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THE SHEPP-SHIRYAEV STOCHASTIC GAME
DRIVEN BY A SPECTRALLY NEGATIVE LEVY PROCESS

B [15] 6buT pacCMOTDPEH CTOXACTUYECKHI UTPOBOM AHAJIOT 3t
06 ontumasnsHol ocranoBke [llermma—ITlupsesa (cp. ¢ [23] u [24]) mns
SKCIIOHEHIINAJILHOIO OPOYHOBCKOIO IBIXKeHUs. Mbl paccmaTpuBaeM
Ty Xe CTOXaCTUYECKYI0 UrPy (KOTOPYIO HA3BIBAEM CTOXACTUIECKON
urpoit Hlenna—Ilupsesa), HO IS CTIEK TPAIILHO-HETATUBHOTO TIPOIECCA
JleBu u mtst Gomee IIMPOKOTO Kitacca mapamMeTpoB. B oriamuwme ot
[15], B HACTOSIIIIEN CTATHE METONBI CTOXACTUIECKOTO AHAIIN3A HE SIBIIsI-
I0TCS TPeobIANaoNIMMUA. JTO TJIABHBIM 00pA30M, CBSI3aHO C TEM,
4TO IS NIPENNOoJIaraeMbIX PeIIeHU TPYOHO MOJIYyYUTh BapHUallMOH-
HBIe HEPABEHCTBA U IPUXOOUTCS paboTaTh C HEJIOKAJILHBIMI MHTErPO-
nuddepeHITNaIbHBIME OllepaTOpaMu. DB3aMeH MBI HCIOIB3YeM DPas3HO-
00pa3HyI0 TEXHUKY, B TOM YUCje Teopuio GIIyKTyaluil, METOOLI CTOXa~
CTHYECKOTO aHaJIN3a, CBSA3aHHBIE C MapTUHIAJIbHON XapaKTepu3aluen,
U CBeNEHUE CTOXaCTUYeCKOU WI'PBI K 3amade o0 ONTHUMAaJIbHON OCTa-
HOBKe.

Kaouesvie cao8a u @pasvl: CTOXACTUUECKUE WUTPBI, ONTUMAJILHAS
OCTaHOBKA, IIPUHIINII CKJIEUBAHUsI, GIIyKTYAIIMOHHBIE TEOPEMBI, ITPOIEC-
cul JleBu.

1. Introduction. Let X = {X,: ¢ > 0} be a Lévy process defined on
a filtered probability space (2, %, F,P), where F = {.%,: t > 0} is the filtra-
tion generated by X which is naturally enlarged (cf. [5, Definition 1.3.38]).
For z € R, denote by P, the law of X when it is started at x and write
simply Py = P. Accordingly, we shall write E, and E for the associated
expectation operators. We shall assume throughout that X is spectrally neg-
ative, meaning here that it has no positive jumps and that it is not the
negative of a subordinator. It is well known that the latter allows us to talk
about the Laplace exponent () := In E [¢?X1] for § > 0, which will be of
frequent use in the sequel. The Laplace exponent necessarily takes the form

1
Y(0) = af + 2 o0 /( 0)(6% =1 - 201> 1y) lx(dz),
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where a € R, o > 0 is the Gaussian coefficient and Iy is a measure con-
centrated on (—o0,0) satisfying [, (1 A 2?)IIx(dz) < co. The reader is
referred to [4] for a complete introduction to the theory of Lévy processes.

Denote by %~ the family of all [0, co]-valued stopping times with re-
spect to F. We are interested in establishing a solution to a special class
of stochastic games which are driven by spectrally negative Lévy processes.
Specifically, for a given ¢ > 0 and § > 0, we study the stochastic game
consisting of two players and expected pay-off given by

M,(r,0) :=E, [e—qf-&-(xvYT) Lir<o reo} + €9 (exvfﬁ + 5eX") 1{U<T}] (1)

for z > 0, where X; = sup,., X, denotes the running supremum of X and
where a\Vb = max(a, b). The inf-player’s objective is to choose some o € Do.00
which minimizes (1), whereas the sup-player chooses some 7 € % ,, which
maximizes this quantity. Our aim is to prove the existence of a saddle point
(t*,0*) such that

M (7,07) < My(77,07) < Mo(7",0)

for all 7,0 € 9. and for all z > 0. The pair (7%, 0*) is also known as a Nash
equilibrium (cf. [9] and [20]). When such a pair of stopping times exists, we
say that it solves the stochastic game (1) and we denote the corresponding
value by

V(z) = M,(7",0") forz>0.

Note that we have included the indicator 1, in (1), since e~9!+@VX0)
may not be well defined for ¢ = co.

When ¢ = 0, this issue does not occur, since e*VX* is monotone in ¢,
and in this case we are interested in the saddle point to the stochastic game
which, for a given é > 0, has expected pay-off given by

M, (7,0) = Bq [e™ % 1cgy + (€757 + 0% ) 1o 2)

The game (1) was solved for ¢ > (1) > 0 (under an extra technical as-
sumption on the parameters) for a Brownian motion in [15]. In some sense,
that case is easier, since for a Brownian motion we can use standard Ito
calculus and general theory of optimal stopping to show that a solution to a
related free boundary problem (with a differential operator) also solves the
game (1). The solution to this free boundary problem is readily found in
terms of exponential functions. For a Lévy process with jumps, the corre-
sponding free boundary problem seems more difficult to solve directly (or
even to establish existence of a solution), as it involves an integro-differential
operator. Instead, we use a mixture of fluctuation theory, martingale tech-
niques and reduction of the stochastic game to an optimal stopping problem
to solve (1). As a by-product, we find that a technical assumption in [15] is
not needed, see Remark 5.
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When (1) = ¢ > 0, the stochastic game (1) can be understood to
characterize the risk-neutral price of a so-called game option in a simple
market consisting of a risky asset the value of which is given by {e**: ¢t > 0}
and a riskless asset which grows at rate g (cf. [12]). The latter game option is
an American-type contract with infinite horizon which offers the holder the
right but not the obligation to claim e*V*~ at any stopping time 7 € % .,
but in addition, the contract also gives the writer the right but not the
obligation to force a payment of e*VX+ + feX- at any stopping time o €
To,00; that is, what the holder would claim at that moment plus a penalty
proportional to the current value of the asset. However, in this paper we do
not discuss the relevance of the stochastic games (1) and (2) in the context
of mathematical finance.

