \mathrm{e}^{\alpha\xi(u)} \mathrm{d}u.$$

- Then X_t is a real-valued self-similar Markov process in the sense that the law of (cX_{tc^{-α}} : t ≥ 0) under P_x is P_{cx}.
- The converse (within a special class of rssMps) is also true.

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
Charac	teristic	s of a MAP			

• Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000		000●0000	0000	000
Chara	cteristi	cs of a MAP			

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each i ∈ E, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).

(日) (日) (日) (日) (日) (日) (日) (日)

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000		000●0000	0000	000
Chara	cteristi	cs of a MAP			

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each i ∈ E, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000		000●0000	0000	000
Chara	cteristi	cs of a MAP			

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each i ∈ E, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).

• Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
Charac	teristi	cs of a MAP			

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each i ∈ E, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.
- Let

$$F(z) = \operatorname{diag}(\psi_1(z), \dots, \psi_N(z)) + Q \circ G(z), \qquad (1)$$

(when it exists), where \circ indicates elementwise multiplication.

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀	Applications
0000	0000		000●0000	0000	000
Char	acteristic	s of a MAP			

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each i ∈ E, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.

Let

$$F(z) = \operatorname{diag}(\psi_1(z), \dots, \psi_N(z)) + Q \circ G(z), \qquad (1)$$

(when it exists), where \circ indicates elementwise multiplication.

• The matrix exponent of the MAP (ξ, J) is given by

$$\mathbb{E}_i(e^{z\xi(t)}; J(t) = j) = (e^{F(z)t})_{i,j}, \qquad i, j \in E,$$

(when it exists).

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> 0 0000	Applications 000
An α -s	table p	process is a re	sМр		

 An α-stable process is a rssMp. Remarkably (thanks to work of Chaumont, Panti and Rivero) we can compute precisely its matrix exponent explicitly

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- An α-stable process is a rssMp. Remarkably (thanks to work of Chaumont, Panti and Rivero) we can compute precisely its matrix exponent explicitly
- Denote the underlying MAP (ξ, J), we prefer to give the matrix exponent of (-αξ, J) as follows:

$$F(z) = \begin{pmatrix} -\frac{\Gamma(\alpha(1+z))\Gamma(1-\alpha z)}{\Gamma(\alpha\hat{\rho}+\alpha z)\Gamma(1-\alpha\hat{\rho}-\alpha z)} & \frac{\Gamma(\alpha(1+z))\Gamma(1-\alpha z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \frac{\Gamma(\alpha(1+z))\Gamma(1-\alpha z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & -\frac{\Gamma(\alpha(1+z))\Gamma(1-\alpha z)}{\Gamma(\alpha\rho+\alpha z)\Gamma(1-\alpha\rho-\alpha z)} \end{pmatrix}$$

for $\operatorname{Re} z \in (-1, 1/\alpha)$.

Problem 0000	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000						
Cram	Cramér condition for a MAD										

(i) Suppose that $z \in \mathbb{C}$ is such that F(z) is defined. Then, the matrix F(z) has a real simple eigenvalue $\kappa(z)$, which is larger than the real part of all its other eigenvalues. (ii) Suppose that F is defined in some open interval D of \mathbb{R} . Then, the leading eigenvalue κ of F is smooth and convex on D.

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> 0	Applications						
0000	0000		00000●00	0000	000						
Cramé	Cramér condition for a MAP										

(i) Suppose that $z \in \mathbb{C}$ is such that F(z) is defined. Then, the matrix F(z) has a real simple eigenvalue $\kappa(z)$, which is larger than the real part of all its other eigenvalues. (ii) Suppose that F is defined in some open interval D of \mathbb{R} . Then, the leading eigenvalue κ of F is smooth and convex on D.

Assumption (Cramér condition for a MAP)

There exists $z_0 < 0$ such that F(s) exists on $(z_0, 0)$, and some $\theta \in (0, -z_0)$, called the Cramér number, such that $\kappa(-\theta) = 0$.

Problem	Tools	The symmetric case	The non-symmetric case	The law of <i>T</i> 0	Applications						
0000	0000		00000●00	0000	000						
Cramé	Cramér condition for a MAP										

(i) Suppose that $z \in \mathbb{C}$ is such that F(z) is defined. Then, the matrix F(z) has a real simple eigenvalue $\kappa(z)$, which is larger than the real part of all its other eigenvalues. (ii) Suppose that F is defined in some open interval D of \mathbb{R} . Then, the leading eigenvalue κ of F is smooth and convex on D.

Assumption (Cramér condition for a MAP)

There exists $z_0 < 0$ such that F(s) exists on $(z_0, 0)$, and some $\theta \in (0, -z_0)$, called the Cramér number, such that $\kappa(-\theta) = 0$.

