

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

Topics in Stochastic Geometry

Lecture 4 The Boolean model

Günter Last

Lectures presented at the

Department of Mathematical Sciences

University of Bath

May 2011

1. Definition of the Boolean model

Definition

Let $\eta = \{X_n : n \in \mathbb{N}\}\$ be a Poisson process with intensity λ and Z_0, Z_1, \ldots a sequence of independent random particles with common distribution \mathbb{Q} satisfying the integrability assumption

 $\mathbb{E}V_d(Z_0+K)<\infty, \quad K\in \mathcal{C}^d.$

Assume that η and (Z_n) are independent. Then

$$Z=\bigcup_{n\in\mathbb{N}}(Z_n+\xi_n),$$

is called Boolean model with grain distribution \mathbb{Q} and typical grain Z_0 .

Theorem

Let $\eta = \{X_n : n \in \mathbb{N}\}\$ be a Poisson process with positive intensity and R_0, R_1, \ldots a sequence of independent and identically distributed non-negative random variables. Define

$$Z=\bigcup_{n\in\mathbb{N}}B(X_n,R_n),$$

where B(x, r) is a ball with centre $x \in \mathbb{R}^d$ and radius $r \ge 0$. Then $\mathbb{P}(Z = \mathbb{R}^d) = 1$ iff $\mathbb{E}R_0^d = \infty$.

Remark

Let $Z_0 := (0, R_0)$, where R_0 is as above. Then Z_0 satisfies the required integrability condition iff

$$\mathbb{E}R_0^d < \infty.$$

Lemma

Let Z be a Boolean model as above. Then, almost surely, any bounded set is intersected by only finitely many of the (secondary) grains $Z_n + X_n$. In particular, Z is closed.

Convention

A Boolean model Z is considered as a random closed set, that is as a random element in the space of all closed subsets of \mathbb{R}^d equipped with a suitable σ -field.

2. The capacity functional

Definition

The capacity functional of a random closed set *Z* is the mapping $T_Z : C^d \to \mathbb{R}$ defined by

$$T_Z(C) := \mathbb{P}(Z \cap C \neq \emptyset), \quad C \in \mathcal{C}^d.$$

Theorem

The capacity model of a Boolean model Z is given by

$$T_Z(C) = 1 - \exp[-\lambda \mathbb{E} V_d(Z_0 + C^*)], \quad C \in \mathcal{C}^d,$$

where $C^* := \{-x : x \in B\}.$

Corollary

A Boolean model Z is stationary, that is

$$Z \stackrel{d}{=} Z + x, \quad x \in \mathbb{R}^d.$$

Corollary

Assume that the typical grain Z_0 of a Boolean model Z is *isotropic*, *i.e.*

$$Z_0 \stackrel{d}{=} \vartheta Z_0$$

for any rotation ϑ . Then Z is isotropic.

э

3. Volume fraction and covariance function

Definition

The volume fraction p of a stationary random closed set Z is defined by

$$p:=\mathbb{E}V_d([0,1]^d).$$

An equivalent definition is $p := \mathbb{P}(x \in Z)$ for any $x \in \mathbb{R}^d$.

Corollary

The volume fraction of a Boolean model is given by

$$p = 1 - \exp(-\lambda \mathbb{E} V_d(Z_0))$$

Definition

The covariance function of a stationary random closed set Z is the function $C : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ defined by

 $C(x,y) := \mathbb{P}(\{x,y\} \subset Z) = \mathbb{E}[\mathbf{1}_Z(x)\mathbf{1}_Z(y)], \quad x,y \in \mathbb{R}^d.$

Theorem

The covariance function of a Boolean model is given by

$$\mathcal{C}(x)=2p-1+(1-p)^2\exp(\lambda C_0(x)),\quad x\in\mathbb{R}^d,$$

where

$$C_0(x) := \mathbb{E}[V_d(Z_0 \cap (Z_0 - x)].$$

э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

4. Ergodicity properties

Definition

A stationary random closed set Z in \mathbb{R}^d is called mixing if

$$\lim_{\|x\| o \infty} \mathbb{P}(Z \in \mathcal{H} \cap heta_x \mathcal{H}') = \mathbb{P}(Z \in \mathcal{H}) \mathbb{P}(Z \in \mathcal{H}'),$$

for any measurable sets $\mathcal{H}, \mathcal{H}'$ of closed sets. Here

$$\theta_{\mathbf{X}}\mathcal{H}' := \{\mathbf{A} + \mathbf{X} : \mathbf{A} \in \mathcal{H}'\}, \quad \mathbf{X} \in \mathbb{R}^{d}.$$

Remark

Any mixing Z is ergodic, that is

$$\mathbb{P}(Z \in \mathcal{H}) \in \{0, 1\}$$

for all invariant \mathcal{H} .