The stochastic games (1) and (2) are closely related to the Shepp—
Shiryaev optimal stopping problem

U(z)= sup E [ef‘”*(wx*) 1{T<Oo}} , (3)
TE€T0, 00

which characterizes the value of a perpetual Russian option (cf. [23] and [24])
in the Brownian case and [2] for the Lévy case). See also [6], [8], and [18] for
the finite expiry case and [11] for a linear programming approach. Indeed,
if it is the case that the stochastic saddle point in (1) is achieved at o = oo,
then it holds that U = V. In the article [24], an idea which is instrumental
in helping provide the solution to (3), is to change measure from P to P,

where
dP*

_ AXi—p(M)t
dP ‘?t, € (4)

defines an equivalent measure on {.%;: t > 0} for any A > 0.Under P*, the
process X still belongs to the class of spectrally negative processes and its
Laplace exponent is given by

Ua(0) =@+ ) —(A) for 6 > —A. (5)

(For the latter conclusion it is important that F is naturally enlarged as
opposed to satisfying the usual conditions, see the discussion on p. 164—
168 of [5].) The effect of the change of measure is to reduce the dimension
of the underlying driving Markov process of (3) from three to two. That
is, the driving source of randomness changes from {(¢,X;, X;): t > 0} to
{(t,(z vV X,) — X,): t > 0}. The Shepp—Shiryaev optimal stopping problem
can be solved whenever it is possible to solve

U(‘/E) = Ssup El |:e—aT+Yf 1{T<oo}} )
TE%,OO
where o = ¢ — (1) and Y* = (z V X,) — X,. The same effect occurs when
the change of measure is applied to (1) in the case that ¢ > 0 and thus the
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expected pay-off function of the Shepp—Shiryaev game can be rewritten as

M,(r,0) = E! {e*‘”“’f lir<o reoy +€7% (eyf + 5) 1{(,<T}} when g > 0.
(6)
Establishing the saddle point (7*,0*) of (1) or equivalently (6) in the case
g > 0 and of (2) in the case ¢ = 0, as well as establishing the value
V(z) = M(7*,0*) in both cases is what is meant by solving Shepp—Shiryaev
stochastic game. Note that a saddle point may not be unique. The purpose
of this paper is to give a complete study of the solution of the Shepp—Shiryaev
stochastic game within the specified parameter regime ¢ > 0 and ¢ > 0.

In the Brownian motion case, the finite horizon version of (1) (i.e., when
both players have to choose stopping times valued in [0, 7] for some 7" > 0)
was solved in the preprint [13] preceding [14] by decomposing it into two
finite horizon optimal stopping problems, just as was done for the McKean
stochastic game.

2. The solution to the Shepp—Shiryaev stochastic game. Below,
in Theorems 2, 3, and 4 we give a qualitative and quantitative exposition
of the solution to (1). Before doing so, we need to give a brief reminder of
a class of special functions which appear commonly in connection with the
study of spectrally negative Lévy processes and indeed in connection with
the description of the Shepp—Shiryaev stochastic game as given below. For
each ¢ > 0 we introduce the functions W(@: R, — [0, 00) which are known
to satisfy for all x € R and a > 0

W@ (z Aa)
17740 (a) ’ (7)

where 77 := inf{t > 0: X; > a} and 7, = inf{t > 0: X; < 0} (cf. [16,
Chapter 8]). In particular, it is evident that W@ (z) = 0 for all z < 0 and
further it is known that W(? is almost everywhere differentiable on (0, c0),
there is right-continuity at zero and

E, {e_qﬁ 1{T:<TO—}} =

e 1
e TPWD(2)de = ——— 8
J T )
for all B > ®(q), where ®(q) is the largest root of the equation ¥ (0) = ¢q (of
which there are at most two). For convenience, we write W instead of W,
Associated to the functions W@ are the functions Z(@: R — [1,00)
defined by

Z'9(z) =1+ q/ W@ (y) dy
0
for ¢ > 0. Together, the functions W@ and Z(@ are collectively known as

scale functions and predominantly appear in almost all fluctuation identities
for spectrally negative Lévy processes. For example, it is also known that
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for all z € R and a,q > 0,
Z(q)(a)
W(Q) (a)

E. [ Lipony] = 29 na) - W@ (z A a). (9)

‘We shall henceforth assume that

the jump measure of X, Illx, has no atoms when X has bounded variation.

Then it is known from existing literature (cf. [16]) that W@ € C*(0, c0) and
hence Z(9 € C?(0, 00). For computational convenience we shall proceed with
the above assumption on X. Recall that X has bounded variation if and
only if it can be written in the form X, = dt — S, for ¢t > 0 where {S;: t >
0} is a driftless subordinator with jump measure v satisfying v(x,00) =
IIx(—o00, —z) (and then must necessarily satisfy [ (1 A z)v(dz) < oo)
and d is a strictly positive constant which is referred to as the drift. In
that case, it is also known that W@ (0) = 1/d and otherwise, when X has
unbounded variation, W@ (0) = 0.

For comparison with the main contributions of this paper (Theorems 2,
3, and 4), we review the solution to the Shepp—Shiryaev optimal stopping
problem (3), the essential part of which can be found in [2]. For convenience,
we shall first introduce a subclass of spectrally negative Lévy processes.
Denote by ¥ the general class of spectrally negative Lévy processes and
introduce the subclass

%:{XG%: (/ (1/\|a:|)HX(dx):ooora>0>0r
(700»0)

(0—0, / (LA Jz|) Ix(dx) < oo, andq<d)},
(_0070)

where we recall the constant d is the drift in the case of bounded variation
(see the previous paragraph). Also needed is the following class of stopping
times defined for all y > 0 by

T =inf{t > 0: Y >y} and T, =inf{t > 0: Y < y}.

Finally, let us introduce the continuous function

f(z) = 29(x) — qW' (), (10)
which will play an important role in characterizing optimal thresholds. Ow-
ing to the fact that W9 (z) = e®*@* Wy, (), where Wy (,)(z) plays the role
of W(x) under P®@  we can differentiate f and easily deduce that, when
q > (1) v 0, the function f is strictly decreasing to —oo and hence within
this regime

k* :=inf{z > 0: f(x) <0} € [0,00).

