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Abstract. Let X be the branching particle diffusion corresponding to the operator Lu + β(u2 − u) on D ⊆ R
d (where β ≥ 0 and

β �≡ 0). Let λc denote the generalized principal eigenvalue for the operator L + β on D and assume that it is finite. When λc > 0
and L + β − λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{−λct}Xt converges almost
surely in the vague topology as t tends to infinity. This result is motivated by a cluster of articles due to Asmussen and Hering
dating from the mid-seventies as well as the more recent work concerning analogous results for superdiffusions of [Ann. Probab.
30 (2002) 683–722, Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171–185]. We extend significantly the results in [Z. Wahrsch.
Verw. Gebiete 36 (1976) 195–212, Math. Scand. 39 (1977) 327–342, J. Funct. Anal. 250 (2007) 374–399] and include some key
examples of the branching process literature. As far as the proofs are concerned, we appeal to modern techniques concerning
martingales and “spine” decompositions or “immortal particle pictures.”

Résumé. Soit X le processus de diffusion avec branchement correspondant à l’operateur Lu + β(u2 − u) sur D ⊆ R
d (où β ≥ 0

et β �≡ 0). La valeur propre principale généralisée de l’operateur L + β sur D est dénotée par λc et on la suppose finie. Quand
λc > 0 et L+β − λc satisfait certaines conditions spectrales théoriques, on montre que la mesure aléatoire exp{−λct}Xt converge
presque sûrement pour la topologie vague quand t tend vers l’infini. Ce résultat est motivé par un ensemble d’articles par Asmussen
et Hering datant du milieu des années soixante-dix, ainsi que par des travaux plus récents [Ann. Probab. 30 (2002) 683–722,
Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171–185] concernant des résultats analogues pour les superdiffusions. Nous
généralisons de manière significative les résultats de [Z. Wahrsch. Verw. Gebiete 36 (1976) 195–212, Math. Scand. 39 (1977) 327–
342, J. Funct. Anal. 250 (2007) 374–399] et nous donnons quelques exemples clés de la théorie des processus de branchement. En
ce qui concerne les démonstrations, nous faisons appel aux techniques modernes de martingales et aux “spine decompositions” ou
“immortal particle pictures.”
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1. Introduction and statement of results

1.1. Model

Let D ⊆ R
d be a nonempty domain and write Ci,η(D) to denote the space of i times (i = 1,2) continuously differen-

tiable functions with all their ith order derivatives belonging to Cη(D). [Here Cη(D) denotes the usual Hölder space.]
Consider Y = {Yt ; t ≥ 0}, the diffusion process with probabilities {Px, x ∈ D} corresponding to the operator

L = 1

2
∇ · a∇ + b · ∇ on D, (1)
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where the coefficients ai,j and bi belong to C1,η(D), i, j = 1, . . . , d, for some η in (0,1], and the symmetric matrix
a(x) = {ai,j (x)} is positive definite for all x ∈ D. At this point, we do not assume that Y is conservative, that is, the
exit time from D may be finite with positive probability. Intuitively, this means that Y may get killed at the Euclidean
boundary of D or “run out to infinity” in finite time.

Furthermore let us first assume that 0 ≤ β ∈ Cη(D) is bounded from above on D and β �≡ 0. The (strictly dyadic)
(L,β;D)-branching diffusion is the Markov process with motion component Y and with spatially dependent rate β ,
replacing particles by precisely two offspring when branching and starting from a finite configuration of individuals.
At each time t > 0, the state of the process is denoted by Xt ∈ M(D) where

M(D) :=
{

n∑
i=1

δxi
: n ∈ N and xi ∈ D for i = 1, . . . , n

}
.

