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Stable processes

Definition |
A Lévy process X is called (strictly) a-stable if it satisfies the scaling
property

d

(Xe-ae) o, £ Xlp,» €>0.

Necessarily a € (0,2]. [& =2 — BM, exclude this.]
The quantity p = Po(X; > 0) will frequently appear as will p =1 — p.

PX
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Stable processes

Definition |

A Lévy process X is called (strictly) a-stable if it satisfies the scaling

property
(CXc—at) t>0 ‘ P, g

Necessarily a € (0,2]. [& =2 — BM, exclude this.]
The quantity p = Po(X; > 0) will frequently appear as will p =1 — p.

Xlp,, ¢>0.

| A

Definition Il
Let o, p be admissible parameters, X the Lévy process with Lévy density

crx~ @1 g+ o x| T 1, ), x €R,

no Gaussian part.
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Stable processes

Additional notes:

@ X does not have one-sided jumps,

The law of Ty
0000

Applications
000

@ We assume that a € (1,2), in which case X is point-recurrent.
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Problem: statement

The problem
Let

To =inf{t >0: X; =0}

be the first hitting time of {0}.
Can we find an explicit expression for

p(t)dt := P1(Tp € dt)?
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Problem: history

@ G. Peskir (2008) The law of the hitting times to points by a
stable Lévy process with no negative jumps. Electron.
Commun. Probab., 13, 6563-659.

e K. Yano, Y. Yano, and M. Yor. (2009) On the laws of first
hitting times of points for one-dimensional symmetric stable
Lévy processes. In Séminaire de Probabilités XLII, volume
1979 of Lecture Notes in Math., pages 187-227. Springer,
Berlin.

e F. Cordero. (2010) On the excursion theory for the symmetric
stable Lévy processes with index o €]1,2] and some
applications. PhD thesis, Université Pierre et Marie Curie —
Paris VI, 2010.
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Positive, self-similar Markov processes

[0, 00)-valued Markov process,

equipped with initial measures Py, x > 0,
with 0 an absorbing state,

satisfying the scaling property

d
(CXC_at)tZO‘PX = Xlp,.» x,c >0
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Lamperti transform

(X7 I:)x)x>0 pSSMp

Xe = exp(€s(r)),

S a random time-change

The non-symmetric case The law of Ty Applications
00000000 0000 000
o (&,P,)yer killed Lévy

55 = |og(XT(S))7

T a random time-change
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Lamperti transform

(X, Px)x>0 pssMp YRS (&,Py)ycr killed Lévy
Xe = exp(€s(t)) &s = log(X7(s)),
S a random time-change T a random time-change
X never hits zero & — oo or € oscillates
X hits zero continuously o £ — —

X hits zero by a jump & is killed



Q>



Let X be a stable process, and define

where

1o = inf{t >0:X; <0}.

«O» «Fr « =>»

« =

DA
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Example 1

Let X be a stable process, and define

X::Xt]l t207

(t<my )2

where
7o = inf{t >0:X; <0}.

Then X* is a pssMp, with Lamperti transform &£*.
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Example 1

Let X be a stable process, and define

X:IXt]l t207

(t<my )2
where
7o = inf{t >0:X; <0}.
Then X* is a pssMp, with Lamperti transform &£*.
£* has Lévy density
eX X
C+ (ex _ 1)a+1 H(X>0) +c (1 _ ex)a+1 ]]'(X<0)’

and is killed at rate c_ /o = %-

Applications
000



Let X be a symmetric a-stable process with o € (1,2), and define

Rt == |Xt|]l(t<To)’ t 2 0

«O» «Fr « =>»

« =

DA
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Example 2
Let X be a symmetric a-stable process with a € (1,2), and define
Rt — ’Xt’]]'(t<To)7 t Z O.

Then R is a pssMp with Lamperti-transform & = £ @ €€, such
that

(i) The Lévy process £- has characteristic exponent
v*(0) — k/a, 0 R,

where W* is the characteristic exponent of the process &*.

(i) The process £ is a compound Poisson process whose jumps
occur at rate k/a, whose Lévy density is
ey

C —
T (Y)—km7 yeR.