In particular, when ¢ > (1) V0, k* = 0 if and only if X € ¢4\ J,. This
follows from the fact that Z(@(0) = 1 and W (0) = 0 unless X has bounded
variation in which case W@ (0) = 1/d.
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In the sequel, when U is attained by a stopping time in .7 , we shall
denote it by 7*. That is, when it exists, 7* satisfies
U@) =E[e 7 "X 100 ).
Theorem 1. Let q > 0.

(i) When q¢ < (1), we have U(xz) = oo which is not attained by any
T € Doo-

(ii) When ¢ (1) < ¢ =0, we have
U(x) =e* + (&(0) — 1) e (=20

for x > 0, which is not attained by any T € T oo-

(iii) When X € 9\ 5, we have for z > 0
U(x)=e" and 7 =0.

(iv) When ¢ > (1) V0 and X € J%,, we have
Ux) =e*Z Dk —x) and 7" =T

Proof. Cases (iii) and (iv) are contained in [2, Theorem 2]. Suppose
g < 1(1). Since sup,5,Y;" = sup,5,((z vV X;) — X,) is P'-almost surely
unbounded, the sequence of stopping times {7T''},cn is P'-almost surely

—aT,f+Y”
finite. Hence when a < 0, we have U(z) > E!'|[e nt 7] > e", which
implies (i).

Suppose ¥ (1) < ¢ = 0. Then by monotonicity of X

E[e"*~] > sup E[e"* 1{,c0}] > sup E "] = E[e"¥~].
7€, 00 t>0
Since 9 (1) < 0, it follows that ¢'(0+) < 0 and hence by a well-known result
for spectrally negative processes, X ., is exponentially distributed with pa-
rameter ®(0) = sup{f > 0: ¥(f) = 0} > 1. Thus we deduce (ii). Theorem 1
is proved.
Note that when X € ¢\ J7, it follows that

¢g>d>0V (d+/(_mo)(ew_1)ﬂx(dw)> =0V (1)

and hence the four cases in the above theorem constitute an exhaustive
partition of the regime g > 0 for the optimal stopping problem (3).

Now, turning to the solution of the Shepp—Shiryaev stochastic game, it
turns out that it is necessary to divide the regime g > 0 into several subcases.
We present our main results accordingly.

Theorem 2 (the case ¢ =0). Is g = 0, then the solution to the Shepp—
Shiryaev stochastic game (2) is given as follows:
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(i) when ¥ (1) > 0, we have for any 6 > 0 that a saddle point is given by
o* =0 and 7 = oo and hence V(z) = €* + 0;
(ii) when (1) <0 and (®(0) —1)d > 1, we have that 7" = 0* = o0 and
V(@) = e+ (2(0) = 1)~ e =" for x> 0;

(iii) when (1) < 0 and (®(0) — 1) < 1, we have 7* = o0, 0* =T , and
V(z) = e 4 6e1=2O0),
Theorem 3 (the case 0 < ¢ < ¥(1)). Suppose 0 < g < ¥(1). Let f be
defined as in (10).
The equation

fly) =1, fory>0, (11)

has a unique solution (which we denote by y*). The solution to the Shepp—
Shiryaev stochastic game (6) is given as follows.

() If § > Z@(y*) — 1, then

vy = TS
where 0 < a* < b* < 0o satisfy
ZO®B* —a*) = 1+de ", (12)
b* = a" +y". (13)

A saddle point is given by o* = T,. and 7 = T,t. Further, the function V (z)
is monotone increasing and V(x) — e® is monotone decreasing.

(ii) If 6 < Z@(y*)—1, then there exists a unique z* € (0,y*] which satisfies
ZW(z*) =1+ 6 and then

V(z) =e"Z9 (2" —2)

and a saddle point is given by o* =T, and 7° = T,..

Theorem 4 (the case ¢ > 0 and ¢ > ¢(1)). Let ¢ > 0. Recall that z*
is the unique solution of Z'9(z) = 1+ & which always exists uniquely, since
Z s a strictly increasing function with Z(9(0) = 1 and Z(9(c0) = oc.
Also, recall that for ¢ > 0 and X € 7, the equation f(x) =0 has a unique
solution, denoted by k*. The solution to the Shepp—Shiryaev stochastic game
(6) is given as follows.

i) When q¢=1(1) and § > 0, we have o* =T, , 7* = T.. and
() 0 z
V(z) =e"Z9 (2" — ).
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(i) When ¢ > ¢(1), X € 5, and § > ZD(k*) — 1 (so that k* < z*), we
have o* = oo, 7" =T}%. and

V(z) =U(z) = e"Z9(k* — z).

(iii) When q > ¥(1), X € J,, and § < ZD(k*) — 1 so that k* > 2*, we
have o* =Ty , 7 = T. and

V(z) =e*Z9D (2" — ).

(iv) When ¢ > (1) and X € 4\ H,, we have for any 6 > 0 that 7 = 0
and o* = oo form a saddle point, hence

V(z) =e".

Remark 1 (intuition). We briefly discuss some of the intuition be-
hind the results of Theorems 2, 3, and 4.

When ¢ = 0, one might expect it not to be optimal for the sup-player to
stop, since the gain in (2) is nondecreasing in time. One would also expect
the inf-player to never stop when the penalty § is too large, which is indeed
the conclusion of Theorem 2 (ii). When (1) > 0, we have

E [eYth] > E [eXt] _ ew(l)t’

which indicates that the inf-player cannot gain by waiting and hence should
stop immediately. When (1) < 0 and 0 is below a critical value, it becomes
worthwhile for the inf-player to stop. Since (1) < 0 implies that E [e*¢]
decreases in t, it might be lucrative for the inf-player not to stop immediately
and it turns out that it is optimal for the inf-player to stop when the reflected
process Y reaches its minimum 0. Note that this stopping time is infinite
with positive probability.

When ¢ > ¢(1) and ¢ > 0, we observe the same phenomenon that the
inf-player stops when Y reaches 0 providing ¢ is below a critical value. This
time, since ¢ > 0, the sup-player should stop as well in an almost surely
finite stopping time and indeed this happens at the first time Y exceeds a
certain positive value (possibly by a jump).