We will also use the following notation: X = {Xt : t ≥ 0} has probabilities {Pμ: μ ∈ M(D)}, and Eμ is expectation
with respect to Pμ. As usual, 〈f,μ〉 := ∫

D
f (x)μ(dx) and 〈f,g〉 := ∫

D
f (x)g(x)dx, where dx is Lebesgue measure,

and so 〈f,g dx〉 = 〈fg, dx〉 = 〈f,g〉.
When β is not bounded from above, one may wonder if the (L,β;D)-branching diffusion is still well defined,

in particular, whether the global (or even local) mass may blow up in finite time. Let Mloc(D) denote the family of
locally finite measures on D and consider the family of locally finite discrete measures on D:

M∗
loc(D) :=

{
μ ∈ Mloc(D):

∑
i

δxi
: xi ∈ D

}
.

Let

λc = λc(L + β,D) := inf
{
λ ∈ R: ∃u > 0 satisfying (L + β − λ)u = 0 in D

}
denote the generalized principal eigenvalue for L+β on D. It is known (see Chapter 4 in [27]) that λc < ∞ whenever
β is upper bounded and that, for general β , there exists an h > 0 satisfying that

(L + β − λc)h = 0, (2)

whenever λc < ∞. From (2) it follows by standard approximation arguments (either by truncating the domain or by
truncating β) that the (L,β;D)-branching diffusion X is well defined and is M∗

loc(D)-valued, and, when weighted
by h, it is even finite measure-valued. (Wh

t := e−λct
∑

i h(Xi
t ) is a supermartingale for Xt = ∑

i δXi
t
.) Therefore, from

now on, we relax the assumption that supD β < ∞ and replace it with the much milder assumption λc < ∞.

1.2. Motivation

This paper concerns the local growth of mass for branching particle diffusions. In doing so we address a gap in the
literature dating back to the mid-seventies when the study of growth of typed branching processes on compact domains
of the type space was popularized by Asmussen and Hering. Also we complement a recent revival in this field which
has appeared amongst the superprocess community.

Before discussing main results, we shall introduce the topic in detail.

Definition 1 (Local extinction). Fix μ ∈ M(D). We say that X exhibits local extinction under Pμ if for every Borel
set B ⊂⊂ D, there exists a random time τB such that

Pμ

(
τB < ∞, and Xt(B) = 0 for all t ≥ τB

) = 1.

[Here B ⊂⊂ D means that B is bounded and its closure is a subset of D.]

Local extinction has been studied by [15], [28] (for superprocesses) and [14] (for branching diffusions). To explain
their results, recall that we assume that the generalized principal eigenvalue for L + β on D is finite. In fact, λc ≤ 0 if
and only if there exists a function h > 0 satisfying (L + β)h = 0 on D – see Section 4.4 in [27]. Following the papers
[15,28] where similar issues were addressed for superprocesses, in [14] the following was shown.
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Theorem 2 (Local extinction versus local exponential growth). Let 0 �= μ ∈ M(D).

(i) X under Pμ exhibits local extinction if and only if there exists a function h > 0 satisfying (L + β)h = 0 on D,
that is, if and only if λc ≤ 0.

(ii) When λc > 0, for any λ < λc and ∅ �= B ⊂⊂ D open,

Pμ

(
lim sup

t↑∞
e−λtXt (B) = ∞

)
> 0,

Pμ

(
lim sup

t↑∞
e−λctXt (B) < ∞

)
= 1.

In particular, local extinction/local exponential growth does not depend on the initial measure 0 �= μ ∈ M(D).

(In [14] it is assumed that β is upper bounded, whereas in [15] only the finiteness of λc is assumed. The proofs of
[14] go through for this latter case too.) On closer inspection this last theorem says that when λc ≤ 0 mass “escapes
out of B” even though the entire process may survive with positive probability. (If Y is conservative in D for example
then it survives with probability one). Further, when λc > 0 mass accumulates on all nonempty bounded open domains
and in such a way that with positive probability this accumulation grows faster than any exponential rate λ < λc. On
the other hand, mass will not grow faster than at the exponential rate λc. It is natural then to ask whether in fact λc

gives an exact growth rate or not. That is to say, for each ∅ �= B ⊂⊂ D do the random measures {exp{−λct}Xt : t ≥ 0}
converge in the vague topology almost surely? (The latter we henceforth refer to as the SLLN, the use of the word
“strong” here pertains to a.s. convergence.) Further, can one identify the limit? This is precisely the object of interest
of a variety of previous studies for both branching diffusions and superprocesses which we shall now review.

