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1. Definition of the Boolean model

Definition

Let η = {Xn : n ∈ N} be a Poisson process with intensity λ and
Z0,Z1, . . . a sequence of independent random particles with
common distribution Q satisfying the integrability assumption

EVd(Z0 + K ) <∞, K ∈ Cd .

Assume that η and (Zn) are independent. Then

Z =
⋃
n∈N

(Zn + ξn),

is called Boolean model with grain distribution Q and typical
grain Z0.
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Theorem

Let η = {Xn : n ∈ N} be a Poisson process with positive
intensity and R0,R1, . . . a sequence of independent and
identically distributed non-negative random variables. Define

Z =
⋃
n∈N

B(Xn,Rn),

where B(x , r) is a ball with centre x ∈ Rd and radius r ≥ 0.
Then P(Z = Rd) = 1 iff ERd

0 =∞.

Remark

Let Z0 := (0,R0), where R0 is as above. Then Z0 satisfies the
required integrability condition iff

ERd
0 <∞.
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Lemma

Let Z be a Boolean model as above. Then, almost surely, any
bounded set is intersected by only finitely many of the
(secondary) grains Zn + Xn. In particular, Z is closed.

Convention

A Boolean model Z is considered as a random closed set, that
is as a random element in the space of all closed subsets of Rd

equipped with a suitable σ-field.
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2. The capacity functional

Definition

The capacity functional of a random closed set Z is the
mapping TZ : Cd → R defined by

TZ (C) := P(Z ∩ C 6= ∅), C ∈ Cd .

Theorem

The capacity model of a Boolean model Z is given by

TZ (C) = 1− exp[−λEVd(Z0 + C∗)], C ∈ Cd ,

where C∗ := {−x : x ∈ B}.
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Corollary

A Boolean model Z is stationary, that is

Z d
= Z + x , x ∈ Rd .

Corollary

Assume that the typical grain Z0 of a Boolean model Z is
isotropic, i.e.

Z0
d
= ϑZ0

for any rotation ϑ. Then Z is isotropic.
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3. Volume fraction and covariance function

Definition

The volume fraction p of a stationary random closed set Z is
defined by

p := EVd([0,1]d).

An equivalent definition is p := P(x ∈ Z ) for any x ∈ Rd .

Corollary

The volume fraction of a Boolean model is given by

p = 1− exp(−λEVd(Z0))
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Definition

The covariance function of a stationary random closed set Z is
the function C : Rd × Rd → R defined by

C(x , y) := P({x , y} ⊂ Z ) = E[1Z (x)1Z (y)], x , y ∈ Rd .

Theorem

The covariance function of a Boolean model is given by

C(x) = 2p − 1 + (1− p)2 exp(λC0(x)), x ∈ Rd ,

where
C0(x) := E[Vd(Z0 ∩ (Z0 − x)].
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4. Ergodicity properties

Definition

A stationary random closed set Z in Rd is called mixing if

lim
‖x‖→∞

P(Z ∈ H ∩ θxH′) = P(Z ∈ H)P(Z ∈ H′),

for any measurable sets H,H′ of closed sets. Here

θxH′ := {A + x : A ∈ H′}, x ∈ Rd .

Remark

Any mixing Z is ergodic, that is

P(Z ∈ H) ∈ {0,1}

for all invariant H.
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Theorem

A Boolean model Z is mixing.

Remark

The assertion of the theorem can be reduced to the limit
relation

lim
‖x‖→∞

(1− TZ (C ∪ (C′ + x)) = (1− TZ (C))(1− TZ (C′)),

for all compact C,C′ ⊂ Rd . For the Boolean model this can be
directly verified.
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Theorem (Spatial ergodic theorem)

Assume that Z is an ergodic random closed set and let W ⊂ Rd

be a convex and compact set containing the origin in its interior.
Let f (Z ) be a measurable function of Z such that E|f (Z )| <∞.
Then the limit

lim
r→∞

1
Vd(rW )

∫
rW

f (θxZ )dx

exists almost surely and in L1(P) and is given by Ef (Z ).

Example

For a Boolean model Z the limit

lim
r→∞

1
Vd(rW )

∫
rW

1{x ∈ Z}dx

exists and is given by the volume fraction of Z .
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Definition

Let K ⊂ Rd be compact and convex. The intrinsic volumes of K
are the numbers V0(K ), . . . ,Vd(K ) uniquely determined by the
Steiner formula

Vd(K + rBd) =
d∑

j=0

r jκjVd−j(K ), r ≥ 0,

where κj is the (j-dimensional) volume of the Euclidean unit ball
Bj in Rj .

Remark

Vd(K ) is the Lebesgue measure of K . If K has non-empty
interior, then Vd−1(K ) is half the surface area of K . Moreover,
V0(K ) = 1{K 6= ∅}.

Günter Last Lecture 4: The Boolean model



Remark

Using the inclusion-exclusion formula the intrinsic volumes can
be extended (uniquely!) to finite unions K of convex and
compact sets. Then Vd−1(K ) is still half the surface area of K
while V0(K ) is the Euler characteristic of K .

Theorem

Let Z be a stationary ergodic random closed set that is locally a
finite union of convex sets. Under suitable integrability
assumptions the limits

λj := lim
r→∞

Vj(Z ∩ rW )

Vd(rW )
, j = 0, . . . ,d ,

exist P-almost surely.
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Theorem (Miles)

If Z is a Boolean model with convex typical grain Z0, then

λd−1 = λEVd−1(Z0)e−λEVd (Z0).

If Z0 is isotropic, then λ0, . . . , λd−2 can be computed explicitly in
terms of e−λEVd (Z0) and λEVi(Z0), i = 0, . . . ,d − 1. For
instance, we have for d = 2 that

λ0 = e−λEVd (Z0)
(
λ− EV1(Z0)

π

)
and in the case d = 3

λ0 = e−λEVd (Z0)

(
λ− λ2

4
EV1(Z0)EV2(Z0) +

πλ3

48
(EV2(Z0))

3
)
.
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