When 0 < ¢ < (1), the discount factor « in (6) is negative and there-
fore the inf-player should stop at an almost surely finite time. It also seems
plausible that the inf-player should stop sooner than when ¥ (1) < g, result-
ing in an optimal stopping set of the form [0, a*]. However, this only happens
when the penalty ¢ is large enough. It might seem counterintuitive that the
inf-player is more eager to stop when the penalty is large, but this strategy
could be explained by reasoning that the inf-player is tolerant to the nega-
tive discount factor « in (6) as long as ¢ is small enough. When ¢ becomes
too large, the inf-player needs to take evasive action by stopping sooner.

Remark 2 (pasting conditions). Theorems 3 and 4 both state that
the value function of the Shepp—Shiryaev stochastic game necessarily takes
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the form
foter when z < a,
V(z) = { e Z@ (b — x) when z > a,

for some 0 < a < b < co. As a consequence of the behavior at the origin of
the scale functions Z(@ and W@ if follows that when a > 0, there is smooth
pasting at a (in accordance with the fact that 0 is regular for (0, co0) for X).
Further, when b < oo there always is continuity at b and smooth pasting at b
if and only if X has unbounded variation (corresponding to the case that 0
is regular for (—o0,0) for X). See [1] for a discussion on the relevance of
path regularity to pasting conditions.

The rest of this paper is structured as follows. In the next section we
make note of a Verification Lemma for the optimal stopping game (6) under
the change of measure. This lemma essentially allows us to «verify» directly
that the solutions presented in Theorems 3 and 4 are indeed optimal. In
addition, we present the candidate functions which will be used in conjunc-
tion with the Verification Lemma to establish the solution. In Section 4. we
give the proof of Theorem 3. Having done this, one sees that the proof of
Theorem 4 is a straightforward variant of a part of the proof of Theorem 3.
We only comment briefly in Section 5. on the proof of Theorem 4, which is
otherwise left as an exercise for the reader. In Section 6. we give the proof
of Theorem 2. The proof differs from the proofs of Theorems 3 and 4 in the
sense that one may no longer appeal to the change of measure (4).

3. Preliminary results. Following classical ideas in optimal stopping,
we verify that a candidate solution solves the Shepp—Shiryaev game by check-
ing certain associated bounds and martingale properties. Specifically, we use
the following verification lemma for the case ¢ > 0, which is a variant of the
similar one in [3].

Lemma 1 (verification Lemma). Suppose that 7 € o and o* €
To.0o are candidate optimal strategies for the stochastic game (6) such that

eY;n]'{ff<7"‘} (14)
is uniformly bounded by a constant for all 0 € F o and x > 0. Let
V*($) — El [e—a‘r*-‘rYf* 1{T*§a*,‘r*<oo} + e—ao—* (eY:x + 5) 1{0*<T*}]‘
Then the triple (7*,0*) is a saddle point to (6) if
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(v) the process {e= " IV* (Y, 1. ) }is0 is a right-continuous submartingale
under P, and

(vi) the process {e= " IV*(Y, ) }i>0 8 a right-continuous supermartin-
gale under P'.

P roof. Define for each 7,0 € 9
@f,a = e oTtY; 1{T§U7T<Oo} +e % (GY: + 5) 1{U<T}. (15)

From the supermartingale property (vi), Doob’s optional stopping theo-
rem (iv), and (i) we know that for any 7 € % o, and ¢t > 0,
v* (.CL') Z El [efoz(t/\‘r/\a*) v* (Xt/\T/\cr* )}

x

> E' e M0 Lipsinr renoy + €77 (€7 4+ 6) Ligmconny)-
By taking limits ¢ — oo, it follows from Fatou’s lemma that
V*(z) > E! 07 ,.].

Next, we show that
V*(z) <E'[O ] (16)

If o is such that B'[e"* 1{,.,-;] = oo, then (16) holds trivially, since
V*(z) < co. Hence, we assume that o € 7} o, satisfies E' [e7*7 1(,,}] < 0.
Using (v), Doob’s optional stopping theorem, (ii) and (iii) we find

v ($) < El [e—a(t/\f*/\o—) v* (Xt/\‘r*/\o’)]
= El [e_aT*V*(XT*) 1{r*§tAa} =+ e_a(mo) Vv (Xt/\a) 1{T*>t/\a}}
< El I:e—a‘r*—‘rYf* 1{T*§t/\0’} + e—a(t/\(j) (eYtEAU + 5) 1{T*>t/\o’}]‘

Taking limits as t T oo and applying the monotone convergence theorem to
the first term on the right-hand side and the dominated convergence theorem
(see (14)) to the second term on the right-hand side, we find that indeed (16)
is fulfilled and hence the saddle point is achieved with the strategies (7*,0*).
Lemma 1 is proved.

Note that Lemma 1 implies that when § > sup,.,(U(x)—e”), a solution
to the game is given by taking V* = U and 7* as in Theorem 1 and ¢* = co.
This agrees with the intuition that the inf-player will force a greater payment
by stopping than the sup-player would otherwise induce by stopping and
hence it is better for the inf-player not to stop at all.

We shall often apply the above verification lemma to solutions of the
form V(z,a,b) for 0 < a < x < b < oo corresponding to taking strategies
o=T, and 7 =T, in (1). That is,

+ 2
—aT, JrYTJr

V(xva,b) =E!|e T, 1{T:STJ} + e T (eYTa + 5) l{Ta<Tb+}:| . (17)

Using fluctuation theory we prove the following result.
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Lemma 2. Let0<a<z<b< oo. Then
V(z,a,b) = e” (Z(q)(b —z) - Wb —z)
W@ (b - x)
W@(b—a))"

Proof. Let0<a<x<b< oo Notethat 7, , =T, on the event
{T,f <T;} and 7,7, = T, on the event {T, < T,"}. We change measure
using (4), then use (7) and (9) to derive

+ (1 +6e7) (18)

—aT +Y” @

— Y
V(x, a, b) — El |:€ T;r 1{T;§T;} + e_aTu, (e T, +5> 1{Ta<Tb+}:|

—qT,_ +(@vX _ )
= E {e B 1{ub<ia}}
a 7qT:_“+XT+
+ (5 + e )E |:6 r—a 1{T;—a<7—b_w}:| 9
from which (18) follows. Lemma 2 is proved.

4. Proof of Theorem 3. We begin with a preliminary lemma (from
which the opening part of Theorem 3 follows) concerning the function f(x)
defined in (10).