Problem Tools The symmetric case The non-symmetric case The law of Ty Applications
0000 0000 [ 1o} 00000000 0000 000

Example 2

Let X be an a-stable process with a € (1,2), and define
Re = [Xe|Lt<),  t2>0.

Then R is a pssMp with Lamperti-transform & = - @ ¢€, such that
(i)
JT(a/2—-i6/2)  T(1/2+i0/2)

YO =2 Sy T a)2+072)

0 € R.

(ii) For later convenience we also note 1)(z) := log Ee~2%% is
given by
MN1/2—-az/2) T(a(l+2)/2)
(1/2—a(l+2)/2) T(az/2)

P(z) = —20‘r Rez € (—1,1/a).



Standard theory for pssMp

(i) (To,Pq1) has the same law as (/(af),Po), where
() :/ et dt
0

=] 5 = = E DA
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Standard theory for pssMp
(i) (To,P1) has the same law as (/(a€),Pp), where

I(af) = /OOO et dt

(ii) If M(s) := Eq[/(a€)*7], s € C, then when the right hand
side is well defined,

M(s+1)=-—

o1
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Standard theory for pssMp
(i) (To,P1) has the same law as (/(a€),Pp), where

I(af) = /OOO et dt

(ii) If M(s) := Eq[/(a€)*7], s € C, then when the right hand
side is well defined,

M(s+1)=-—

o1

(iii) Because of the explicit form of 1), we can guess (and then
prove) that

cos(Z2(s—1)) T(1+a— as)

Ei[T57] = sin(ﬂ/a)sin<ﬂ(s_ . %)) r2-s

9

for Res € (—é,2 - l)

o)
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Markov additive processes (MAPs)

Let E be a finite state space and (%;),~, a standard filtration. A
cadlag process (£, J) in R x E with law P is called a Markov
additive process (MAP) with respect to (%;),~ if (J(t))e>0 is a
continuous-time, irreducible Markov chain in E, and the following
property is satisfied, for any i € E, s, t > O:

Given {J(t) = i}, the pair ({(t +s) — &(t), J(t +5)) is
independent of ¥;, and has the same distribution as

(£(s) —£(0), J(s)) given {J(0) = i}.
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Pathwise description of a MAP

The pair (&, J) is a Markov additive process if and only if, for each
i,j € E, there exist a sequence of iid Lévy processes (£/)n>0 and a
sequence of iid random variables (U;J?),,zo, independent of the
chain J, such that if To =0 and (T,)s>1 are the jump times of J,
the process £ has the representation

§(t) = Lin0)(E(Tn—) + Uj(T,,—),J(T,,)) + fj(rn)(t - T»),

for t € [Ty, Tpt1), n > 0.
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rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

@ Take the statespace of the MAP to be E = {1,2}.
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rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

@ Take the statespace of the MAP to be E = {1,2}.
o Let

Xe = xexp {&(7(¢)) +in(J(7(t)) + 1) 0<t<To}

where
7(t) = inf {s >0: /05 exp(a&(u))du > t\x|—0‘}

and -
To = |X|_a/ (W dy.
0



Problem Tools The symmetric case The non-symmetric case The law of Ty Applications
0000 0000 oo 00®00000 0000 000

rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

@ Take the statespace of the MAP to be E = {1,2}.
o Let

Xe = xexp {&(7(¢)) +in(J(7(t)) + 1) 0<t<To}
where
7(t) = inf {s >0: /OS exp(a&(u))du > t\x|_o‘}
and

To = |X|_O‘/ eé(W)dy.
0

@ Then X; is a real-valued self-similar Markov process in the
sense that the law of (cX,.—« : t > 0) under P is P.
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rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

@ Take the statespace of the MAP to be E = {1,2}.
o Let

Xe = xexp {&(7(¢)) +in(J(7(t)) + 1) 0<t<To}

where
7(t) = inf {s >0: /05 exp(a&(u))du > t\x|—0‘}

and -
To = |X|_O‘/ eé(W)dy.
0

@ Then X; is a real-valued self-similar Markov process in the
sense that the law of (cX,.—« : t > 0) under P is P.

