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1. Definition of random measures

Setting

(S,S) = measurable (state) space.
(Ω,F ,P) = probability space.

Remark

Sometimes it is useful to assume that P is only σ-finite.
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Definition

M ≡ M(S) space of all σ-finite measures on S.
M = smallest σ-field of subsets of M making the mappings
µ 7→ µ(B) for all B ∈ S measurable.
N = space of all σ-finite counting measures on S.

Definition

A random measure on S is a random element η in M that is
uniformly σ-finite. This means that there are measurable
sets Bn ∈ S, n ∈ N, such that η(Bn) <∞ a.s.
A point process is a random measure η such that
P(η /∈ N) = 0.
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2. Intensity measure and distribution

Definition

The intensity measure of a random measure η is the measure Λ
defined by

Λ(B) := Eη(B), B ∈ S.

Theorem (Campbell’s theorem)

Let η be a random measure with intensity measure Λ. Then

E
∫

f (s)η(ds) =

∫
f (s)Λ(ds)

for all measurable f : S → [0,∞).
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Example

Let X1,X2, . . . be independent and identically distributed
random elements in S.

The point process

η :=
n∑

j=1

δXj

is a Binomial process of size n based on the distribution of
X1.
If n above is replaced with a N0-valued random variable Y
independent of (Xn), then η is a mixed Binomial process
with random size Y .
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Theorem

Let ξ and η be random measures on S. The following
statements are equivalent:

1 ξ
d
= η

2 (ξ(B1), . . . , ξ(Bk ))
d
= (η(B1), . . . , ξ(Bk )) for all

B1, . . . ,Bk ∈ S and k ∈ N.

3
∫

fdξ d
=
∫

fdη for all measurable f : S → [0,∞).
4 For all f : S → [0,∞)

Eexp
[
−
∫

f (s)ξ(ds)
]

= Eexp
[
−
∫

f (s)η(ds)
]
.
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3. The Poisson process

Definition

A Poisson process on S is a point process η on S having the
following two properties:

The random variables η(B1), . . . , η(Bm) are stochastically
independent whenever B1, . . . ,Bm are measurable and
pairwise disjoint.
There is a measure Λ on S such that

P(η(B) = k) =
Λ(B)k

k !
exp[−Λ(B)], k ∈ N0,B ∈ S,

where∞ke−∞ := 0 for all k ∈ N0.
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Theorem

Let Λ be a σ-finite measure on S. Then a point process η on S
is a Poisson process with intensity measure Λ if and only if

Eexp
[
−
∫

f (s)η(ds)
]

= exp
[
−
∫ (

1− e−f (s))Λ(ds)

]
for all measurable f : S → [0,∞).

Corollary

Assume that η is a mixed sample process with sample
distribution F and a sample size distribution that is Poisson with
intensity γ ≥ 0. Then η is a Poisson process with intensity
measure γF.
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Theorem (Mecke 1967)

Let Λ be a σ-finite measure on S. Then a point process η on S
is a Poisson process with intensity measure Λ if and only if

E
∫

f (η, s)η(ds) = E
∫

f (η + δs, s)Λ(ds),

or, equivalently,

E
∫

f (η − δs, s)η(ds) = E
∫

f (η, s)Λ(ds),

for all measurable f : N× S → [0,∞).

Günter Last Lecture 1: Point processes and random measures



Example (Cox process)

Let Πµ denote the distribution of a Poisson process with
intensity measure µ. Let ξ be a random measure on S. Then a
point process η on S is a Cox process driven by ξ if

P(η ∈ · | ξ) = Πξ P− a.s.
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4. Stationarity

Setting

G is a locally compact second countable Abelian group with
Haar measure λ.

Definition (Shift)

For g ∈ G define θg : M(G)→ M(G), by

θgµ(B) := µ(B + g), B ∈ G.
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Remark

The group G operates on M(G), that is:
θ0 = idM(G),
We have the flow property

θg ◦ θh = θg+h, g,h ∈ G.

The mapping (µ,g) 7→ θgµ is measurable.

