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Stable processes

Definition I

A Lévy process X is called (strictly) α-stable if it satisfies the scaling
property (

cXc−αt

)
t≥0

∣∣∣
Px

d
= X |Pcx

, c > 0.

Necessarily α ∈ (0, 2]. [α = 2→ BM, exclude this.]
The quantity ρ = P0(Xt ≥ 0) will frequently appear as will ρ̂ = 1− ρ.

Definition II

Let α, ρ be admissible parameters, X the Lévy process with Lévy density

c+x
−(α+1)

1(x>0) + c− |x |−(α+1)
1(x<0), x ∈ R,

no Gaussian part.
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Stable processes

Additional notes:

X does not have one-sided jumps,

We assume that α ∈ (1, 2), in which case X is point-recurrent.



Problem Tools The symmetric case The non-symmetric case The law of T0 Applications

Problem: statement

The problem

Let
T0 = inf{t > 0 : Xt = 0}

be the first hitting time of {0}.
Can we find an explicit expression for

p(t)dt := P1(T0 ∈ dt)?
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Problem: history

G. Peskir (2008) The law of the hitting times to points by a
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Positive, self-similar Markov processes

α-pssMp

[0,∞)-valued Markov process,
equipped with initial measures Px , x > 0,
with 0 an absorbing state,
satisfying the scaling property(

cXc−αt

)
t≥0

∣∣∣
Px

d
= X |Pcx

, x , c > 0
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Lamperti transform

(X ,Px)x>0 pssMp

Xt = exp(ξS(t)),

S a random time-change

↔ (ξ,Py )y∈R killed Lévy

ξs = log(XT (s)),

T a random time-change

X never hits zero
X hits zero continuously
X hits zero by a jump

 ↔


ξ →∞ or ξ oscillates

ξ → −∞
ξ is killed
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Example 1

Let X be a stable process, and define

X ∗t = Xt1(t<τ−0 ), t ≥ 0,

where
τ−0 = inf{t > 0 : Xt < 0}.

Then X ∗ is a pssMp, with Lamperti transform ξ∗.
ξ∗ has Lévy density

c+
ex

(ex − 1)α+1
1(x>0) + c−

ex

(1− ex)α+1
1(x<0),

and is killed at rate c−/α = Γ(α)
Γ(αρ̂)Γ(1−αρ̂) .
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Example 2

Let X be a symmetric α-stable process with α ∈ (1, 2), and define

Rt = |Xt |1(t<T0), t ≥ 0.

Then R is a pssMp with Lamperti-transform ξ = ξL ⊕ ξC, such
that

(i) The Lévy process ξL has characteristic exponent

Ψ∗(θ)− k/α, θ ∈ R,

where Ψ∗ is the characteristic exponent of the process ξ∗.

(ii) The process ξC is a compound Poisson process whose jumps
occur at rate k/α, whose Lévy density is

πC(y) = k
ey

(1 + ey )α+1
, y ∈ R.
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Example 2

Let X be an α-stable process with α ∈ (1, 2), and define

Rt = |Xt |1(t<T0), t ≥ 0.

Then R is a pssMp with Lamperti-transform ξ = ξL⊕ ξC, such that

(i)

Ψ(θ) = 2α
Γ(α/2− iθ/2)

Γ(−iθ/2)

Γ(1/2 + iθ/2)

Γ((1− α)/2 + iθ/2)
, θ ∈ R.

(ii) For later convenience we also note ψ(z) := logEe−zαξ1 is
given by

ψ(z) = −2α
Γ(1/2− αz/2)

Γ(1/2− α(1 + z)/2)

Γ(α(1 + z)/2)

Γ(αz/2)
, Re z ∈ (−1, 1/α).
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Standard theory for pssMp

(i) (T0,P1) has the same law as (I (αξ),P0), where

I (αξ) =

∫ ∞
0

eαξt dt

(ii) If M(s) := E0[I (αξ)s−1], s ∈ C, then when the right hand
side is well defined,

M(s + 1) = − s

ψ(−s)
M(s),

(iii) Because of the explicit form of ψ, we can guess (and then
prove) that

E1[T s−1
0 ] = sin(π/α)

cos
(
πα
2 (s − 1)