Günter Last

Theorem

A Boolean model Z is mixing.

Remark

The assertion of the theorem can be reduced to the limit relation

$$\lim_{|x||\to\infty} (1 - T_Z(C \cup (C' + x)) = (1 - T_Z(C))(1 - T_Z(C')),$$

for all compact $C, C' \subset \mathbb{R}^d$. For the Boolean model this can be directly verified.

э

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Theorem (Spatial ergodic theorem)

Assume that Z is an ergodic random closed set and let $W \subset \mathbb{R}^d$ be a convex and compact set containing the origin in its interior. Let f(Z) be a measurable function of Z such that $\mathbb{E}|f(Z)| < \infty$. Then the limit

$$\lim_{r\to\infty}\frac{1}{V_d(rW)}\int_{rW}f(\theta_x Z)dx$$

exists almost surely and in $L^1(\mathbb{P})$ and is given by $\mathbb{E}f(Z)$.

Example

For a Boolean model Z the limit

$$\lim_{r\to\infty}\frac{1}{V_d(rW)}\int_{rW}\mathbf{1}\{x\in Z\}dx$$

exists and is given by the volume fraction of Z.

Definition

Let $K \subset \mathbb{R}^d$ be compact and convex. The intrinsic volumes of K are the numbers $V_0(K), \ldots, V_d(K)$ uniquely determined by the Steiner formula

$$V_d(K+rB^d)=\sum_{j=0}^d r^j \kappa_j V_{d-j}(K), \quad r\geq 0,$$

where κ_j is the (*j*-dimensional) volume of the Euclidean unit ball B^j in \mathbb{R}^j .

Remark

 $V_d(K)$ is the Lebesgue measure of *K*. If *K* has non-empty interior, then $V_{d-1}(K)$ is half the surface area of *K*. Moreover, $V_0(K) = \mathbf{1}\{K \neq \emptyset\}$.

Remark

Using the inclusion-exclusion formula the intrinsic volumes can be extended (uniquely!) to finite unions *K* of convex and compact sets. Then $V_{d-1}(K)$ is still half the surface area of *K* while $V_0(K)$ is the Euler characteristic of *K*.

Theorem

Let *Z* be a stationary ergodic random closed set that is locally a finite union of convex sets. Under suitable integrability assumptions the limits

$$\lambda_j := \lim_{r \to \infty} \frac{V_j(Z \cap rW)}{V_d(rW)}, \quad j = 0, \dots, d,$$

exist \mathbb{P} -almost surely.

Theorem (Miles)

If Z is a Boolean model with convex typical grain Z_0 , then

$$\lambda_{d-1} = \lambda \mathbb{E} V_{d-1}(Z_0) e^{-\lambda \mathbb{E} V_d(Z_0)}$$

If Z_0 is isotropic, then $\lambda_0, \ldots, \lambda_{d-2}$ can be computed explicitly in terms of $e^{-\lambda \mathbb{E} V_d(Z_0)}$ and $\lambda \mathbb{E} V_i(Z_0)$, $i = 0, \ldots, d-1$. For instance, we have for d = 2 that

$$\lambda_0 = \boldsymbol{e}^{-\lambda \mathbb{E} V_d(Z_0)} \Big(\lambda - rac{\mathbb{E} V_1(Z_0)}{\pi}\Big)$$

and in the case d = 3

$$\lambda_0 = e^{-\lambda \mathbb{E} V_d(Z_0)} \left(\lambda - \frac{\lambda^2}{4} \mathbb{E} V_1(Z_0) \mathbb{E} V_2(Z_0) + \frac{\pi \lambda^3}{48} (\mathbb{E} V_2(Z_0))^3 \right).$$

< < >> < <</p>

5. References

- O. Kallenberg (2002). Foundations of Modern Probability. Second Edition, Springer, New York.
- M. Penrose (2003). Random geometric graphs. Oxford University Press, Oxford.
- R. Schneider and W. Weil (2008). Stochastic and Integral Geometry. Springer, Berlin.
- D. Stoyan, W.S. Kendall and J. Mecke (1995). Stochastic Geometry and Its Applications. Second Edition, Wiley, Chichester.