Lemma 3. Suppose 0 < g < 1(1). The equation f(y) = 1 has a unique
solution (denoted by y*) on (0,00) such that 0 < f(z) <1 for 0 < z < y*
and f'(y*) > 0.

Proof. Inthe case when X has unbounded variation, f(0) =1 and

A2 —2qo~2 when o > 0
(04) = —gW D' (04) = —g lim — 2 — 9 ’
f(04) = —gW'*"(0+) qAILIE‘o Y(A\) —q { —00 when o = 0.
In the case of bounded variation with drift d, we have f(0) =1 —¢/d < 1.
Also d > (1) > ¢, so f(0) > 0. Hence in either case of bounded or
unbounded variation, it follows that f(e¢) < 1 for some € > 0.
Recalling that W@ (z) = e*(@* Wy, (), we have for > 0

f'(@) = q(W@(z) - W' (z))
= e @7 ([1 = (g)] Wa(g)(2) — Wy (@) -

It is also known that Wy, (z) = Wa(g)(2) na(g)(h > x), where ng () is the
excursion measure of X — X under P®@ . Hence,

(@) = qW @ (2)(1 — 2(q) — nagg (h > 2)) (19)
and thus, in particular, f(oo) = oo implying that the function f attains its
minimum. From (19) it also follows that f’(z) > 0 for some x implies that

f'(y) > 0 for all y > x. From the first paragraph of this proof we deduce that
the minimum of f is valued in (—o0, 1) and that this minimum is uniquely
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attained (say at m). We deduce that the equation f(y) = 1 has a unique
solution on (0,00) (denoted by y*). Clearly, y* > m and it readily follows
that f'(y*) > 0 and that f(z) <1 forall 0 <z < y*.

We now show positivity of f. It is known from the Wiener—-Hopf fac-
torization (cf. [16, Chapter 8]) that

o> CP{X, € D)) = g W) — [ WOy,

where e, is an independent and exponentially distributed random variable
with parameter ¢ and X, = inf,, X,. Since 0 < ¢ < 9(1), it follows that
—®(¢q)~! < —1 and hence

@) > 29() = s WO @) = 1= (5= W) = [ WO ay) >0,

which completes the proof.

We now divide the forthcoming analysis into the two cases § > Z(@ (y*)—
1 and 6 < Z@(y*) — 1 corresponding to parts (i) and (ii), respectively, of
Theorem 3.

4.1. The case § > Z@(y*) —1. Under this subregime of 0 < g < 9(1),
we have the existence of 0 < a* < b* < oo satistying

ZD(y*) =1+ de® and b* =a" +y*,

where y* was defined as a unique solution in (0,00) of (11). Note that this
choice of a* and b* has the convenient implication that for z > a*

V(z,a*,b*) = e*Z9D(b* — ). (20)

From the latter, we see that V(z,a*,b*) > e” on [a*,b*). Moreover,

V'(z,a*,b*) = e* f(b* — x) and, on account of the fact that f(b* —x) < 1 for
all x > a*, it follows that

V(z,a",b*) <e®* 446 forall z > a* (21)

Since f is positive, it also follows that V(z,a*,b*) is increasing in z, and
thus, in particular,

e +0=V(a*,a*,b") <V(b*,a*,b*) = e (22)
Next, define the function §: R — R by
0(z) = ZD(b* —2) —1—de ™. (23)

We will shortly make use of the following lemma.

Lemma 4. The function 6 satisfies 0(a*) = 0 and 6(z) < 0 for all
r<a".

P roof Thestatement §(a*) = 0 rephrases (12). Next, differentiating
and using the fact that b* — a* = y* (and hence f(b* —a*) = 1), we have

0/(a") = —qWO (b —a”) +5e = 1— ZO(b" —a”) + e =0,
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From Lemma 3 we have f'(y*) > 0 and hence W@’ (b* —a*) < W@ (b* —a*),
which in turn implies that

0"(a*) = gW D' (b* —a*) — de™ < gWD(b* —a*) — e =0. (24)
In particular, f(xz) < 0 for all x € (a* — €,a*) and some sufficiently small
e>0.

Suppose now, for contradiction, that ¢ = sup{zx < a* —e: §(z) = 0} >
—o00. Then by Rolle’s theorem, there exists d € (c¢,a*) such that 0(d) < 0
and 6'(d) = 0. On the other hand, for x < a* we also have

0(z)+0'(z) = f(b" —2) — 1> f(b* —a") —1=0,

where we have used Lemma 3. In particular with x = d we find 6(d) > 0
which is in contradiction with the definition of d. In conclusion, ¢ = a* and
f(z) <0 for all x < a* as required. Lemma 4 is proved.

Our strategy for proving part (i) of Theorem 3 will be to look at an
auxiliary optimal stopping problem and then use the above information to
associate the solution of the aforementioned optimal stopping problem with
the solution of the Shepp—Shiryaev stochastic game. To this end, let

I(z)= inf E'[e*7g(Y})], (25)
0€T0,00
where Y := Y:AT;,
when z < a* and g(z) = €® when = > b* and e + § > g(z) > e*Z( D (b* — )
for any = € (a*,b%).

g is any continuous function such that g(z) = e* 4+ §

Theorem 5. There exists a solution to the optimal stopping problem
(25) with the following properties.

(i) For x > a*, I(z) =V (z,a*,b*).
(ii) For all x € (0,b*), I(z) > €”.

Proof By taking ¢ =0 in the expectation on the right-hand side of
(25), we see that I(z) < e*+¢. Hence, it follows that I(z) = I(z)A(e*+0) =
inf e 7 _ E'[(e7*7g(Y?)) A(e” +8)] and (25) is an optimal stopping problem
for a strong Markov process, where, for each fixed z > 0, the pay-off function
is continuous and bounded but as a function of z the stochastic gain is locally
bounded in z.

Taking note of (2.2.80) in [21], we may now invoke Corollary 2.9 in the
same reference to deduce the existence of an optimal stopping time o* in (25)
which is of the form o* = inf{t > 0: Y;* € D}, where D = {z: I(x) = g(x)}.

Since @« = ¢ — ¥(1) < 0 and g(z) > 1 + 6, we have that 0 € D. Now,
define

s:=sup{0 <z <b": I(z) =g(z)}.