@ The converse (within a special class of rssMps) is also true.



Characteristics of a MAP

@ Denote the transition rate matrix of the chain J by
Q = (gy)ijeke-

DA
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Characteristics of a MAP

@ Denote the transition rate matrix of the chain J by
Q = (qj)ijeE-

@ For each j € E, the Laplace exponent of the Lévy process &;
will be written 1; (when it exists).
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Characteristics of a MAP

@ Denote the transition rate matrix of the chain J by
Q = (gj)ijeE-

@ For each j € E, the Laplace exponent of the Lévy process &;
will be written 1; (when it exists).

@ For each pair of i,j € E, define the Laplace transform
Gii(z) = E(e?Yi) of the jump distribution U; (when it exists).
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Characteristics of a MAP

@ Denote the transition rate matrix of the chain J by
Q = (gj)ijeE-
@ For each i € E, the Laplace exponent of the Lévy process &;
will be written 1; (when it exists).
@ For each pair of i,j € E, define the Laplace transform
Gii(z) = E(e?Yi) of the jump distribution U; (when it exists).
o Write G(z) for the N x N matrix whose (/,/)th element is
Gjj(2).
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Characteristics of a MAP

@ Denote the transition rate matrix of the chain J by
Q = (gj)ijeE-
@ For each j € E, the Laplace exponent of the Lévy process &;
will be written 1; (when it exists).
@ For each pair of i,j € E, define the Laplace transform
Gii(z) = E(e?Yi) of the jump distribution U; (when it exists).
o Write G(z) for the N x N matrix whose (/,/)th element is
Gij(2).
o Let
F(z) = diag(v1(2),...,¥n(2)) + Q o G(2), (1)

(when it exists), where o indicates elementwise multiplication.
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Characteristics of a MAP

@ Denote the transition rate matrix of the chain J by
Q = (gj)ijeE-
@ For each j € E, the Laplace exponent of the Lévy process &;
will be written 1; (when it exists).
@ For each pair of i,j € E, define the Laplace transform
Gii(z) = E(e?Yi) of the jump distribution U; (when it exists).
o Write G(z) for the N x N matrix whose (/,/)th element is
Gjj(2).
o Let
F(z) = diag(v1(2),...,¥n(2)) + Q o G(2), (1)
(when it exists), where o indicates elementwise multiplication.
@ The matrix exponent of the MAP (&, J) is given by

Ei(e*0); J(t) = j) = (F@) . i jeE,

1

(when it exists).
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An a-stable process is a rssMp

@ An a-stable process is a rssMp. Remarkably (thanks to work
of Chaumont, Panti and Rivero) we can compute precisely its
matrix exponent explicitly
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An a-stable process is a rssMp

@ An a-stable process is a rssMp. Remarkably (thanks to work
of Chaumont, Panti and Rivero) we can compute precisely its
matrix exponent explicitly

@ Denote the underlying MAP (&, J), we prefer to give the
matrix exponent of (—ag, J) as follows:

Ma(l+2)M(1 - az) Ma(l+2)M(1 - az)
CT(ap+az)F(1—ap—az Map)l (1 —ap
Fa=| o1 1 l))(r(1 ) ) ) F(oz((lp—)F z()) 1 /i)ozz)
Map)l(1— ap) MNap+ az)l (1 —ap — az)

for Rez € (—1,1/av).
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Cramér condition for a MAP

Proposition

(i) Suppose that z € C is such that F(z) is defined. Then, the
matrix F(z) has a real simple eigenvalue k(z), which is larger than
the real part of all its other eigenvalues.

(ii) Suppose that F is defined in some open interval D of R. Then,
the leading eigenvalue r of F is smooth and convex on D.
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Cramér condition for a MAP

Proposition

(i) Suppose that z € C is such that F(z) is defined. Then, the
matrix F(z) has a real simple eigenvalue k(z), which is larger than
the real part of all its other eigenvalues.