We note already here that the process in expectation is given by the linear kernel corresponding to the operator
L + β on D. Therefore, trusting in the Law of Large Numbers for branching processes, one should expect that the
process itself grows like the linear kernel too. On the other hand, it is easy to see that the linear kernel does not in
general scale precisely with exp{−λct} but rather with f (t) exp{−λct}, where f grows to infinity as t → ∞ and at the
same time is subexponential. (Take, for example, L = �/2 and β > 0 constant on R

d , then f (t) = td/2.) In fact the
growth is pure exponential if and only if L + β is product-critical (see the definition later in this subsection). Proving
SLLN seems to be significantly harder in the general case involving the subexponential term f .

In the late seventies Asmussen and Hering wrote a series of papers concerning weak and strong laws of large
numbers for a reasonably general class of branching processes which included branching diffusions. See [1] and [2]. In
the context of the branching diffusions we consider here one can summarize briefly their achievements by saying that,
when D is bounded, for a special class of operators L + β , the rescaled process {exp{−λct}Xt : t ≥ 0} converges in
the vague topology, almost surely for branching diffusions. Further, for the same class of L+β when D is unbounded
they proved that there exists the limit in probability of exp{−λct}Xt as t ↑ ∞ (in the vague topology). The class of
L + β alluded to they called “positively regular.” The latter is a subclass of the class P ∗

p(D) (the class that we shall
work with) given below.

A more detailed comparison with [1,2] as well as the discussion on related results on superprocesses is deferred to
Section 2.

Before we give the definition of the basic classes of operators that we shall use, Pp(D) and P ∗
p(D), we need

to recall certain concepts of the so-called criticality theory of second-order operators. The operator L + β − λc is
called critical if the associated space of positive harmonic functions is nonempty but the operator does not possess a
(minimal positive) Green’s function. In this case the space of positive harmonic functions is in fact one-dimensional.
Moreover, the space of positive harmonic functions of the adjoint of L + β − λc is also one dimensional.

Assumption 3. Suppose we choose representatives of these two spaces to be φ and φ̃ respectively. Throughout the
paper and without further reference, we will always assume that L + β − λc is product-critical, i.e. 〈φ, φ̃〉 < ∞, and
in this case we pick φ and φ̃ with the normalization 〈φ, φ̃〉 = 1.

We now define the classes Pp(D) and P ∗
p(D). Since we want to talk about spatial spread on a generic domain D,

we fix, for the rest of the paper, an arbitrary family of domains {Dt, t ≥ 0} with Dt ⊂⊂ D,Dt ↑ D. (For D = R
d , Dt

can be the t -ball, but we can take any other family with Dt ⊂⊂ D,Dt ↑ D too.)
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Definition 4 (Pp(D) and P∗
p(D)). For p ≥ 1, we write L + β ∈ Pp(D) if

(i) λc = λc(L + β;D) > 0.
(ii) 〈φp, φ̃〉 < ∞, in which case we say that L + β − λc is product p-critical.

Let q(x, y, t) be transition density of L + β and

Q(x,y, t) := q(x, y, t) − eλct φ̃(y)φ(x).

We write L + β ∈ P ∗
p(D) when the following additional conditions hold for each given x ∈ D and ∅ �= B ⊂⊂ D.

(iii) There exists a function a : [0,∞) → [0,∞) such that for all δ > 0,

Pδx

(∃n0,∀n > n0: supp(Xnδ) ⊂ Danδ

) = 1.

(iv) There exists a function ζ : [0,∞) → [0,∞) such that, as t ↑ ∞,

(1) ζ(t) ↑ ∞,

(2) ζ(at ) = O(t),

(3) αt := sup
z∈Dt ,y∈B

|Q(z,y, ζ(t))|
φ̃(y)φ(z)

= o
(
eλct

)
.

