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1. Definition of a tessellation

Definition

A tessellation (mosaic) in Rd is a countable system of compact
subsets of Rd (cells) with the following properties.

1 Any bounded set is intersected by only a finite number of
the cells.

2 All cells are convex and have a non-empty interior.
3 The union of the cells is all of Rd .
4 The interiors of the cells are mutually disjoint.

Remark

The cells of a mosaic are convex polytopes, that is finite
intersections of half-spaces.
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A Voronoi tessellation:
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Definition

Let ϕ denote a locally finite subset of Rd , The Voronoi cell
C(ϕ, x) of x ∈ ϕ is the set of all sites y ∈ Rd whose distance
from x is smaller or equal than the distances to all other points
of ϕ. The point x is called generator of C(ϕ, x). The Voronoi
tessellation based on ϕ is the system

{C(ϕ, x) : x ∈ ϕ}.

Remark

If the convex hull of ϕ equals Rd then the Voronoi cells are
bounded. Moreover, if the points of ϕ are in general quadratic
position, then the Voronoi tessellation is normal in the sense
that any k -face is contained in exactly d − k + 1 cells.
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Definition

Let ϕ denote a locally finite systems of hyperplanes in Rd . The
closures of the connected components of Rd \ ∪H∈ϕH is called
hyperplane tessellation generated by ϕ.

Remark

Voronoi and hyperplane tessellations are face to face, that is
faces of different cells do not overlap. In the following all
tessellations will be assumed face to face.
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Definition

Let C be a convex polytope. Then

C =
⋃

k∈{0,...,d}

⋃
C∈Sk (C)

relint F ,

where Sk (C) is a finite set of k -dimensional polytopes whose
affine hulls are pairwise not equal. A polytope F ∈ Sk (C) is
called a k -face of C.
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2. Particle processes and random tessellations

Definition

Let Cd denote the space of all compact non-empty subsets
(particles) of Rd . The Hausdorff distance between two compact
sets K ,L is given by

d(K ,L) := sup
x∈L

d(x ,K ) ∨ sup
x∈K

d(x ,L),

where d(x ,K ) := inf{‖x − y‖ : y ∈ K} is the (Euclidean)
distance between x and K . This metric makes Cd a complete,
separable and locally compact metric space. We equip Cd with
the associated Borel σ-field.
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Definition

A particle process X is a simple point process on Cd .

Definition

A random tessellation X is a particle process, whose particles
almost surely form a (face to face) tessellation of Rd .
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2. Stationary tessellations

Definition

A random tessellation X is called stationary, if

X d
= X + y , y ∈ Rd .

Example

Let η be a stationary Poisson process on Rd . Then the Poisson
Voronoi tessellation {C(x , η) : x ∈ η} is a stationary (and
normal) tessellation. Other stationary point processes can be
considered as well.
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Definition

A hyperplane process is a simple point process η on the space
A(d − 1) of all hyperplanes in Rd such that

η({H ∈ A(d − 1) : H ∩ K 6= ∅}) <∞ P-a.s.,K ∈ Cd .

It is stationary if η d
= η + y for all y ∈ Rd .

Theorem

Under an integrability assumption, the intensity measure Λ of a
stationary hyperplane process η is of the form

Λ(·) = λ

∫
G(d−1)

∫
H⊥

1{H + x ∈ ·}dxQ(dH),

where λ ≥ 0 (the intensity of η), and the directional distribution
Q is a probability measure on the space G(d − 1) of all
(d − 1)-dimensional linear subspaces of Rd .
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Example

Consider a stationary Poisson process η of hyperplanes and
assume that its directional distribution is non-degenerate, in the
sense that it is not concentrated on a great subsphere. Then
the hyperplanes of η are a.s. in general position, that is every
k -dimensional plane is contained in at most d − k hyperplanes
of the system. The generated hyperplane tessellation is a
stationary tessellation.
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3. Intensities of faces

Setting

X is a stationary face to face tessellation. The system of all
k -faces of the cells of X is denoted by Sk (X ).

Definition

For a k -dimensional convex set C let πk (C) denote the centre
of the k -dimensional circumball of C. Define the stationary
point process of centres of k -faces by

Nk := {πk (F ) : F ∈ Sk (X )}

and denote its intensity by

γk := E[Nk [0,1]d ].
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Theorem

We have

d∑
i=0

(−1)iγi = 0.