(ii) Suppose that F is defined in some open interval D of R. Then,
the leading eigenvalue r of F is smooth and convex on D.

A

Assumption (Cramér condition for a MAP)

There exists zy < 0 such that F(s) exists on (z,0), and some
0 € (0,—z), called the Cramér number, such that x(—6) = 0.
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Cramér condition for a MAP

Proposition

(i) Suppose that z € C is such that F(z) is defined. Then, the
matrix F(z) has a real simple eigenvalue k(z), which is larger than
the real part of all its other eigenvalues.

(ii) Suppose that F is defined in some open interval D of R. Then,
the leading eigenvalue r of F is smooth and convex on D.

v

Assumption (Cramér condition for a MAP)

There exists zy < 0 such that F(s) exists on (z,0), and some
0 € (0,—z), called the Cramér number, such that x(—6) = 0.

Note that this dictates “x’(0) > 0" which ensures that
||mtToo gt/t = K,/(O) > 0.



Integrated exponential MAPs

o For a MAP &, let

(€)= /0 " exp(—£(1)) dt.

o 5 = = E DA
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Integrated exponential MAPs

@ For a MAP &, let

@ One way to characterise the law of /(—¢) is via its Mellin
transform, which we write as M(s). This is the vector in RV
whose ith element is given by

Mi(s) = E;[I(=€)°71, icE.
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Vector-valued functional equation

Proposition

Suppose that & satisfies the Cramér condition with Cramér number
0 € (0,1). Then, M(s) is finite and analytic when

Res € (0,1 + 0), and we have the following vector-valued
functional equation:

M(s+1) = —s(F(—s))"*M(s), fors € (0,0).
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Back to the case of an a-stable process, a € (1,2)

@ Suffices to consider the case that the stable process starts
from |x| = 1.
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Back to the case of an a-stable process, a € (1,2)

@ Suffices to consider the case that the stable process starts
from |x| = 1.
o Recall that To = [, exp{—(—a£(u))}du and that E = {1,2}



Problem Tools The symmetric case The non-symmetric case The law of Ty Applications
0000 0000 0o 00000000 ®000 ooo

Back to the case of an a-stable process, a € (1,2)

@ Suffices to consider the case that the stable process starts
from |x| = 1.

o Recall that To = [, exp{—(—a£(u))}du and that E = {1,2}

o It is obvious (using asymmetry) that E1(T$ ') is the same
expression as Ez(Tgfl) modulo interchanging the roles of p
and p.
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Back to the case of an a-stable process, a € (1,2)

@ Suffices to consider the case that the stable process starts
from |x| = 1.

o Recall that To = [, exp{—(—a£(u))}du and that E = {1,2}

o It is obvious (using asymmetry) that E1(T$ ') is the same
expression as Ez(Tgfl) modulo interchanging the roles of p
and p.

e Easy to check that k(1/a—1)=0,ie. 6 =1—-1/a < 1.
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Back to the case of an a-stable process, a € (1,2)

@ Suffices to consider the case that the stable process starts
from |x| = 1.

o Recall that To = [, exp{—(—a£(u))}du and that E = {1,2}

o It is obvious (using asymmetry) that E1(T$ ') is the same
expression as Ez(Tg—*l) modulo interchanging the roles of p
and p.

e Easy to check that k(1/a—1)=0,ie. 6 =1—-1/a < 1.

@ Guess a solution to the vector-valued functional equation and
then verify uniqueness

For —1/a < Re(s) <2 —1/a we have

sin (Z) sin (7p(1 — a + as)) F(1 + a — as)

Ei[T5] = sin(7p) sin (Z(1—a+as)) T(2—s)
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Inversion (rational o € (1,2)): p(t) = dP1(To < t)/dt

If & = m/n (where m and n are coprime natural numbers) then for
all t > 0 we have

sin (gk) r(g —|—1)

_ sin(Z) o 1k
Pt = Tin(rh) ; sn(mpk ) S k) ko (Dt
k#—1 (mod m)

sin (g)z Z sin(rapk) T (k — =) keagr
—_ =7 t Y

wsin(mp) =~ sin(rak) T (ak — 1)
k;éO (mod n)
sin ( (kn 1) ki 1+7
-~ masin(mp) ;( km — 2)! R(t)t

where

Ri(t) := map cos(mpkm)
— sin(wpkm) [wcot (Z) — ¢ (kn — L) + anp(km — 1) + In(t)] .

