

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

Topics in Stochastic Geometry

Lecture 5 Models of continuum percolation

Günter Last

Lectures presented at the

Department of Mathematical Sciences

University of Bath

May 2011

1. Percolation in the Boolean model

Definition

A random closed subset of \mathbb{R}^d (or random graph) percolates if it has an unbounded component.

Theorem

Consider a Boolean model Z in \mathbb{R}^d (with $d \ge 2$) where the typical grain is a deterministic ball with radius $R_0 > 0$. Then there exists a critical intensity $\lambda_c > 0$ such such Z percolates for $\lambda > \lambda_c$ and does not percolate for $\lambda < \lambda_c$.

Remark

Let *Z* be a Boolean model as above. The critical percolation threshold and the critical volume fraction $p_c := 1 - e^{-\lambda_c \kappa_d R_0^d}$ are "known" from simulation:

$$p_c pprox egin{cases} 0.6763475, & ext{if } d=2, \ 0.289573, & ext{if } d=3. \end{cases}$$

Theorem (Penrose '96)

As $d \to \infty$, the critical degree $\lambda_c(d)\kappa_d(2R_0)^d$ tends to 1.

э.

A (1) > A (1) > A

Theorem (Meester and Roy '94)

A Boolean model Z as above has (almost surely) at most one unbounded component. Also the complement has at most one unbounded component. In particular, for $\lambda > \lambda_c$ there is exactly one unbounded component.

Remark

It is believed that Z does not percolate at the critical intensity. This was proved for d = 2 (Alexander '96) and for large d (Tanemura '96).

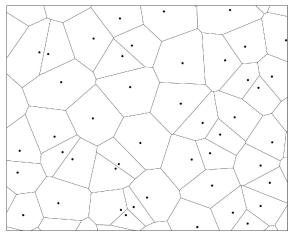
Remark

The above concepts can also be discussed for more general Boolean models. The critical threshold λ_c depends on the distribution (and the geometry) of the typical grain in a non-trivial way.

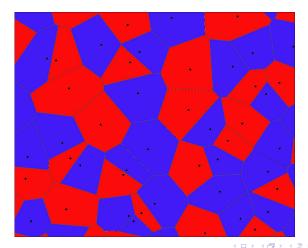
< ロ > < 同 > < 三 > < 三 >

2. Poisson Voronoi percolation

Let X be a Poisson Voronoi tessellation. Declare the cells in X independently open with probability p and let Z be the union of all open cells.



Let X be a Poisson Voronoi tessellation. Declare the cells in X independently open with probability p and let Z be the union of all open cells.



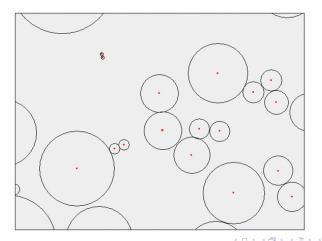
Lecture 5: Models of continuum percolation

Theorem (Bollobás & Riordan '06)

Consider planar Poisson Voronoi percolation. Then $p_c = 1/2$. At this critical density there is no percolation, while above there is exactly one unbounded component.

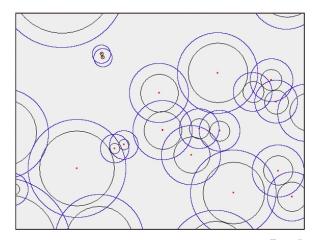
3. Poisson lilypond model

Poisson points grow at uniform speed in all normal directions until they hit another ball.



Theorem (Häggström & Meester '96, L. & Penrose '10)

There is no percolation in the Poisson lilypond model *Z*. This remains even true for the parallel set Z^{δ} of *Z* for sufficiently small but positive δ .



4. Continuum percolation on planar tessellations

Idea

Introduce a hierachy of percolation models on a planar stationary tessellation X. Study the model via the geometric properties of a suitably defined random set Z having the same connectivity properties.

Definition

The mean Euler characteristic of Z is defined as

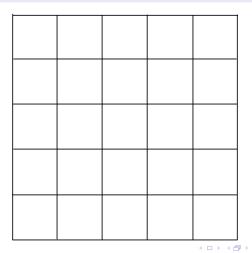
$$\bar{\chi} := \lim_{r \to \infty} \frac{\mathbb{E}[\chi(Z \cap rW)]}{V_d(rW)},$$

where $\chi(\cdot)$ denotes the Euler characteristic.

A (1) > A (2) > A

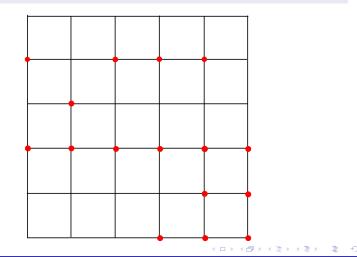
Vertex percolation

Given X, the vertices are independently declared open with probability p. An edge is declared open if its endpoints are open. A cell is open if all its vertices are open.