If X is normal, then moreover, for any k ∈ {0, . . . ,d},

(1− (−1)k )γk =
k−1∑
j=0

(−1)j
(

d + 1− j
k − j

)
γj = 0,

and in particular 2γ1 = (d + 1)γ0. In two dimensions this
implies γ0 = 2γ2 and γ1 = 3γ2.
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Theorem (Miles ’71, Møller ’81)

Assume that X is the Voronoi tessellation generated by a
stationary Poisson process of intensity λ. Then γ0 = cdλ for an
explicitly known constant cd > 0. In particular, we have in case
d = 3 that

γ0 =
24π2

35
λ, γ1 =

48π2

35
λ, γ2 =

(24π2

35
+ 1
)
λ.

Günter Last Lecture 2: Random tessellations



Theorem (Mecke ’83)

Assume that X is a stationary hyperplane tessellation in
general position. Then

γk =

(
d
k

)
γ0, k = 0, . . . ,d .
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Theorem

Assume that X is a hyperplane tessellation generated by a
Poisson hyperplane process of intensity

λ =
1
2
E[card{H ∈ η : H ∩ Bd 6= ∅}].

Then γ0 is determined by the associated zonoid of X . In the
isotropic case

γ0 =
κd

d−1

ddκd−1
d

λd ,

where κd is the volume of the unit ball in Rd .
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4. Typical faces

Definition

A random set Z with distribution

P(Z ∈ ·) :=
1

γdVd (B)
E

 ∑
C∈X ,πd (C)∈B

1{C − πd (C) ∈ ·}


is called typical cell of X . Here the volume Vd (B) is
assumed to be positive and finite.
Let j ∈ {0, . . . ,d}. A random set Z (j) with distribution

P(Z (j) ∈ ·) :=
1

γjVd (B)
E

 ∑
C∈Sj (X),πj (C)∈B

1{C − πj(C) ∈ ·}


is called typical j-cell of X .
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Theorem (Miles, Matheron, Mecke)

Consider the typical cell Z and the cell Z0 containing the origin.
Then, for any α ∈ R,

γdE[Vd (Z )α+1] = E[Vd (Z0)α].

In particular,

E[Vd (Z )] = γ−1
d ,

E[Vd (Z0)−1] = γd .
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Theorem

Let 0 ≤ j ≤ k ≤ d and consider the typical k-face Z (k) of a
normal tessellation. Then the mean number nkj of j-faces of
Z (k) satisfies

γj

(
d + 1− j

k − j

)
= γknkj .

In particular, the typical cell of a stationary planar Voronoi
tessellation has 6 vertices on the average.
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Theorem (Mecke ’83)

Let 0 ≤ j ≤ k ≤ d and consider the typical k-face Z (k) of a
stationary hyperplane tessellation in general position. Then the
mean number of j-faces of Z (k) is given by

2k−j
(

k
j

)
.

In particular, the typical cell of a stationary planar line
tessellation has 4 vertices on the average.
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5. Gamma distributions in Poisson-Voronoi tessellation

Setting

We consider the Voronoi tessellation generated by a stationary
Poisson process of intensity λ.

Theorem (Muche ’05, Baumstark and L. ’07)

Let j ∈ {0, . . . ,d}. Pick a point x on the j-faces at random
(according to j-dimensional Lebesgue measure). Consider the
ball Sj centred at x that has d − j + 1 Poisson points in its
boundary and no point in its interior. Then

Vd (Sj) ∼ Γ(d − j + j/d , λ).
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Theorem (Cowan, Quine and Zuyev ’03)

Let d = 2. Pick an edge Z (1) of the Voronoi tessellation at
random. Then there are a.s. exactly two different Poisson
points X1,X2, the neighbours of the edge Z (1), such that Z (1) is
the intersection of the Voronoi cells centred at those points.
The fundamental region T1 of Z (1) is defined by

T1 :=
⋃

y vertex of Z (1)

B(x , ‖x − X1‖).

Then the area of T1 has a Γ(3, λ)-distribution.
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Theorem (Baumstark and L. ’09)

Let j ∈ {0, . . . ,d}. Pick a j-face Z (j) of the Voronoi tessellation
at random. Then there are a.s. exactly d − j + 1 different
Poisson points X1, . . . ,Xd−j+1, the neighbours of the j-face Z (j),
such that Z (j) is the intersection of the Voronoi cells centred at
those points. The fundamental region Tj of Z (j) is defined by

Tj :=
⋃

y vertex of Z (j)

B(x , ‖x − X1‖)

Consider Tj under the condition that η(Tj) = m + d − j + 1,
where m = 0 in case j = 0, m = 2 in case j = 1 and m ≥ j + 1
otherwise. Then the volume of the fundamental region Tj has a
Γ(m + d − j , λ)-distribution.
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