)
sin
(
π
(
s − 1 + 1

α

)) Γ(1 + α− αs)

Γ(2− s)
,

for Re s ∈
(
− 1
α , 2−

1
α

)
.
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Markov additive processes (MAPs)

Let E be a finite state space and (Gt)t≥0 a standard filtration. A
càdlàg process (ξ, J) in R× E with law P is called a Markov
additive process (MAP) with respect to (Gt)t≥0 if (J(t))t≥0 is a
continuous-time, irreducible Markov chain in E , and the following
property is satisfied, for any i ∈ E , s, t ≥ 0:

Given {J(t) = i}, the pair (ξ(t + s)− ξ(t), J(t + s)) is
independent of Gt , and has the same distribution as
(ξ(s)− ξ(0), J(s)) given {J(0) = i}.
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Pathwise description of a MAP

The pair (ξ, J) is a Markov additive process if and only if, for each
i , j ∈ E , there exist a sequence of iid Lévy processes (ξni )n≥0 and a
sequence of iid random variables (Un

ij )n≥0, independent of the
chain J, such that if T0 = 0 and (Tn)n≥1 are the jump times of J,
the process ξ has the representation

ξ(t) = 1(n>0)(ξ(Tn−) + Un
J(Tn−),J(Tn)) + ξnJ(Tn)(t − Tn),

for t ∈ [Tn,Tn+1), n ≥ 0.
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rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

Take the statespace of the MAP to be E = {1, 2}.

Let

Xt = x exp {ξ(τ(t)) + iπ(J(τ(t)) + 1) 0 ≤ t < T0, }

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t|x |−α

}
and

T0 = |x |−α
∫ ∞

0
eαξ(u)du.

Then Xt is a real-valued self-similar Markov process in the
sense that the law of (cXtc−α : t ≥ 0) under Px is Pcx .

The converse (within a special class of rssMps) is also true.



Problem Tools The symmetric case The non-symmetric case The law of T0 Applications

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

Take the statespace of the MAP to be E = {1, 2}.
Let

Xt = x exp {ξ(τ(t)) + iπ(J(τ(t)) + 1) 0 ≤ t < T0, }

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t|x |−α

}
and

T0 = |x |−α
∫ ∞

0
eαξ(u)du.

Then Xt is a real-valued self-similar Markov process in the
sense that the law of (cXtc−α : t ≥ 0) under Px is Pcx .

The converse (within a special class of rssMps) is also true.



Problem Tools The symmetric case The non-symmetric case The law of T0 Applications

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

Take the statespace of the MAP to be E = {1, 2}.
Let

Xt = x exp {ξ(τ(t)) + iπ(J(τ(t)) + 1) 0 ≤ t < T0, }

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t|x |−α

}
and

T0 = |x |−α
∫ ∞

0
eαξ(u)du.

Then Xt is a real-valued self-similar Markov process in the
sense that the law of (cXtc−α : t ≥ 0) under Px is Pcx .

The converse (within a special class of rssMps) is also true.



Problem Tools The symmetric case The non-symmetric case The law of T0 Applications

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

Take the statespace of the MAP to be E = {1, 2}.
Let

Xt = x exp {ξ(τ(t)) + iπ(J(τ(t)) + 1) 0 ≤ t < T0, }

where

τ(t) = inf

{
s > 0 :

∫ s

0
exp(αξ(u))du > t|x |−α

}
and

T0 = |x |−α
∫ ∞

0
eαξ(u)du.

Then Xt is a real-valued self-similar Markov process in the
sense that the law of (cXtc−α : t ≥ 0) under Px is Pcx .

The converse (within a special class of rssMps) is also true.



Problem Tools The symmetric case The non-symmetric case The law of T0 Applications

Characteristics of a MAP

Denote the transition rate matrix of the chain J by
Q = (qij)i ,j∈E .

For each i ∈ E , the Laplace exponent of the Lévy process ξi
will be written ψi (when it exists).

For each pair of i , j ∈ E , define the Laplace transform
Gij(z) = E(ezUij ) of the jump distribution Uij (when it exists).

Write G (z) for the N × N matrix whose (i , j)th element is
Gij(z).