The three series converge uniformly for t € [¢,00) and any € > 0.
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Inversion (almost every irrational o € (1,2))

Define ||x|| = min,ez |x — n|, and
L=R\(QuU{xeR: Ii_}m Lin||nx|| = 0}).

IfagZEUchen

sin (Zk) T (& +1)
;sln(ﬂp(k+1))sin (g(kJrl)) il

p(t) = ()t

7rsm(7rp

_sin(%) ) 3 sin(rapk) T (k— %) pk—1kd

wsin(wp — sin(rak) T (ak —1)

The two series in the right-hand side of the above formula
converge uniformly for t € [¢,00) and any € > 0.
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Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an « stable process with « € (1,2) and let h the function
Sin(ﬂ-aﬁ) a—1
h(x)=—-T(1 —a)—/—=x"", x>0,
T
and the same expression with g replaced by p when x < 0.
@ The function h is invariant for the stable process killed on
hitting 0, that is,
Ex[h(X:), t < To] = h(x), t>0,x#0. (2)

Therefore, we may define a family of measures Pg by

1

XN = 3

Ex[h(Xt)]l/\a t < T0]7 X 7& 0, A e Fy,

for any t > 0.
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Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an « stable process with « € (1,2) and let h the function
Sin(ﬂ-aﬁ) a—1
h(x)=-T(1 —a)———x“"", x>0,
7r
and the same expression with p replaced by p when x < 0.

@ The function h can be represented as

hx) = lim 2T >80 g

qlo n(¢>eq) ’

where eq is an independent exponentially distributed random
variable with parameter g. Furthermore, for any stopping time
T and A € F1, and any x # 0,

Ii% Po(A, T < e To > eg) = PH(A).
q.



o Py(Top>1t)=P1(To >x"“t), forx >0,t>0.

«O» «Fr « =>»

« =

DA
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Another representation of P

o Py (To >t)=Py(To>x"2t), for x >0, t > 0.
@ The density of Ty

_ _Si”2(7r/04) sin(rap) M(1—1/a) 1/a—2 —1/a—1
P(t) = mwsin(mp) sin(ra) T(a—1) +0(t )
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Another representation of P

o Py (To >t)=Py(To>x"2t), for x >0, t > 0.
@ The density of Ty

_ _Si”2(7r/04) sin(rap) M(1—1/a) 1/a—2 —1/a—1
P(t) = mwsin(mp) sin(ra) T(a—1) +0(t )

@ Stable (inverse) local time at zero:

a—1 sin(m/«)
F(1/a) cos(n(p — 1/2))

n(¢ e dt) = tt/e=2d4¢,  t>0.
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Another representation of P

o Py (To >t)=Py(To>x"2t), for x >0, t > 0.
@ The density of Ty

_ _Si”2(7r/04) sin(rap) M(1—1/a) 1/a—2 —1/a—1
P(t) = mwsin(mp) sin(ra) T(a—1) +0(t )

@ Stable (inverse) local time at zero:

a—1 sin(m/«)
F(1/a) cos(n(p — 1/2))

n(¢ e dt) = tt/e=2d4¢,  t>0.

o Verify directly

— lim PX(TO > S)
hix) = fim =59
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Another representation of P

@ For any a.s. finite stopping time T and A € Fr,

Px(N[To > T +s)
-PX(]./\, To>T+ S‘}—T)
PX(TO > T—I—S)

E 1.1 PXT(TO >S)
T MU (To > T + )

Applications
ooe

= Ex|IaY(7p>1)

e For any a.s. stopping time T, A € Fr,

PL(A) = lim Po(AlTo > T +5).

h(X7) Px;(To>s) n(¢>s) h()n(¢>T +s)
h(x) h(X7)n(¢ >s)n((>T+s) Pu(To>T +5s)
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