

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

《曰》 《聞》 《臣》 《臣》 三臣 …

Topics in Stochastic Geometry

Lecture 3 Random partitions and balanced invariant transports

Günter Last

Lectures presented at the

Department of Mathematical Sciences

University of Bath

May 2011

1. The Monge-Kantorovich problem

Setting

Let ξ and η be measures on \mathbb{R}^d such that

$$0 < \xi(\mathbb{R}^d) = \eta(\mathbb{R}^d) < \infty.$$

Let c(x, y) be the cost of transporting one unit of mass from $x \in \mathbb{R}^d$ to $y \in \mathbb{R}^d$.

Lecture 3: Random partitions and balanced invariant transports

A (1) > A (1) > A

Problem (Monge 1781)

Minimize

$$\int c(x,\tau(x))\xi(dx)$$

among all transport maps $\tau : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $\tau^*(\xi) = \eta$, that is $\int \mathbf{1}\{\tau(x) \in B\}\xi(dx) = \eta(B), \quad B \in \mathcal{B}^d.$

Such a τ is called admissable.

< 🗇 > < 🖻 > <

I naa

Remark

If ξ and η have the same number of atoms of equal size, the Monge Problem corresponds to optimal matching.

Remark

Admissable transports need not exist, for instance if ξ and η have atoms of different sizes.

Remark

If ξ and η are absolutely continuous and $c(x, y) = ||x - y||^p$ for some p > 1 then (under moment assumptions on ξ and η) there is a unique solution of the Monge problem.

Definition (Coupling)

Let $\Pi(\xi, \eta)$ denote the set of all (finite) measures π on $\mathbb{R}^d \times \mathbb{R}^d$ such that $\pi(\cdot \times \mathbb{R}^d) = \xi$ and $\pi(\mathbb{R}^d \times \cdot) = \eta$. Any such π is called a coupling of ξ and η .

Problem (Kantorovich 1940)

Minimize

$$\int c(x,y)\pi(d(x,y))$$

among all $\pi \in \Pi(\xi, \eta)$.

Lecture 3: Random partitions and balanced invariant transports

< 回 > < 三 > < 三 >

Remark

Any $\pi \in \Pi(\xi, \eta)$ can be identified with a stochastic kernel T(x, dy) from \mathbb{R}^d to \mathbb{R}^d such that

$$\int T(x,B)\xi(dx) = \eta(B), \quad B \in \mathcal{B}^d.$$

Such a T is called transport kernel.

Remark

If the costs are finite for some transport kernel, then there exists a solution to the Monge-Kantorovich problem.

Lecture 3: Random partitions and balanced invariant transports

Setting

Consider measurable mappings $\theta_x : \Omega \to \Omega$, $x \in \mathbb{R}^d$, satisfying $\theta_0 = id_\Omega$ and the flow property

$$\theta_{x} \circ \theta_{y} = \theta_{x+y}, \quad x, y \in \mathbb{R}^{d}.$$

The mapping $(\omega, x) \mapsto \theta_x \omega$ is assumed measurable. The probability measure \mathbb{P} is assumed stationary under the flow, that is

$$\mathbb{P} \circ \theta_{\mathbf{X}} = \mathbb{P}, \quad \mathbf{X} \in \mathbb{R}^{d}.$$

Lecture 3: Random partitions and balanced invariant transports

< 同 > < 三 >

A random measure ξ is invariant if

$$\xi(heta_{\mathbf{x}}\omega, \mathbf{B} - \mathbf{x}) = \xi(\omega, \mathbf{B}), \quad \omega \in \Omega, \mathbf{x} \in \mathbb{R}^{d}, \mathbf{B} \in \mathcal{B}^{d}.$$

Remark

By invariance of \mathbb{P} , any invariant random measure is stationary. Any pair of invariant random measures is jointly stationary. If nothing else is said, random measures will always assumed to be invariant.