Let
F (z) = diag(ψ1(z), . . . , ψN(z)) + Q ◦ G (z), (1)

(when it exists), where ◦ indicates elementwise multiplication.

The matrix exponent of the MAP (ξ, J) is given by

Ei (e
zξ(t); J(t) = j) =

(
eF (z)t

)
i ,j
, i , j ∈ E ,

(when it exists).
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An α-stable process is a rssMp

An α-stable process is a rssMp. Remarkably (thanks to work
of Chaumont, Panti and Rivero) we can compute precisely its
matrix exponent explicitly

Denote the underlying MAP (ξ, J), we prefer to give the
matrix exponent of (−αξ, J) as follows:

F (z) =

−
Γ(α(1 + z))Γ(1− αz)

Γ(αρ̂+ αz)Γ(1− αρ̂− αz)

Γ(α(1 + z))Γ(1− αz)

Γ(αρ̂)Γ(1− αρ̂)
Γ(α(1 + z))Γ(1− αz)

Γ(αρ)Γ(1− αρ)
− Γ(α(1 + z))Γ(1− αz)

Γ(αρ+ αz)Γ(1− αρ− αz)


for Re z ∈ (−1, 1/α).
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Cramér condition for a MAP

Proposition

(i) Suppose that z ∈ C is such that F (z) is defined. Then, the
matrix F (z) has a real simple eigenvalue κ(z), which is larger than
the real part of all its other eigenvalues.
(ii) Suppose that F is defined in some open interval D of R. Then,
the leading eigenvalue κ of F is smooth and convex on D.

Assumption (Cramér condition for a MAP)

There exists z0 < 0 such that F (s) exists on (z0, 0), and some
θ ∈ (0,−z0), called the Cramér number, such that κ(−θ) = 0.

Note that this dictates “κ′(0) > 0” which ensures that
limt↑∞ ξt/t = κ′(0) > 0.
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Integrated exponential MAPs

For a MAP ξ, let

I (−ξ) =

∫ ∞
0

exp(−ξ(t)) dt.

One way to characterise the law of I (−ξ) is via its Mellin
transform, which we write as M(s). This is the vector in RN

whose ith element is given by

Mi (s) = Ei [I (−ξ)s−1], i ∈ E .
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Vector-valued functional equation

Proposition

Suppose that ξ satisfies the Cramér condition with Cramér number
θ ∈ (0, 1). Then, M(s) is finite and analytic when
Re s ∈ (0, 1 + θ), and we have the following vector-valued
functional equation:

M(s + 1) = −s(F (−s))−1M(s), for s ∈ (0, θ).
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Back to the case of an α-stable process, α ∈ (1, 2)

Suffices to consider the case that the stable process starts
from |x | = 1.

Recall that T0 =
∫∞

0 exp{−(−αξ(u))}du and that E = {1, 2}
It is obvious (using asymmetry) that E1(T s−1

0 ) is the same
expression as E2(T s−1

0 ) modulo interchanging the roles of ρ
and ρ̂.

Easy to check that κ(1/α− 1) = 0, i.e. θ = 1− 1/α < 1.

Guess a solution to the vector-valued functional equation and
then verify uniqueness

Theorem

For −1/α < Re(s) < 2− 1/α we have

E1[T s−1
0 ] =

sin
(
π
α

)
sin(πρ̂)

sin (πρ̂(1− α + αs))

sin
(
π
α(1− α + αs)

) Γ(1 + α− αs)

Γ(2− s)
.
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Inversion (rational α ∈ (1, 2)): p(t) = dP1(T0 ≤ t)/dt

If α = m/n (where m and n are coprime natural numbers) then for
all t > 0 we have

p(t) =
sin
(
π
α

)
π sin(πρ̂)

∑
k≥1

k 6=−1 (mod m)

sin(πρ̂(k + 1))
sin
(
π
α
k
)

sin
(
π
α

(k + 1)
) Γ
(

k
α

+ 1
)

k!
(−1)k−1t−1− k

α

−
sin
(
π
α

)2

π sin(πρ̂)

∑
k≥1

k 6=0 (mod n)

sin(παρ̂k)

sin(παk)

Γ
(
k − 1

α

)
Γ (αk − 1)

t−k−1+ 1
α

−
sin
(
π
α

)2

π2α sin(πρ̂)

∑
k≥1

(−1)km
Γ
(
kn − 1

α

)
(km − 2)!