Definition

A random measure ξ on G is stationary if

θgξ
d
= ξ, g ∈ G.
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Example

A Poisson process on G is stationary if and only if its intensity
measure is a multiple of Haar measure.

Example

Let η be a Cox process on G driven by the random measure ξ.
Then η is stationary if and only if ξ is stationary.
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Setting

Let {θg : g ∈ G} be a measurable flow on a measurable space
(W,W).

Example

For µ ∈ M(G × S) define

θgµ(B × C) := µ((B + g)× C), B ∈ G,C ∈ S.

Then {θg : g ∈ G} is a measurable flow on M(G × S).
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Example

Let x : G→ S and g ∈ G. Define θgx : G→ S by

θgx(h) := x(g + h), h ∈ G.

Let W be a subset of the path space SG that is invariant under
the above shifts equipped with the σ-fieldW rendering all
mappings x 7→ x(g), g ∈ G, measurable and such that
(g, x) 7→ θgx is measurable.
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Definition

A random element X in W is stationary if

θgX d
= X , g ∈ G.

A random measure ξ on G and a random element X in W
are jointly stationary if

(θgξ, θgX )
d
= (ξ,X ), g ∈ G.

Example

Let η be a stationary Cox process on G driven by the random
measure ξ. Then η and ξ are jointly stationary.
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Definition

Let ξ be a random measure on G and X a random element in
W. Assume that ξ and X are jointly stationary. The measure

Pξ,X (A) := λ(B)−1E
∫

B
1{(θgξ, θgX ) ∈ A}ξ(dg), A ∈M⊗W,

is called the Palm measure of (ξ,X ). Here B ∈ G is a Borel set
with 0 < λ(B) <∞. If the intensity

γξ := λ(B)−1Eξ(B)

of ξ is positive and finite, then the normalized Palm measure
P0
ξ,X := γ−1

ξ Pξ is called Palm distribution of (ξ,X ).
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Theorem (refined Campbell theorem)

Let ξ and X be jointly stationary. Then

E
∫

f (θgξ, θgX ,g)ξ(dg) =

∫∫
f (µ, x ,g)Pξ,x (d(µ, x))λ(dg)

for all measurable f : M(G)×W×G→ [0,∞).

Corollary

The intensity measure of a stationary random measure ξ is a
multiple of the Haar measure λ. The multiple is the intensity γξ
of ξ.
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Example

The Palm distribution of a stationary Poisson process η is
obtained from the stationary distribution by adding an atom at
0, that is:

P0
η = P(η + δ0 ∈ ·).

Example

Let η be a Cox process on G driven by a stationary ξ with a
finite intensity. Then

P0
η,ξ =

∫∫
1{(µ+ δ0, α) ∈ ·}Πα(dµ)P0

ξ(dα).

Hence, up to an additional atom at 0, the Palm distribution of η
is again that of a Cox process, driven by a random measure
with the Palm distribution of ξ.
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Theorem (Neveu’s exchange formula)

Let ξ and η be random measures on G and X a random
element in W. Assume that ξ, η, and X are jointly stationary.
Then∫∫

f (θgµ, θgµ
′, θgx ,−g)µ′(dg)Pξ,η,X (d(µ, µ′, x))

=

∫∫
f (µ, µ′, x ,g)µ(dg)Pη,ξ,X (d(µ, µ′, x))

for all measurable f : M(G)×M(G)×W→ [0,∞].
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Corollary (Mass transport principle)

Let κ : M(G)×M(G)×G ×G→ [0,∞) be measurable and
invariant under joint shifts of all arguments:

κ(θrµ, θrµ
′,g−r ,h−r) = κ(µ, µ′,g,h), µ, µ′ ∈ M(G), r ,g,h ∈ G.

Then

E
∫∫

1B(h)κ(g,h) η(dg)ξ(dh) = E
∫∫

1B′(g)κ(g,h) η(dg)ξ(dh)

for all B,B′ ∈ G with finite and equal Haar measure.

Proof.

Apply Neveu’s exchange formula with

f (µ, µ′,g) := κ(µ, µ′,0,g).
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