Taking 0 = T,. in the expectation on the right-hand side of (25) leads
to a value of V(z,a* b*) and thus for any x > a* it holds that I(z) <
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V(z,a*,b*) < € + &, where the last inequality follows by virtue of (21). As
a consequence, we now see that s < a*.

(i) We want to rule out the case that s < a* and then part (i) will
follow. Suppose for contradiction that s < a*. Then, on [s,b*] we have
I =V(-,s,b*). In particular, it holds that

I'(s+)=V'(s,s,b") = e+ + es< — qWD(b— )

W@ (b — s)
2 (7@ ) — 1 — Se—5
+ W@(b—s) (Z (b—s)—1—de ))
The fact that 0 < f/(b* —a*) implies that W' (b* —5) /W@ (b* —s) < 1 and
thus, using Lemma 4 we find

I'(s) >e*+d+¢€° (—qW(q)(b* —8)+ ZD0b* —s)—1— (5673) > e’

where the last inequality is a consequence of the fact that f(b* —s) > f(b* —
a*) = 1. Since I(s) = e®+4, the previous calculations indicate that I violates
its upper bound e* 4+ §. We conclude that s = a* and thus (a*,b*) C D°.

(ii) The next step in the proof is to show that for all = € [0, b*)
I(x) > €°. (26)

We prove (26) by contradiction. First, we show that there are only
a finite number of intervals (I,r) satisfying (I,7) C D¢, 0 <[l < r < a*,
I(l) = €'+ 6, I(r) = e" + ¢ and such that there is some = € (I,7) for which
I(z) < e®. Indeed, since a < 0, taking into account the fact that optimal
stopping occurs whenever Y7 hits the domain D and that X is spectrally
negative, we deduce that for any = € (I,r), with (/,r) an interval satisfying
the properties above,

I(z) > e +6,

since (a*,b*) C D¢, and since from (22) it follows that inf,cpnpr) 9(z) =
e" + 6 > e' + 4. Hence, whenever = € (I,r) satisfies I(z) < €, then it must
hold that z > In(e' + ). In particular, (I,7) is necessarily of minimal length
In(e! + §) — | and therefore there can be only finitely many intervals of this
form. Now let (I*,7*) be the rightmost of such intervals. Fix x € (I*,7*) and
set

Ty = inf{t > 0: Y,* & (I*,r")}.

Note that T{;« -y < Tp, where
Tp =inf{t > 0: Y* € D}.
Since {e~*"T0) [(Y,% . )} is a P'-martingale (cf. [21, Theorem 2.4]) we have
I(z) = B [eoToo [(VE )]
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T

1 [ —aTge e Yo Yii
> E! [e—oTur, e +0) Lpoopry e Lipt oy
= V(z,l*,r%),

where for the inequality we used the fact that we have chosen (I*,7*) as
the rightmost interval on which I(z) > e fails. Since r* < b*, we have for
z e (I*,r")

Yo_
= E! [G_O‘T”*’” ((e " +5> Lrenty +1 (V) Ly <TH})]

Z(@) (px _ [*
Ve, l*,r") = €° (Z(Q) (r* —x) = WD (r* —2) (r )

W@ (r* — 1*)
o W@ (rr — 1)
1 B L —
+ (14 de )W(‘I)(r*—l*)
> et | Z@(r* — z) — WO —x) (Z(q)(b* —)—1-— 5e*l*>
- W@ (r* — [*)
> " ZWD(r* — ) > €7,

where we have used Lemma 4. This contradiction has the desired implication
that I(z) > e” for all z < a*. Theorem 5 is proved.

In the next result we establish that there exists a saddle point for the
Shepp—Shiryaev stochastic game. Recall that I(z) is specified by (25), where
the function g is arbitrary up to the specified constraints following equation
(25).

Proposition 1. Let 0 < ¢ < 9(1) and § > Z9(y*) — 1. The stochastic
game (1) has a solution and its value satisfies V(z) = I(x) for all x > 0.

P roof. The proof uses the Verification Lemma 1 applied to the func-
tion V* = I and the stopping times 7* = T} and

o =inf{t >0:Y* € DN[0,a"]},

where D = {z > 0: I(z) = g(x)}.

From Theorem 5 we have that I(z) fulfils conditions (i)—(iv) of Lemma 1.
By standard optimal stopping theory and the strong Markov property, the
submartingale property (v) automatically holds, see, for example, Theo-
rem 2.4 of [21]. It remains to justify the remaining condition (vi). By
considering E! (@;t T | #:), where ©% was defined in (15), and applying
the strong Markovhprgperty, it is straightforward to show with the help of
(20) that {e~*te¥" Z@D(b* — Y?): t < T,0 AT,.} is a Pl-martingale. Since
I(x) = e*Z@(b* — x) for x > a* it holds that I belongs to C?(a*,b*) and
one may apply Itd’s formula for semi-martingales (cf. [22, Theorem 32 on
p. 78]) to deduce that (I'—a) I(x) = 0 on (a*, b*), where I' is the infinitesimal
generator of —X under P'. Note also that since {e~X:=*(t: ¢ > 0} is a mar-

tingale under P! we have that (I' —«a)e” = —ge” for all z € R.. It now follows
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that (I' — a)I(xz) < 0 for > b*. Appealing to the known behavior of the
scale function Z@ at zero (cf. [16, Chapter 8]), if X has bounded variation
then I belongs to C?[(a*,b*) U (b*,00)] N C°(a*,00) and otherwise, when X
has unbounded variation, I belongs to C?[(a*,b*) U (b*,00)] N C*(a*, 00). In
the first case, the version of the change of variable formula (which is nothing
more than a special case of It6’s formula for semimartingales) in [17] may
be used, and in the second case the version of Ité’s formula established in
[19] or [7] may be used together with the fact that (I' — a) I(z) < 0 for
r € (a*,b*) U (b*,00) to deduce that {e~*e¥" Z@(b* — Y7): t < T,.} is a
supermartingale.

Note that right-continuity of the paths of all the above-mentioned semi-
martingales is clear on account of the continuity of I and the right-continuity
of Y*. Proposition 1 is proved.

Were it not for the fact that we have not yet proved that I(z) =e* + 46
for all z < a*, i.e., that D N [0,a*] = [0,a*], we would be able to claim that
the proof of Theorem 3 (i) is now complete. However, we must still rule out
the possibility that I(z) < e* + ¢ for some interval @ # (I,r) C [0,a*]. We
finish this subsection by excluding this possibility and hence concluding the
proof of Theorem 3 (i).