A (1) > A (1) > A

Definition (Transport kernels and allocation rules)

- (i) A weighted transport-kernel is a kernel *T* from $\Omega \times \mathbb{R}^d$ to \mathbb{R}^d such that $T(\omega, x, \cdot)$ is a locally finite measure for all $(\omega, x) \in \Omega \times \mathbb{R}^d$.
- (ii) If *T* is Markovian, i.e. $T(\omega, x, \cdot)$ is a probability measure for all $(\omega, x) \in \Omega \times G$, then *T* is called transport kernel.
- (iii) A weighted transport-kernel T is invariant, if

$$T(heta_y\omega, x - y, B - y) = T(\omega, x, B), \quad x, y \in \mathbb{R}^d, \omega \in \Omega,$$

 $B \in \mathcal{B}^d.$

If *T* is of the form $T(\omega, x, \cdot) = \delta_{\tau(\omega, x)}$, then $\tau : \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ is called allocation rule.

Lecture 3: Random partitions and balanced invariant transports

Let ξ and η be random measures. A weighted transport kernel is balancing ξ and η if

$$\int T(\omega, \mathbf{x}, \cdot) \, \xi(\omega, d\mathbf{x}) = \eta(\omega, \cdot)$$

 \mathbb{P} -a.e. $\omega \in \Omega$.

Theorem (L. and Thorisson '09)

Let ξ , η be two (invariant) and ergodic random measures. Then there exists an invariant transport-kernel T balancing ξ and η iff ξ and η have equal intensities, that is

$$\mathbb{E}[\xi([0,1]^d)] = \mathbb{E}[\eta([0,1]^d)].$$

A (1) > A (1) > A

The cost of an invariant transport kernel *T* balancing ξ and η is defined as

$$c_{\mathcal{T}} := \mathbb{E}\left[\iint \mathbf{1}\{x \in [0,1]^d\} c(x,y) \mathcal{T}(x,dy) \xi(dx)\right].$$

In the case of an allocation rule τ , this simplifies to

$$\boldsymbol{c}_{\tau} := \mathbb{E}\left[\int \mathbf{1}\{x \in [0,1]^d\} \boldsymbol{c}(x,\tau(x))\xi(dx)\right]$$

A (10) > A (10) > A (10)

3. Balancing transports and Palm measures

Definition

Let $\boldsymbol{\xi}$ be an invariant random measure of intensity 1. The probability measure

$$\mathbb{P}_{\xi}(\boldsymbol{A}) := \iint \mathbf{1}\{\theta_{\boldsymbol{x}}\omega \in \boldsymbol{A}, \boldsymbol{x} \in [0,1]^{\boldsymbol{d}}\}\,\xi(\omega,\boldsymbol{d}\boldsymbol{x})\,\mathbb{P}(\boldsymbol{d}\omega), \quad \boldsymbol{A} \in \mathcal{F},$$

is called the Palm measure of ξ .

Remark

The definition of the Palm measure is written as

$$\mathbb{P}_{\xi}(A) := \mathbb{E}_{\mathbb{P}}\left[\int \mathbf{1}\{ heta_x \in A, x \in B\} \xi(dx)
ight], \quad A \in \mathcal{F}.$$

Theorem (L. and Thorisson '09)

Consider two invariant random measures ξ and η of intensity 1 and let T be an invariant weighted transport-kernel. Then T is balancing ξ and η iff

$$\mathbb{E}_{\mathbb{P}_{\xi}}\left[\int \mathbf{1}\{\theta_{y}\in\cdot\}\ T(\mathbf{0},dy)\right]=\mathbb{P}_{\eta}.$$

Lecture 3: Random partitions and balanced invariant transports

A (1) > A (2) > A

4. Marriage of Lebesgue and Poisson

Setting

Let η be a stationary Poisson process of intensity 1.

Theorem (Holroyd and Peres '05)

There is an allocation rule balancing Lebesgue measure and η .

Theorem (Holroyd and Peres '05)

Assume that $d \in \{1, 2\}$. Any allocation rule balancing Lebesgue measure and η satisfies

$$\mathbb{E}[|\tau(\mathbf{0})|^{d/2}] = \infty.$$

Theorem (Holroyd and Peres '05)

There exists an invariant transport kernel T balancing Lebesgue measure and η such that

$$\mathbb{E}\left[\exp[c|y|^d]T(0,dy)
ight]<\infty$$

for some c > 0.

Theorem (Chatterjee, Peled, Peres and Romik '10)

Assume that $d \ge 3$. There exists an allocation rule τ balancing Lebesgue measure and η such that

$$\mathbb{E}\left[\exp[c| au(0)|^{1-arepsilon}]
ight]<\infty$$

for some c > 0 and all $\varepsilon > 0$.

