

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

Topics in Stochastic Geometry

Lecture 1 Point processes and random measures

Günter Last

Lectures presented at the

Department of Mathematical Sciences

University of Bath

May 2011

1. Definition of random measures

Setting

- (S, S) = measurable (state) space.
- $(\Omega, \mathcal{F}, \mathbb{P}) =$ probability space.

Remark

Sometimes it is useful to assume that \mathbb{P} is only σ -finite.

米間 とくほとくほとう Lecture 1: Point processes and random measures

э.

Definition

- **M** \equiv **M**(*S*) space of all σ -finite measures on *S*.
- $\mathcal{M} =$ smallest σ -field of subsets of **M** making the mappings $\mu \mapsto \mu(B)$ for all $B \in S$ measurable.
- **N** = space of all σ -finite counting measures on *S*.

Definition

- A random measure on S is a random element η in M that is uniformly σ-finite. This means that there are measurable sets B_n ∈ S, n ∈ N, such that η(B_n) < ∞ a.s.</p>
- A point process is a random measure η such that $\mathbb{P}(\eta \notin \mathbf{N}) = \mathbf{0}$.

2. Intensity measure and distribution

Definition

The intensity measure of a random measure η is the measure Λ defined by

$$\Lambda(B) := \mathbb{E}\eta(B), \quad B \in \mathcal{S}.$$

Theorem (Campbell's theorem)

Let η be a random measure with intensity measure Λ . Then

$$\mathbb{E}\int f(s)\eta(ds)=\int f(s)\Lambda(ds)$$

for all measurable $f : S \rightarrow [0, \infty)$.

Example

Let X_1, X_2, \ldots be independent and identically distributed random elements in *S*.

The point process

$$\eta := \sum_{j=1}^n \delta_{X_j}$$

is a Binomial process of size *n* based on the distribution of X_1 .

■ If *n* above is replaced with a \mathbb{N}_0 -valued random variable *Y* independent of (X_n) , then η is a mixed Binomial process with random size *Y*.

Theorem

Let ξ and η be random measures on S. The following statements are equivalent:

1 $\xi \stackrel{d}{=} \eta$ 2 $(\xi(B_1), \dots, \xi(B_k)) \stackrel{d}{=} (\eta(B_1), \dots, \xi(B_k))$ for all $B_1,\ldots,B_k \in S$ and $k \in \mathbb{N}$. 3 $\int fd\xi \stackrel{d}{=} \int fd\eta$ for all measurable $f : S \to [0, \infty)$. 4 For all $f: S \rightarrow [0, \infty)$

$$\mathbb{E} \exp\left[-\int f(s)\xi(ds)\right] = \mathbb{E} \exp\left[-\int f(s)\eta(ds)\right].$$

< 回 > < 三 > < 三 > Lecture 1: Point processes and random measures

I naa

3. The Poisson process

Definition

A Poisson process on S is a point process η on S having the following two properties:

- The random variables η(B₁),..., η(B_m) are stochastically independent whenever B₁,..., B_m are measurable and pairwise disjoint.
- There is a measure ∧ on S such that

$$\mathbb{P}(\eta(B) = k) = rac{\Lambda(B)^k}{k!} \exp[-\Lambda(B)], \quad k \in \mathbb{N}_0, B \in \mathcal{S},$$

where $\infty^k e^{-\infty} := 0$ for all $k \in \mathbb{N}_0$.

Theorem

Let Λ be a σ -finite measure on S. Then a point process η on S is a Poisson process with intensity measure Λ if and only if

$$\mathbb{E}\exp\left[-\int f(s)\eta(ds)\right] = \exp\left[-\int \left(1-e^{-f(s)}\right)\Lambda(ds)\right]$$

for all measurable $f : S \rightarrow [0, \infty)$.

Corollary

Assume that η is a mixed sample process with sample distribution F and a sample size distribution that is Poisson with intensity $\gamma \ge 0$. Then η is a Poisson process with intensity measure γF .