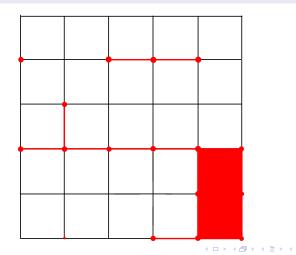
Vertex percolation

Given X, the vertices are independently declared open with probability p. An edge is declared open if its endpoints are open. A cell is open if all its vertices are open.



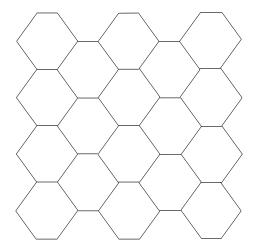
Vertex percolation

Given X, the vertices are independently declared open with probability p. An edge is declared open if its endpoints are open. A cell is open if all its vertices are open.



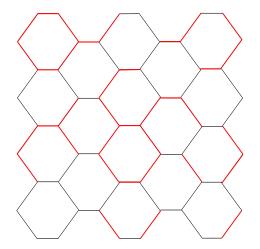
Edge percolation

Declare the edges in X independently open with probability p. A cell is open if all its edges are open.



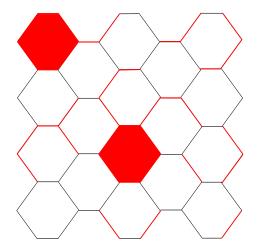
Edge percolation

Declare the edges in X independently open with probability p. A cell is open if all its edges are open.



Edge percolation

Declare the edges in X independently open with probability p. A cell is open if all its edges are open.



Definition

- (i) Let $\gamma_{0,i}$ denote the intensity of vertices of degree $i \geq 3$.
- (ii) Let $\gamma_{2,i}$ denote the intensity of cells with *i* vertices.
- (iii) Recall that

$$\gamma_0 := \gamma_{0,3} + \gamma_{0,4} + \dots$$

is the intensity of vertices and

$$\gamma_2 := \gamma_{2,3} + \gamma_{2,4} + \dots$$

is the intensity of cells.

э

Theorem (Neher, Mecke & Wagner '08, L. '11)

For continuum percolation on a stationary planar tessellation the mean Euler characteristic is given as follows. Vertex percolation:

$$\bar{\chi}(\boldsymbol{\rho}) = \gamma_0 \boldsymbol{\rho} - (\gamma_0 + \gamma_2) \boldsymbol{\rho}^2 + \sum_{i=3}^{\infty} \gamma_{2,i} \boldsymbol{\rho}^i.$$

Edge percolation:

$$\bar{\chi}(\boldsymbol{\rho}) = \gamma_0 - (\gamma_0 + \gamma_2)\boldsymbol{\rho} - \sum_{i=3}^{\infty} \gamma_{0,i} (1-\boldsymbol{\rho})^i + \sum_{i=3}^{\infty} \gamma_{2,i} \boldsymbol{\rho}^i.$$

Cell percolation:

$$ar{\chi}(oldsymbol{
ho}) = -\gamma_2(1-oldsymbol{
ho}) + (\gamma_0+\gamma_2)(1-oldsymbol{
ho})^2 - \sum_{i=3}^\infty \gamma_{0,i}(1-oldsymbol{
ho})^i.$$

Observation by Neher, Mecke & Wagner '08

For percolation on lattices $\bar{\chi}(p)$ has exactly one zero on the open interval (0, 1) that is pretty close to the critical probability.

Remark

The Euler characteristic of cell percolation on a planar Voronoi tessellation is given by

$$\bar{\chi}(p) = \gamma_2 p(1-p)(1-2p).$$

It has a zero at p = 1/2 which is critical in the Poisson case (Bollobás & Riordan '06) and perhaps also for other short-range dependent point processes.

5. References

- B. Bollobás and O. Riordan (2006). The critical probability for random Voronoi percolation in the plane is 1/2. *Probab. Theor. Related Fields* **136**, 417-468.
- B. Bollobás and O. Riordan (2006). *Percolation.* Cambridge University Press, New York.
- G. Grimmett (1999). *Percolation.* Second edition, Springer-Verlag, Berlin.
- R. Meester and R. Roy (1996). Continuum Percolation. Cambridge Univ. Press.
- R.A. Neher, K. Mecke, K. and H. Wagner (2008).
 Topological estimation of percolation thresholds. *J. Stat. Mech. Theory Exp.*, P01011.
- M. Penrose (2003). Random geometric graphs. Oxford University Press, Oxford.