Note that this dictates " $\kappa'(0) > 0$ " which ensures that $\lim_{t\uparrow\infty} \xi_t/t = \kappa'(0) > 0$.

0000	0000	00	00000000	0000	000
Problem	Tools	The symmetric case	The non-symmetric case	The law of T_0	Applications

Integrated exponential MAPs

• For a MAP ξ , let

$$I(-\xi) = \int_0^\infty \exp(-\xi(t)) \,\mathrm{d}t.$$

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case 000000●0	The law of <i>T</i> 0 0000	Applications

Integrated exponential MAPs

• For a MAP ξ , let

$$I(-\xi) = \int_0^\infty \exp(-\xi(t)) \,\mathrm{d}t.$$

One way to characterise the law of *I*(−ξ) is via its Mellin transform, which we write as *M*(s). This is the vector in ℝ^N whose *i*th element is given by

$$\mathcal{M}_i(s) = \mathbb{E}_i[I(-\xi)^{s-1}], \qquad i \in E.$$

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case 0000000●	The law of <i>T</i> ₀ 0000	Applications 000
Vector-	valued	functional	equation		

Suppose that ξ satisfies the Cramér condition with Cramér number $\theta \in (0, 1)$. Then, $\mathcal{M}(s)$ is finite and analytic when Re $s \in (0, 1 + \theta)$, and we have the following vector-valued functional equation:

$$\mathcal{M}(s+1) = -s(\mathcal{F}(-s))^{-1}\mathcal{M}(s), \ \text{for } s \in (0, heta).$$

 Suffices to consider the case that the stable process starts from |x| = 1.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Suffices to consider the case that the stable process starts from |x| = 1.
- Recall that $T_0 = \int_0^\infty \exp\{-(-\alpha\xi(u))\} du$ and that $E = \{1, 2\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Suffices to consider the case that the stable process starts from |x| = 1.
- Recall that $T_0 = \int_0^\infty \exp\{-(-\alpha\xi(u))\} du$ and that $E = \{1, 2\}$
- It is obvious (using asymmetry) that E₁(T₀^{s-1}) is the same expression as E₂(T₀^{s-1}) modulo interchanging the roles of ρ and ρ̂.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Suffices to consider the case that the stable process starts from |x| = 1.
- Recall that $T_0 = \int_0^\infty \exp\{-(-\alpha\xi(u))\} du$ and that $E = \{1,2\}$
- It is obvious (using asymmetry) that E₁(T₀^{s-1}) is the same expression as E₂(T₀^{s-1}) modulo interchanging the roles of ρ and ρ̂.
- Easy to check that $\kappa(1/\alpha 1) = 0$, i.e. $\theta = 1 1/\alpha < 1$.

- Suffices to consider the case that the stable process starts from |x| = 1.
- Recall that $T_0 = \int_0^\infty \exp\{-(-lpha\xi(u))\} du$ and that $E = \{1,2\}$
- It is obvious (using asymmetry) that E₁(T₀^{s-1}) is the same expression as E₂(T₀^{s-1}) modulo interchanging the roles of ρ and ρ̂.
- Easy to check that $\kappa(1/\alpha 1) = 0$, i.e. $\theta = 1 1/\alpha < 1$.
- Guess a solution to the vector-valued functional equation and then verify uniqueness

Theorem

For
$$-1/lpha < {\sf Re}(s) < 2-1/lpha$$
 we have

$$\mathbb{E}_{1}[T_{0}^{s-1}] = \frac{\sin\left(\frac{\pi}{\alpha}\right)}{\sin(\pi\hat{\rho})} \frac{\sin\left(\pi\hat{\rho}(1-\alpha+\alpha s)\right)}{\sin\left(\frac{\pi}{\alpha}(1-\alpha+\alpha s)\right)} \frac{\Gamma(1+\alpha-\alpha s)}{\Gamma(2-s)}$$

If $\alpha = m/n$ (where *m* and *n* are coprime natural numbers) then for all t > 0 we have