Theorem (Mecke 1967)

Let Λ be a σ -finite measure on S. Then a point process η on S is a Poisson process with intensity measure Λ if and only if

$$\mathbb{E}\int f(\eta, \boldsymbol{s})\eta(\boldsymbol{ds}) = \mathbb{E}\int f(\eta + \delta_{\boldsymbol{s}}, \boldsymbol{s})\Lambda(\boldsymbol{ds}),$$

or, equivalently,

$$\mathbb{E}\int f(\eta-\delta_{s},s)\eta(ds)=\mathbb{E}\int f(\eta,s)\Lambda(ds),$$

for all measurable $f : \mathbf{N} \times S \rightarrow [0, \infty)$.

Example (Cox process)

Let Π_{μ} denote the distribution of a Poisson process with intensity measure μ . Let ξ be a random measure on *S*. Then a point process η on *S* is a Cox process driven by ξ if

$$\mathbb{P}(\eta \in \cdot \mid \xi) = \Pi_{\xi} \quad \mathbb{P}-\text{a.s.}$$

< □ > < ঐ > < ট > < ট > ব ট > ট পিও Lecture 1: Point processes and random measures

4. Stationarity

Setting

G is a locally compact second countable Abelian group with Haar measure λ .

Definition (Shift)

For
$$g \in G$$
 define $\theta_g : \mathbf{M}(G) \to \mathbf{M}(G)$, by

$$heta_g \mu(B) := \mu(B+g), \quad B \in \mathcal{G}.$$

《口》《聞》 《臣》 《臣》 Lecture 1: Point processes and random measures

э

Remark

The group G operates on M(G), that is:

- $\bullet \theta_0 = \mathsf{id}_{\mathbf{M}(G)},$
- We have the flow property

$$\theta_{g} \circ \theta_{h} = \theta_{g+h}, \quad g,h \in G_{h}$$

The mapping $(\mu, g) \mapsto \theta_{q} \mu$ is measurable.

Definition

A random measure ξ on G is stationary if

$$\theta_{g}\xi \stackrel{d}{=} \xi, \quad g \in G.$$

《口》《聞》 《臣》 《臣》 Lecture 1: Point processes and random measures

э

Example

A Poisson process on *G* is stationary if and only if its intensity measure is a multiple of Haar measure.

Example

Let η be a Cox process on *G* driven by the random measure ξ . Then η is stationary if and only if ξ is stationary.

Setting

Let $\{\theta_q : q \in G\}$ be a measurable flow on a measurable space $(\mathbf{W}, \mathcal{W}).$

Example

For $\mu \in \mathbf{M}(\boldsymbol{G} \times \boldsymbol{S})$ define

$$heta_g \mu({m{B}} imes {m{C}}) := \mu(({m{B}} + {m{g}}) imes {m{C}}), \quad {m{B}} \in {\mathcal{G}}, {m{C}} \in {\mathcal{S}}.$$

Then $\{\theta_g : g \in G\}$ is a measurable flow on $\mathbf{M}(G \times S)$.

= nar

Example

Let $x : G \to S$ and $g \in G$. Define $\theta_q x : G \to S$ by

$$\theta_g x(h) := x(g+h), \quad h \in G.$$

Let **W** be a subset of the path space S^G that is invariant under the above shifts equipped with the σ -field \mathcal{W} rendering all mappings $x \mapsto x(g), g \in G$, measurable and such that $(g, x) \mapsto \theta_g x$ is measurable.

Definition

A random element X in W is stationary if

$$heta_{g}X\stackrel{d}{=}X,\quad g\in G.$$

A random measure ξ on G and a random element X in W are jointly stationary if

$$(heta_g\xi, heta_gX)\stackrel{d}{=}(\xi,X),\quad g\in G.$$

Example

Let η be a stationary Cox process on *G* driven by the random measure ξ . Then η and ξ are jointly stationary.

Definition

Let ξ be a random measure on *G* and *X* a random element in **W**. Assume that ξ and *X* are jointly stationary. The measure

$$\mathbb{P}_{\xi,X}(A) := \lambda(B)^{-1}\mathbb{E}\int_{B} \mathbf{1}\{(\theta_{g}\xi, \theta_{g}X) \in A\}\xi(dg), \quad A \in \mathcal{M} \otimes \mathcal{W},$$

is called the Palm measure of (ξ, X) . Here $B \in \mathcal{G}$ is a Borel set with $0 < \lambda(B) < \infty$. If the intensity

$$\gamma_{\xi} := \lambda(B)^{-1} \mathbb{E} \xi(B)$$

of ξ is positive and finite, then the normalized Palm measure $\mathbb{P}^{0}_{\xi,X} := \gamma_{\xi}^{-1} \mathbb{P}_{\xi}$ is called Palm distribution of (ξ, X) .