Let p(x, y, t) denote the transition density of the diffusion corresponding to the operator (L + β − λc)
φ . Then

p(x, y, t) = e−λctφ(y)φ−1(x)q(x, y, t), and thus, (iv) is equivalent to

(iv*) With the same ζ as in (iv),

lim
t→∞ sup

z∈Dt ,y∈B

∣∣∣∣p(z, y, ζ(t))

φφ̃(y)
− 1

∣∣∣∣ = 0.

Note that a depends on x and ζ,α depend on x and B through (2) and (3). For notational efficiency and on account
of the fact that in our proofs no uniformity in x and B is required, we have chosen not to emphasize this dependency.
Moreover, it is often the case that ζ and α in fact do not depend on x or B , as we shall see in the examples of Section 3
where explicit cases of these quantities are discussed.

Remark 5 (Ergodicity). Note that criticality is invariant under h-transforms. Moreover, an easy computation shows
that φ and φ̃ transforms into 1 and φφ̃ respectively when turning from (L + β − λc) to the h-transformed (h = φ)
operator (L + β − λc)

φ = L + aφ−1∇φ · ∇ . Therefore, product criticality is invariant under h-transforms too (this is
not the case with product p-criticality when p > 1). Further, for operators with no zeroth-order term, it is equivalent
to positive recurrence (ergodicity) of the corresponding diffusion process. In particular, (L + β − λc)

φ corresponds
to an ergodic diffusion process provided (L + β − λc) is product critical (see [27], Section 4.9).

1.3. Main results

With the following theorem we wish to address the issue of almost sure convergence in the vague topology of
{exp{−λct}Xt : t ≥ 0} for branching diffusions with L + β belonging to P ∗

p(D),p > 1 thus generalizing the results
of Asmussen and Hering.

Note that since L + β − λc is critical, φ is the unique (up to constant multiples) invariant positive function for the
linear semigroup corresponding to L+β −λc (Theorem 4.8.6. in [27]). Let {St }t≥0 denote the semigroup correspond-
ing to L + β . It is a standard fact (sometimes called “the one particle picture”) that

St (g)(x) = Eδx 〈g,Xt 〉 (3)

for all nonnegative bounded measurable g’s. Even though φ is not necessarily bounded from above, St (φ) makes sense
and (3) remains valid when g is replaced by φ, because φ can be approximated with a monotone increasing sequence
of g’s and the finiteness of the limit is guaranteed precisely by the invariance property of φ. By the invariance of φ,
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Eδx e−λct 〈φ,Xt 〉 = e−λctSt (φ)(x) = φ(x), which, together with the branching property, is sufficient to deduce that
Wφ is a martingale where

W
φ
t := e−λct 〈φ,Xt 〉, t ≥ 0.

Indeed note that

Eδx

(
e−λc(t+s)〈φ,Xt+s〉|Ft

) = e−λctEXt

(
e−λcs〈φ,Xs〉

) = e−λct 〈φ,Xt 〉.

Being a positive martingale, Pδx -almost sure convergence is guaranteed, and the a.s. martingale limit W
φ∞ :=

limt→∞ W
φ
t appears in the following main conclusion.

Let C+
c (D) denote the space of nonnegative, continuous and compactly supported functions on D.

Theorem 6 (SLLN). Assume that L + β ∈ P ∗
p(D) for some p ∈ (1,2] and 〈βφp, φ̃〉 < ∞. Then,

lim
t↑∞ e−λct 〈g,Xt 〉 = 〈g, φ̃〉Wφ∞, g ∈ C+

c (D) (4)

holds Pδx -a.s. for all x ∈ D, and Eδx (W
φ∞) = φ(x). Moreover, if supD β < ∞ then the restriction p ∈ (1,2] can be

replaced by p > 1.