Theorem 6. The value function I(x)—e* is decreasing and hence part

(i) of Theorem 3 holds.

Proof Letxz >y > 0. We use the notation o(x) to make explicit
the dependency of the stopping time o € .7 o, on the initial position of the
process Y. We then find that for any = > 0

V(z) < Ele " (@) +H(@VX 15 () 1{7*(w)§a*(y)}]
+E [e71 0 (e X0 4+ 657 0) g <o
and similarly, for any y > 0
V(y) > Ele ™ X @) 1 0y <on ]
+E [efqa*(y)(eyvxa*(y) + 56XU*(y>)1{0*(y)<T*(x)}} .
Now, let £ > y > 0. Then
V(@) = V(y) < B e (e o - e 01 g
B [0 (" X0 — K 0) L <o) -

wve _ gyVa < e — e¥ we deduce

Since for any a it holds that e
V() —V(y) <e® —e. (27)

Since V(a*) = e* + ¢ and since V(z) < e® + ¢ for all =, it follows that
V(z) = e* + ¢ for all € [0,a*]. The result follows.
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4.2. The case § < Z(@(y*) — 1. Let us now conclude this section and
the proof of Theorem 3 by establishing the following result. Recall that we
are still under the regime 0 < ¢ < ¥(1).

Theorem 7. If§ < Z9(y*) — 1, then there exists a unique z* € (0,y*]
which satisfies Z9(2*) = 1+ . The value function is given by

V(z) =e"Z9 (2" — 1)

and optimal stopping times are o* = T, and 7" = T... In particular, part

(ii) of Theorem 3 holds.

Proof Since 144 < Z@(y*) and Z@(0) = 1, it follows that there
exists a z* € (0,y*] such that 1 4+ § = Z(@(2*).
Next, note that from Lemma 2

V(z) =e"Z9(z* — ) = V(x,0,2%)

and hence we can complete the proof by showing that the triple (V,T.%,T;)
fulfils the conditions (i)—(vi) of Lemma 1. It is immediately clear from the
definition of V' that condition (i) holds. Next, note that V'(x) = e* f(2* — ).
Since by Lemma 3 the function f is strictly positive and since V' (0) = 9, it
follows that V(x) < 6 + e” and hence condition (ii) of Lemma 1 holds.
Conditions (iii) and (iv) are automatic.

To establish conditions (v) and (vi) of Lemma 1 one needs to appeal
to the semimartingale decomposition of e~** V(Y;*). Similar arguments to
those given in the proof of Proposition 1 lead to

eV (YP) = V(z) + /Ot(r )V (V) ds + /Ot VI(Y®) d(z v Xy) + M,

= V(x)+ /Ot(l“ —a)V(Y)ds+V'(0+)(z vV X;) + M, (28)

where I is the generator of —X under P*, (—«)V (z) = 0 for = € (0, 2*) and
(I'—a)V(z) <0 for z > z* and M is a martingale. Note also that the term
V'(Y2) may be replaced by V'(0+) as z V X, increases only when Y = 0.
>From this, one sees in the above semimartingale decomposition that the
process {e"*'V (Y;"): t < Ty ATt} is a martingale and that {e=*'V (V;"): t <
Ty } is a supermartingale. Again, right-continuity of paths is obvious. Since
the second integral in (28) is equal to V'(0+)(z V X;) (in particular, it is
an increasing, continuous, adapted process), it follows that {e” 'V (Y;*): ¢t <
T} is also a right-continuous submartingale. This completes the proof of

Theorem 3.

5. Proof of Theorem 4. The proof goes along the lines of the proof
of Theorem 7, principally appealing to the semi-martingale decomposition
(28) for the specified triple (V,7*,0*). For Theorem 4 (iv) it is possible to
compute exactly the quantities (I' — @)V (x) and V’(0+). In the remaining
cases one may deduce the necessary properties of (I'— )V (z) as in the proof
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of Theorem 7 and that V'(0+) = f(z* A k*) > 0 from the properties of the
function f mentioned in Section 2.

6. Proof of Theorem 2. Recall that for ¢ = 0, the pay-off of the game
is given by

st = eft\mt 1{t§s} + (BYSVI + 66XS) 1{s<t}‘ (29)
Lemma 5. Suppose that there exists some 0* € % o such that
E[GZ ,.]= inf E[GZ ] (30)
s UE%,OO )

Then the Shepp—Shiryaev stochastic game (2) has value function V and a
saddle point is given by T = oo and o*. In other words, it is optimal for the
inf-player to never stop.

Proof. Leto € 7. Then it is straightforward to show that G7, is
a monotone nondecreasing function. We find that for any 0,7 € 7% «

E[GI,. ] <E[GL,.] <E[G ],

where the first inequality follows by the aforementioned monotonicity and
the second inequalitiy follows by the optimality of o* in (30).

Remark 3 (problems with change of measure). It is tempting to
solve (30) by the change of measure we have used throughout this paper,
but the following example shows that when ¢ = 0, the corresponding optimal
stopping problem under P? is a different one.

Let ¢ = 0, and let 9(1) < 0 be such that ¢'(1) > 0. Since G%, > e”
for all s,t, we immediately see that inf,cs  E|[GZ ,] > e”. However,
the optimal stopping problem under the changed measure is given by
inf,c, . E[e"(M7(e¥< +§)]. The latter optimal stopping problem has value
zero, which can be seen by considering the sequence of stopping times
(0n)nen defined by o, := inf{t > n:Y;” = 0} which is almost surely
finite under P'. The reason for this phenomenon is that the equality
E [e?VXe 4 §eX-] = E'[e¥e + 6] holds whenever P! {c < oo} = P{o <
oo} = 1. Since X drifts to —oo under P, we have that P {o,, < oo} < 1 for
any n € N.

On account of the above remark, we consider (30) as an optimal stopping
problem for (X, X), just as was done in the first paper on the Russian option
[23]. We modify our notation and write for y > z

V(z,y):= inf E[e™V@HXe) 4 sevtXe], (31)

€D, 00
Again by standard theory on optimal stopping we know there exists a (pos-
sibly infinite) stopping time o* = o*(x,y) at which the infimum in (31) is
attained. We have the following verification lemma for (30), the proof of
which is omitted, since it is similar to the proof of Lemma 1.
Lemma 6. Let 0* € Jy o and let V*(z,y) = E [e”@+Xe") 4 feyvtXor],
Then (V*(x,0),0*) is a solution to (30) if
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(i) V*(z,y) < e” +de?,
(ii) the process {V*(X;, X;): t > 0} is a right-continuous submartingale.