Theorem (refined Campbell theorem)

Let ξ and X be jointly stationary. Then

$$\mathbb{E}\int f(\theta_g\xi,\theta_gX,g)\xi(dg)=\iint f(\mu,x,g)\mathbb{P}_{\xi,x}(d(\mu,x))\lambda(dg)$$

for all measurable $f : \mathbf{M}(G) \times \mathbf{W} \times G \rightarrow [0, \infty)$.

Corollary

The intensity measure of a stationary random measure ξ is a multiple of the Haar measure λ . The multiple is the intensity γ_{ξ} of ξ .

Lecture 1: Point processes and random measures

Example

The Palm distribution of a stationary Poisson process η is obtained from the stationary distribution by adding an atom at 0, that is:

$$\mathbb{P}^{\mathbf{0}}_{\eta} = \mathbb{P}(\eta + \delta_{\mathbf{0}} \in \cdot).$$

Example

Let η be a Cox process on ${\it G}$ driven by a stationary ξ with a finite intensity. Then

$$\mathbb{P}_{\eta,\xi}^{\mathbf{0}} = \iint \mathbf{1}\{(\mu + \delta_{\mathbf{0}}, \alpha) \in \cdot\} \Pi_{\alpha}(\boldsymbol{d}\mu) \mathbb{P}_{\xi}^{\mathbf{0}}(\boldsymbol{d}\alpha).$$

Hence, up to an additional atom at 0, the Palm distribution of η is again that of a Cox process, driven by a random measure with the Palm distribution of ξ .

< D > < P > < E > <</pre>

Theorem (Neveu's exchange formula)

Let ξ and η be random measures on G and X a random element in W. Assume that ξ , η , and X are jointly stationary. Then

$$\begin{split} \iint f(\theta_{g}\mu,\theta_{g}\mu',\theta_{g}x,-g)\mu'(dg)\mathbb{P}_{\xi,\eta,X}(d(\mu,\mu',x)) \\ &= \iint f(\mu,\mu',x,g)\mu(dg)\mathbb{P}_{\eta,\xi,X}(d(\mu,\mu',x)) \end{split}$$

for all measurable $f : \mathbf{M}(G) \times \mathbf{M}(G) \times \mathbf{W} \to [0, \infty]$.

Corollary (Mass transport principle)

Let $\kappa : \mathbf{M}(G) \times \mathbf{M}(G) \times G \times G \rightarrow [0,\infty)$ be measurable and invariant under joint shifts of all arguments:

 $\kappa(\theta_r\mu, \theta_r\mu', g-r, h-r) = \kappa(\mu, \mu', g, h), \quad \mu, \mu' \in \mathbf{M}(G), r, g, h \in G.$

Then

$$\mathbb{E} \iint \mathbf{1}_{B}(h)\kappa(g,h)\,\eta(dg)\xi(dh) = \mathbb{E} \iint \mathbf{1}_{B'}(g)\kappa(g,h)\,\eta(dg)\xi(dh)$$

for all $B, B' \in \mathcal{G}$ with finite and equal Haar measure.

Proof.

Apply Neveu's exchange formula with

$$f(\mu,\mu',\boldsymbol{g}):=\kappa(\mu,\mu',\boldsymbol{0},\boldsymbol{g}).$$

3

5. References

- D. Daley and D. Vere-Jones (2003). An Introduction to the Theory of Point Processes, 2nd edition. Springer, New York
- O. Kallenberg (2002). Foundations of Modern Probability. Second Edition, Springer, New York.
- G. Last (2010). Modern random measures: Palm theory and related models. in: New Perspectives in Stochastic Geometry. (W. Kendall und I. Molchanov, eds.). Oxford University Press.

э