$$p(t) = \frac{\sin\left(\frac{\pi}{\alpha}\right)}{\pi\sin(\pi\hat{\rho})} \sum_{\substack{k\geq 1\\ k\neq -1 \pmod{m}}} \sin(\pi\hat{\rho}(k+1)) \frac{\sin\left(\frac{\pi}{\alpha}k\right)}{\sin\left(\frac{\pi}{\alpha}(k+1)\right)} \frac{\Gamma\left(\frac{k}{\alpha}+1\right)}{k!} (-1)^{k-1} t^{-1-\frac{k}{\alpha}}$$
$$- \frac{\sin\left(\frac{\pi}{\alpha}\right)^2}{\pi\sin(\pi\hat{\rho})} \sum_{\substack{k\geq 1\\ k\neq 0 \pmod{n}}} \frac{\sin(\pi\alpha\hat{\rho}k)}{\sin(\pi\alpha k)} \frac{\Gamma\left(k-\frac{1}{\alpha}\right)}{\Gamma\left(\alpha k-1\right)} t^{-k-1+\frac{1}{\alpha}}$$
$$- \frac{\sin\left(\frac{\pi}{\alpha}\right)^2}{\pi^2\alpha\sin(\pi\hat{\rho})} \sum_{k\geq 1} (-1)^{km} \frac{\Gamma\left(kn-\frac{1}{\alpha}\right)}{(km-2)!} R_k(t) t^{-kn-1+\frac{1}{\alpha}},$$

where

$$\begin{split} R_k(t) &:= \pi \alpha \hat{\rho} \cos(\pi \hat{\rho} km) \\ &- \sin(\pi \hat{\rho} km) \left[\pi \cot\left(\frac{\pi}{\alpha}\right) - \psi \left(kn - \frac{1}{\alpha}\right) + \alpha \psi (km - 1) + \ln(t) \right]. \end{split}$$

The three series converge uniformly for $t \in [\varepsilon, \infty)$ and any $\varepsilon > 0$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Define $||x|| = \min_{n \in \mathbb{Z}} |x - n|$, and

$$\mathcal{L} = \mathbb{R} \setminus (\mathbb{Q} \cup \{ x \in \mathbb{R} : \lim_{n \to \infty} \frac{1}{n} \ln ||nx|| = 0 \}).$$

If $\alpha \notin \mathcal{L} \cup \mathbb{Q}$ then

$$p(t) = \frac{\sin\left(\frac{\pi}{\alpha}\right)}{\pi\sin(\pi\hat{\rho})} \sum_{k\geq 1} \sin(\pi\hat{\rho}(k+1)) \frac{\sin\left(\frac{\pi}{\alpha}k\right)}{\sin\left(\frac{\pi}{\alpha}(k+1)\right)} \frac{\Gamma\left(\frac{k}{\alpha}+1\right)}{k!} (-1)^{k-1} t^{-1-\frac{k}{\alpha}} - \frac{\sin\left(\frac{\pi}{\alpha}\right)^2}{\pi\sin(\pi\hat{\rho})} \sum_{k\geq 1} \frac{\sin(\pi\alpha\hat{\rho}k)}{\sin(\pi\alpha k)} \frac{\Gamma\left(k-\frac{1}{\alpha}\right)}{\Gamma\left(\alpha k-1\right)} t^{-k-1+\frac{1}{\alpha}}.$$

The two series in the right-hand side of the above formula converge uniformly for $t \in [\varepsilon, \infty)$ and any $\varepsilon > 0$.

Let X be an α stable process with $\alpha \in (1,2)$ and let h the function

$$h(x) = -\Gamma(1-\alpha) \frac{\sin(\pi \alpha \hat{\rho})}{\pi} x^{\alpha-1}, \qquad x > 0,$$

and the same expression with $\hat{\rho}$ replaced by ρ when x < 0.

• The function *h* is invariant for the stable process killed on hitting 0, that is,

$$E_x[h(X_t), t < T_0] = h(x), \qquad t > 0, x \neq 0.$$
 (2)

Therefore, we may define a family of measures P_x^{T} by

$$\mathsf{P}^{\updownarrow}_{x}(\Lambda) = rac{1}{h(x)}\mathsf{E}_{x}[h(X_{t})\mathbbm{1}_{\Lambda}, t < T_{0}], \qquad x \neq 0, \, \Lambda \in \mathcal{F}_{t},$$

for any $t \geq 0$.

Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an α stable process with $\alpha \in (1,2)$ and let h the function

$$h(x) = -\Gamma(1-\alpha) \frac{\sin(\pi \alpha \hat{\rho})}{\pi} x^{\alpha-1}, \qquad x > 0,$$

and the same expression with $\hat{\rho}$ replaced by ρ when x < 0.

• The function h can be represented as

$$h(x) = \lim_{q \downarrow 0} rac{\mathsf{P}_x(\mathcal{T}_0 > \mathbf{e}_q)}{n(\zeta > \mathbf{e}_q)}, \qquad x
eq 0,$$

where \mathbf{e}_q is an independent exponentially distributed random variable with parameter q. Furthermore, for any stopping time T and $\Lambda \in \mathcal{F}_T$, and any $x \neq 0$,

$$\lim_{q \downarrow 0} \mathsf{P}_{\mathsf{x}}(\Lambda, \, T < \mathbf{e}_q | \, T_0 > \mathbf{e}_q) = \mathsf{P}_{\mathsf{x}}^{\updownarrow}(\Lambda).$$

			- - ⁺		
0000	0000	00	0000000	0000	000
Problem	Tools	The symmetric case	The non-symmetric case	The law of T_0	Applications

・ロト・日本・モト・モート ヨー うへで

Another representation of $\mathsf{P}^{\updownarrow}$

• $P_x(T_0 > t) = P_1(T_0 > x^{-\alpha}t)$, for $x > 0, t \ge 0$.