We close this subsection with the Weak Law of Large Numbers. Here we change the class P ∗
p(D) to the larger class

Pp(D) and get L1(Pδx )-convergence instead of a.s. convergence (hence the use of the word “weak”). It is important
to point out, however, that the class P ∗

p(D) is already quite large – see Section 3, where we verify that key examples
from the literature are in fact in P ∗

p(D) and thus obey the SLLN.

Theorem 7 (WLLN). Suppose that L + β ∈ Pp(D) for some p ∈ (1,2] and 〈βφp, φ̃〉 < ∞. Then for all x ∈ D, (4)

holds in the L1(Pδx ) sense and Eδx (W
φ∞) = φ(x). Moreover, if supD β < ∞ then the restriction p ∈ (1,2] can be

replaced by p > 1.

In closing, we would like to mention an important concept that will play a central role in the proof of Theorems 6
and 7: the so called “spine” will intuitively represent a “typical” particle within the branching diffusion whose motion
is governed by the operator (L + β − λc)

φ = L + aφ−1∇φ · ∇ . In Section 4, we give the spine construction and
probabilistic interpretation of the branching diffusion under a change of measure using martingale Wφ . The reader
may find it helpful to familiarize themselves with this notion even before reading the proofs. Also see, for example,
Section 4.1 of [12] and [22].

1.4. Outline

The rest of this paper is organized as follows. In Section 2 we embed our results into the literature, while in Section 3
we discuss some key examples for the SLLN. The proofs are given in Section 4.

2. Detailed comparison with some older results

The methods of Asmussen and Hering were based for the most part on classical techniques of truncation and ap-
plications of the Borel–Cantelli lemma. Using this method, they proved the convergence of e−λct 〈Xt,g〉 for all
0 ≤ g ∈ L1(φ̃(x)dx). It is also worth noting that the generic strength of their method extended to many other types of
branching processes; discrete time, discrete space and so on.

Interestingly, preceding all work of Asmussen and Hering is the single article [29] (later improved upon by [4]).
Watanabe demonstrates that when a suitable Fourier analysis is available with respect to the operator L + β , then by
spectrally expanding any g ∈ C+

c (D), one can show that {〈g,Xt 〉: t ≥ 0} is almost surely asymptotically equivalent
to its mean. From this the classic Strong Law of Large Numbers for dyadic branching Brownian motion in R

d is
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recovered. Namely that when L = �/2 and β > 0 is a constant,

lim
t↑∞ td/2e−βtXt (B) = (2π)d/2|B| × Nμ,

where B is any Borel set, |B| is its Lebesgue measure and Nμ is a strictly positive random variable depending on the
initial configuration μ ∈ M(Rd). The operator 1/2� + β does not fall into the class P1(D). (This is important since
[16,17] and also [8] assumes that the operator is in P1(D).) For an analogous result on supercritical super-Brownian
motion see [13].

Let us discuss now how our assumptions relate to the assumptions imposed in the article [1].
In [1] the domain is bounded (and even one dimensional) when the Strong Law of Large Numbers is stated for

branching diffusions; on general domains, only convergence in probability was obtained. Furthermore, in [1] the
notion of positively regular operators was introduced. In our context it first means that:

(A) λc > 0 (in [1] this property is called “supercriticality”),
(B) φ is bounded from above,
(C) 〈φ̃,1〉 < ∞.

Obviously, (B–C) is stronger than the assumption 〈φ, φ̃〉 < ∞ (product-criticality).
Secondly, {St }t≥0, the semigroup corresponding to L + β (the so called “expectation semigroup”) satisfies the

following condition. If η is a nonnegative, bounded measurable function on R
d , then

(D) St (η)(x) = 〈η, φ̃〉φ(x)
[
eλct + o

(
eλct

)]
as t ↑ ∞, uniformly in η.

Let Tt be the semigroup defined by Tt (f ) := S
φ
t (f ) = 1

φ
St (φf ), for all 0 ≤ f measurable with φf being bounded.

