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1. Percolation in the Boolean model

Definition

A random closed subset of Rd (or random graph) percolates if it
has an unbounded component.

Theorem

Consider a Boolean model Z in Rd (with d ≥ 2) where the
typical grain is a deterministic ball with radius R0 > 0. Then
there exists a critical intensity λc > 0 such such Z percolates
for λ > λc and does not percolate for λ < λc .
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Remark

Let Z be a Boolean model as above. The critical percolation
threshold and the critical volume fraction pc := 1− e−λcκd Rd

0 are

”known“ from simulation:

pc ≈

{
0.6763475, if d = 2,
0.289573, if d = 3.

Theorem (Penrose ’96)

As d →∞, the critical degree λc(d)κd (2R0)d tends to 1.
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Theorem (Meester and Roy ’94)

A Boolean model Z as above has (almost surely) at most one
unbounded component. Also the complement has at most one
unbounded component. In particular, for λ > λc there is exactly
one unbounded component.

Remark

It is believed that Z does not percolate at the critical intensity.
This was proved for d = 2 (Alexander ’96) and for large d
(Tanemura ’96).

Remark

The above concepts can also be discussed for more general
Boolean models. The critical threshold λc depends on the
distribution (and the geometry) of the typical grain in a
non-trivial way.
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2. Poisson Voronoi percolation

Let X be a Poisson Voronoi tessellation. Declare the cells in X
independently open with probability p and let Z be the union of
all open cells.
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Theorem (Bollobás & Riordan ’06)

Consider planar Poisson Voronoi percolation. Then pc = 1/2.
At this critical density there is no percolation, while above there
is exactly one unbounded component.
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3. Poisson lilypond model

Poisson points grow at uniform speed in all normal directions
until they hit another ball.
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Theorem (Häggström & Meester ’96, L. & Penrose ’10)

There is no percolation in the Poisson lilypond model Z . This
remains even true for the parallel set Z δ of Z for sufficiently
small but positive δ.
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4. Continuum percolation on planar tessellations

Idea

Introduce a hierachy of percolation models on a planar
stationary tessellation X . Study the model via the geometric
properties of a suitably defined random set Z having the same
connectivity properties.

Definition

The mean Euler characteristic of Z is defined as

χ̄ := lim
r→∞

E[χ(Z ∩ rW )]

Vd (rW )
,

where χ(·) denotes the Euler characteristic.
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Vertex percolation

Given X , the vertices are independently declared open with
probability p. An edge is declared open if its endpoints are
open. A cell is open if all its vertices are open.

Günter Last Lecture 5: Models of continuum percolation



Vertex percolation

Given X , the vertices are independently declared open with
probability p. An edge is declared open if its endpoints are
open. A cell is open if all its vertices are open.

Günter Last Lecture 5: Models of continuum percolation



Vertex percolation

Given X , the vertices are independently declared open with
probability p. An edge is declared open if its endpoints are
open. A cell is open if all its vertices are open.

Günter Last Lecture 5: Models of continuum percolation



Edge percolation

Declare the edges in X independently open with probability p.
A cell is open if all its edges are open.
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A cell is open if all its edges are open.

Günter Last Lecture 5: Models of continuum percolation



Definition

(i) Let γ0,i denote the intensity of vertices of degree i ≥ 3.
(ii) Let γ2,i denote the intensity of cells with i vertices.

(iii) Recall that
γ0 := γ0,3 + γ0,4 + . . .

is the intensity of vertices and

γ2 := γ2,3 + γ2,4 + . . .

is the intensity of cells.
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Theorem (Neher, Mecke & Wagner ’08, L. ’11)

For continuum percolation on a stationary planar tessellation
the mean Euler characteristic is given as follows.
Vertex percolation:

χ̄(p) = γ0p − (γ0 + γ2)p2 +
∞∑

i=3

γ2,ipi .

Edge percolation:

χ̄(p) = γ0 − (γ0 + γ2)p −
∞∑

i=3

γ0,i(1− p)i +
∞∑

i=3

γ2,ipi .

Cell percolation:

χ̄(p) = −γ2(1− p) + (γ0 + γ2)(1− p)2 −
∞∑

i=3

γ0,i(1− p)i .
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Observation by Neher, Mecke & Wagner ’08

For percolation on lattices χ̄(p) has exactly one zero on the
open interval (0,1) that is pretty close to the critical probability.

Remark

The Euler characteristic of cell percolation on a planar Voronoi
tessellation is given by

χ̄(p) = γ2p(1− p)(1− 2p).

It has a zero at p = 1/2 which is critical in the Poisson case
(Bollobás & Riordan ’06) and perhaps also for other
short-range dependent point processes.
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