0000	0000	00	00000000	0000	000
A . I		• •			

Another representation of $\mathsf{P}^{\updownarrow}$

•
$$P_x(T_0 > t) = P_1(T_0 > x^{-\alpha}t)$$
, for $x > 0, t \ge 0$.

 \bullet The density of ${\cal T}_0$

$$p(t) = -\frac{\sin^2(\pi/\alpha)}{\pi\sin(\pi\bar{\rho})}\frac{\sin(\pi\alpha\rho)}{\sin(\pi\alpha)}\frac{\Gamma(1-1/\alpha)}{\Gamma(\alpha-1)}t^{1/\alpha-2} + O(t^{-1/\alpha-1}).$$

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
A I			D^{\uparrow}		

Another representation of $\mathsf{P}^{\updownarrow}$

•
$$\mathsf{P}_x(T_0 > t) = \mathsf{P}_1(T_0 > x^{-\alpha}t)$$
, for $x > 0, t \ge 0$.

• The density of T_0

$$p(t) = -\frac{\sin^2(\pi/\alpha)}{\pi\sin(\pi\bar{\rho})}\frac{\sin(\pi\alpha\rho)}{\sin(\pi\alpha)}\frac{\Gamma(1-1/\alpha)}{\Gamma(\alpha-1)}t^{1/\alpha-2} + O(t^{-1/\alpha-1}).$$

• Stable (inverse) local time at zero:

$$n(\zeta \in \mathrm{d}t) = rac{lpha-1}{\Gamma(1/lpha)} rac{\sin(\pi/lpha)}{\cos(\pi(
ho-1/2))} t^{1/lpha-2} \,\mathrm{d}t, \qquad t \geq 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem 0000	Tools 0000	The symmetric case	The non-symmetric case	The law of <i>T</i> ₀ 0000	Applications 000
A I			D^{\uparrow}		

Another representation of P^{\downarrow}

- $P_x(T_0 > t) = P_1(T_0 > x^{-\alpha}t)$, for $x > 0, t \ge 0$.
- The density of T_0

$$p(t) = -\frac{\sin^2(\pi/\alpha)}{\pi\sin(\pi\bar{\rho})}\frac{\sin(\pi\alpha\rho)}{\sin(\pi\alpha)}\frac{\Gamma(1-1/\alpha)}{\Gamma(\alpha-1)}t^{1/\alpha-2} + O(t^{-1/\alpha-1}).$$

• Stable (inverse) local time at zero:

$$n(\zeta \in \mathsf{d} t) = rac{lpha - 1}{\Gamma(1/lpha)} rac{\sin(\pi/lpha)}{\cos(\pi(
ho - 1/2))} t^{1/lpha - 2} \, \mathsf{d} t, \qquad t \geq 0.$$

Verify directly

$$h(x) = \lim_{s \to \infty} \frac{\mathsf{P}_x(T_0 > s)}{n(\zeta > s)}.$$

• For any a.s. finite stopping time T and $\Lambda \in \mathcal{F}_T$,

$$P_{x}(\Lambda | T_{0} > T + s)$$

$$= E_{x} \left[\frac{P_{x}(\mathbf{1}_{\Lambda}, T_{0} > T + s | \mathcal{F}_{T})}{P_{x}(T_{0} > T + s)} \right]$$

$$= E_{x} \left[\mathbf{1}_{\Lambda} \mathbf{1}_{(T_{0} > T)} \frac{P_{X_{T}}(T_{0} > s)}{P_{x}(T_{0} > T + s)} \right]$$

$$= E_{x} \left[\mathbf{1}_{\Lambda} \mathbf{1}_{(T_{0} > T)} \frac{h(X_{T})}{h(x)} \frac{P_{X_{T}}(T_{0} > s)}{h(X_{T})n(\zeta > s)} \frac{n(\zeta > s)}{n(\zeta > T + s)} \frac{h(x)n(\zeta > T + s)}{P_{x}(T_{0} > T + s)} \right].$$

• For any a.s. stopping time T, $\Lambda \in \mathcal{F}_T$,

$$\mathsf{P}_{x}^{\updownarrow}(\Lambda) = \lim_{s \to \infty} \mathsf{P}_{x}(\Lambda | T_{0} > T + s).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@