Proof of Theorem 2. First, suppose ¢(1) > 0. Then {M;}>o
defined by M, = e*VW+Xe) 4 §ev+X+ is a P-submartingale. Indeed, for 0 <
s<t

E[M, | Z,] > eV X:+y) + JeV X E [eX ]
— ewv(fs-i-y) +5€y+Xsez/)(1)(t—s) > Ms’
where X denotes an independent copy of X. Hence, in this case Lemma 6
shows that V(x) = e* 4+ ¢ and o* = 0 solve (30), which agrees with part (i)
of Theorem 2.

Next, let 9(1) < 0 and §(®(0) — 1) > 1 and consider ¢* = oo. Since
X ., is exponentially distributed with parameter ®(0), we find for z >y

V*(z,y) = E[e?VHXe) | gevtXe] = B [tV (Xetv)]
Tz—y o
= ew/ @(0) e~ 20z dz + CI)(O) e~ ®(0)ztzty g,
0

T—y

= e"(1— efcp(o)(””*y)) + ®(0)(®(0) — 1)716‘”67‘1’(0)(“’7?’)

= e 4 (B(0) — 1) le (®O-Da+2(0)y
and in particular, by the condition on ¢

V*(z,y) < e+ dev.
Since X is a strong Markov process, we have that X, = X, V (X, + Y;O),
where Y;o is a copy of X, which is independent of .%, and thus
E[emv(foo—&-y) | yt] _ E[em\/(ft-‘ry)\/(Xf,—O—y—&-Y;o) | ft]
= V@V (X:+y),X: +y).

It now follows that {V*(X;, X;)}/>0 is a P-martingale (and hence in par-
ticular a submartingale). Again using Lemma 6, we deduce part (ii) of
Theorem 2.
Finally, let ¢(1) < 0 and 6(®(0) — 1) < 1 and take x > y. If we take
ot =

f=inf{t>0: X, >z} =1T,,
we have
V*(z,y) =E [ez’* +de*"] = e"+de" P {1}, < oo} = e®+oe~ (2O)—Dz+2(0)y
and again we have that V*(z,y) < e® + de¥. Since {e®(©*¢} is a martingale,
the submartingale property follows from It6’s formula and the fact that

t 9 - o t _ o
/0 V' (X, X)X, = /O (€5t 1 8(1 — B(0))e~(*O-VXH2OX) X,

t
_ / Xt (146 — B(0)6)dX, >0,
0
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where the second equality is due to the fact that X, only increases when
X, = X, and the proof of Theorem 2 is complete.

7. Concluding remarks.

Remark 4. In the proof of Theorem 6, the spectral negativity of
the process is not used. This indicates that if a solution to the game exists,
then the (possibly empty) sets I;, I, and I3 defined by

I := {z €]0,00): V(x) =¢€" + 0},
I, := {x €]0,00): e® < V(x) <€ + 4},
I; .= {x €]0,00): V(x) =e"}

satisfy
T <Xy <xzz forallz,el;, 1=1,2,3

and thus the solution to the game, if it exists, must be of the same na-
ture for a more general Lévy process. An existence result for Nash (saddle
point) equilibrium and the weaker Stackelberg equilibrium to optimal stop-
ping games in a general Markovian setting (including Lévy processes) can
be found in [9]. In that paper, optimal stopping games are considered with
a pay-off function of the general form

GI(XT) 1{T<U} + Gy (XU) 1{U<7'} + G3(XT) 1{0:7}7

where 7 and o are the strategies of the sup-player and inf-player, respectively.
For the Shepp—Shiryaev game the right-continuous, quasi-left-continuous

strong Markov process is (¢, Xy, X;) and the functions G;, G2, and G35 are
given by

Gi(t,z,s) = Gs(t,x,s) = e "t and Gy(t,z,s) =e (e’ + de”).
The assumptions

E,sup|Gi(X:)| <o forzeR (i=1,2,3) (32)
>0
in [9] on the pay-off functions [to imply existence of a Nash equilibrium
(saddle point) to the corresponding optimal stopping game| are consistent
with the traditional assumption

E,sup |G(X})| < 0o
£>0

for results concerning existence of solutions to optimal stopping problems
with pay-off G. We find that we cannot always fit the Shepp—Shiryaev
game in this framework because of the same reason the Russian optimal
stopping problem does not always satisfy the assumptions of traditional op-
timal stopping theorems. For example, when X is a spectrally negative
Lévy process with (1) > ¢, the conditions (32) are not satisfied since

E sup,., |G2(t, X, X;)| is bounded from below by sup,.,dE[e"#+X] >
SUD; > de(*(=9t — 50, On the other hand, if we consider the Shepp—Shiryaev
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game with finite horizon, then the assumptions in [9] are automatically sat-
isfied thus guaranteeing a saddle point.

It should also be pointed out that there are examples of optimal stopping
games which have a value but where the failure of (32) means that there is
also failure for the existence of a saddle point. See, for example, [10].

Remark 5. When X is a Brownian motion with parameter ¢ > 0
and drift u, it can be directly checked by taking Laplace transforms that the
scale functions for X are given by

W@ (z) = 2(c%) e’ sh(ex), ZD(z)=e’"ch(ex) — e 'Be” sh(ex),

where € = o7 '\/pu?/0?+2q and B = —pu/o?. In [15] the game is solved
whenever ¢ > v(1) > 0. Since, when § is large enough, z* satisfies Z(9 (z*) =
1+ 6, we find that k, := e*” solves

RE(RS + k%) — e BRE(KS — k%) = 2(1 + 6),

which agrees with (7) in [15]. In [15] there is an additional technical condition
(4) on the optimal stopping boundary k.. The aforementioned condition
pertains to the requirement that V’(0+) > 0 (which ultimately is required for
the appropriate submartingale property to hold). Working here with general
spectrally negative Lévy processes, and in particular with scale functions, has
seemingly produced arguments which have circumvented the need for such
a condition. Hence, from the results in this paper, it follows that the claim
in [15] (that this condition is necessary) is in fact false.
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