Rk(t)t−kn−1+ 1
α ,

where

Rk(t) := παρ̂ cos(πρ̂km)

− sin(πρ̂km)
[
π cot

(
π
α

)
− ψ

(
kn − 1

α

)
+ αψ(km − 1) + ln(t)

]
.

The three series converge uniformly for t ∈ [ε,∞) and any ε > 0.



Problem Tools The symmetric case The non-symmetric case The law of T0 Applications

Inversion (almost every irrational α ∈ (1, 2))

Define ||x || = minn∈Z |x − n|, and

L = R\(Q ∪ {x ∈ R : lim
n→∞

1
n ln ||nx || = 0}).

If α /∈ L ∪Q then

p(t) =
sin
(
π
α

)
π sin(πρ̂)

∑
k≥1

sin(πρ̂(k + 1))
sin
(
π
α
k
)

sin
(
π
α

(k + 1)
) Γ
(

k
α

+ 1
)

k!
(−1)k−1t−1− k

α

−
sin
(
π
α

)2

π sin(πρ̂)

∑
k≥1

sin(παρ̂k)

sin(παk)

Γ
(
k − 1

α

)
Γ (αk − 1)

t−k−1+ 1
α .

The two series in the right-hand side of the above formula
converge uniformly for t ∈ [ε,∞) and any ε > 0.
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Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an α stable process with α ∈ (1, 2) and let h the function

h(x) = −Γ(1− α)
sin(παρ̂)

π
xα−1, x > 0,

and the same expression with ρ̂ replaced by ρ when x < 0.

The function h is invariant for the stable process killed on
hitting 0, that is,

Ex [h(Xt), t < T0] = h(x), t > 0, x 6= 0. (2)

Therefore, we may define a family of measures P
l
x by

P
l
x(Λ) =

1

h(x)
Ex [h(Xt)1Λ, t < T0], x 6= 0, Λ ∈ Ft ,

for any t ≥ 0.
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Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an α stable process with α ∈ (1, 2) and let h the function

h(x) = −Γ(1− α)
sin(παρ̂)

π
xα−1, x > 0,

and the same expression with ρ̂ replaced by ρ when x < 0.

The function h can be represented as

h(x) = lim
q↓0

Px(T0 > eq)

n(ζ > eq)
, x 6= 0,

where eq is an independent exponentially distributed random
variable with parameter q. Furthermore, for any stopping time
T and Λ ∈ FT , and any x 6= 0,

lim
q↓0

Px(Λ,T < eq|T0 > eq) = P
l
x (Λ).
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Another representation of Pl

Px(T0 > t) = P1(T0 > x−αt), for x > 0, t ≥ 0.

The density of T0

p(t) = −sin2(π/α)

π sin(πρ̄)

sin(παρ)

sin(πα)

Γ(1− 1/α)

Γ(α− 1)
t1/α−2 +O(t−1/α−1).

Stable (inverse) local time at zero:

n(ζ ∈ dt) =
α− 1

Γ(1/α)

sin(π/α)

cos(π(ρ− 1/2))
t1/α−2 dt, t ≥ 0.

Verify directly

h(x) = lim
s→∞

Px(T0 > s)

n(ζ > s)
.
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Another representation of Pl

For any a.s. finite stopping time T and Λ ∈ FT ,

Px(Λ|T0 > T + s)

= Ex

[
Px(1Λ,T0 > T + s|FT )

Px(T0 > T + s)

]
= Ex

[
1Λ1(T0>T )

PXT
(T0 > s)

Px(T0 > T + s)

]
= Ex

[
1Λ1(T0>T )

h(XT )

h(x)

PXT
(T0 > s)

h(XT )n(ζ > s)

n(ζ > s)

n(ζ > T + s)

h(x)n(ζ > T + s)

Px(T0 > T + s)

]
.

For any a.s. stopping time T , Λ ∈ FT ,

P
l
x(Λ) = lim

s→∞
Px(Λ|T0 > T + s).
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