Theorem (Huesmann and Sturm '10)

Assume that the costs are of the form c(x, y) = g(|x - y|) for some strictly increasing, continuous function with g(0) = 0 and $\lim_{r\to\infty} g(r) = \infty$. Let $\Pi(\eta)$ be the set of all invariant transport kernels balancing Lebesgue measure and η . Assume that c_T is finite for some $T \in \Pi(\eta)$. Then there exist a unique $T^* \in \Pi(\eta)$ minimizing the costs. In fact, T^* reduces to an allocation rule.

< 回 > < 三 > < 三

5. Stationary partitions

Setting

 $\eta \neq 0$ is an invariant point process on \mathbb{R}^d with finite intensity λ and \mathbb{P} is a stationary probability measure on (Ω, \mathcal{F}) .

Definition

A stationary partition (based on η) is an allocation rule $\tau : \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ such that

$$au(\omega, \mathbf{X}) \in \eta(\omega), \quad \omega \in \Omega.$$

Lecture 3: Random partitions and balanced invariant transports

(4月) (4日) (4日)

Let τ be a stationary partition based on η .

(i) The cell with centre $x \in \eta$ is the Borel set

$$C(x) = \{ y \in \mathbb{R}^d : \tau(y) = x \}.$$

(ii) The cell containing the site $y \in \mathbb{R}^d$ is the Borel set

$$V(\mathbf{y}) := \{ \mathbf{z} \in \mathbb{R}^d : \tau(\mathbf{z}) = \tau(\mathbf{y}) \}.$$

Remark

The system $\{C(x) : x \in \eta\}$ forms a partition of \mathbb{R}^d into measurable sets.

Lecture 3: Random partitions and balanced invariant transports

э

Theorem

We have for all measurable $f, g : \Omega \to [0, \infty)$ that

$$\mathbb{E}[f \cdot g(heta_{ au})] = \mathbb{E}_{\mathbb{P}_{\eta}}\left[g \cdot \int_{C(0)} f(heta_x) dx\right],$$

where $\theta_{\tau}(\omega) := \theta_{\tau(0,\omega)}(\omega)$. In particular

 $\mathbb{E}_{\mathbb{P}_{\eta}}\left[V_d(C(0))\cdot g\right] = \mathbb{E}[g(heta_{ au})].$

A stationary partition τ (based on η) is balanced, if τ is balancing a multiple of Lebesgue measure and η , that is

$$\mathbb{P}(V_d(C(x)) = \lambda^{-1} \text{ for all } x \in \eta) = 1,$$

or, equivalently,

$$\mathbb{P}^0_{\eta}(V_d(C(0)) = \lambda^{-1}) = 1.$$

Theorem (Holroyd and Peres '05)

Let τ be a stationary partition. Then τ is balanced if and only if

$$\mathbb{P}(\theta_{\tau} \in \cdot) = \mathbb{P}_{\eta}^{\mathsf{0}}.$$

э

Let τ be a stationary partition of \mathbb{R}^d . A pair $(x, y) \in \mathbb{R}^d \times \eta$ is called unstable (with respect to Euclidean distance $d(\cdot, \cdot)$) if it has the following two properties.

(i)
$$d(x, y) < d(x, \tau(x))$$
.

(ii) d(x, y) < d(z, y) for some $z \in C(y)$.

Property (i) means that x prefers y to its actual centre $\tau(x)$. The second property means that y would like to have x in its territory.

Theorem (Hoffman, Holroyd and Peres '06)

Assume that η is ergodic. There is a stationary η -measurable and balanced partition of \mathbb{R}^d that a.s. does not contain unstable pairs. In fact, this partition is uniquely determined.

6. References

- C. Hoffman, A.E. Holroyd, and Y. Peres (2006). A stable marriage of Poisson and Lebesgue. *The Annals of Probability*, **34**, 12411272.
- A. Holroyd and Y. Peres (2005). Extra heads and invariant allocations. Annals of Probability 33, 31–52.
- M. Huesmann and T. Sturm (2010). Optimal Transport from Lebesgue to Poisson. Preprint.
- G. Last (2006). Stationary partitions and Palm probabilities. Advances in Applied Probability 37, 602–620.
- G. Last and H. Thorisson (2009). Invariant transports of stationary random measures and mass-stationarity. *Annals* of *Probability* 37, 790–813.
- C. Villani (2009). Optimal Transport, Old and New. Springer.