Then Tt correspond to the h-transformed (h = φ) operator L
φ
0 . Recall that L

φ
0 corresponds to a positive recurrent

diffusion process. Then, assuming that φ is bounded, it is easy to check that the following condition would suffice for
(D) to hold:

lim
t↑∞ sup

x∈D

sup
‖g‖≤1

〈g,φφ̃〉−1
∣∣Tt (g) − 〈g,φφ̃〉∣∣ = 0, (5)

where ‖ · ‖ denotes sup-norm. However this is not true in most cases on unbounded domains (or even on bounded
domains with general unbounded coefficients) because of the requirement on the uniformity in x. (See our examples
in Section 3 – neither of the examples on R

d satisfy (5).)
Turning to superprocesses, there would seem to be considerably fewer results of this kind in the literature (see the

references [10,11,18] for superprocesses in general). The most recent and general work in this area we are aware of
are [9,13,16,17].

In [16] it was proved that (in the vague topology) {exp{−λct}Xt : t ≥ 0} converges in law where X is the so called
(L,β,α,R

d)-superprocess (with α being the “activity parameter”) satisfying that L + β ∈ P1(D) and that αφ is
bounded from above. (An additional requirement was that 〈φ,μ〉 < ∞ where μ = X0 is the deterministic starting
measure.) The long and technical proof relied heavily on the theory of dynamical systems applied to the Laplace
transforms of {e−λctφXt , t ≥ 0}.

In [17] the convergence in law was replaced by convergence in probability. Furthermore, instead of R
d a general

Euclidean domain D ⊆ R
d was considered. The heavy analytic method of [16] was replaced by a different, simpler and

more probabilistic one. The main tool was the introduction of a “weighted superprocess” obtained by a “space–time
H -transform.”

Very recently, in [8], almost sure limits were proven for a class of Markov branching processes,1 using mostly
functional analytic methods. The main difference between the setup in [8] and our setup are that

(i) [8] used an L2-approach and therefore the setting had to be restricted to symmetric operators, whereas our results
are applicable for non-symmetric operators as well, as long as the other conditions are satisfied (a concrete class
of such operators is given in Example 13 of the next section).

1A similar result for superprocesses has been obtained in [9].
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(ii) Even within the symmetric case, our milder spectral assumptions include e.g. Examples 10 and 11 of the next
section, which do not satisfy the assumptions in [8]. To be more specific, Example 10 does not satisfy the
assumption that the ground state φ is upper bounded. In Example 11, since β is constant, the assumption that β

belongs to the class K∞(Y ) is not satisfied. (The class K∞(Y ) depends on the motion process Y , and is defined
in [8] with the help of standard Kato classes; it contains rapidly decaying functions.)

(iii) While [8] uses a functional analytic (Hilbert space) approach, our method is more probabilistic and is based on a
“spine-decomposition.”

3. Examples

In this section we give examples which satisfy all the assumptions we have, and thus, according to Theorem 6, obey
the SLLN. (Those examples do not fall into the setting in [1,2] and two of them are not covered by [8] either.)

Before we turn to the specific examples, we give some heuristics. Although these are not actually needed for
understanding the examples, we feel that the reader “gets a more complete picture” by first reading them.

Remark 8 (Expectation calculations and local vs. global growth rates). From (3), we have

Ex〈1{·∈dy},Xt 〉 = eλct
φ(x)

φ(y)
p(t, x,dy)

and then, by ergodicity,

e−λctEx〈1,Xt 〉 = φ(x)

∫
Rd

p(t, x, y)

φ(y)
dy → φ(x)

∫
Rd

φ̃(y)dy, as t → ∞.

Hence, if 〈φ̃,1〉 < ∞, then the global population growth is the same as the local population growth (in expectation),
whereas, if 〈φ̃,1〉 = ∞ the global growth rate exceeds the local growth rate.

Remark 9 (Heuristics for a and ζ ). One may wonder how one can find the functions a and ζ as in Definition 4(iii)–
(iv). In fact, it will often be straightforward to find them.

Fix x ∈ D. If, for example, we can pick a deterministic increasing function a such that, for all δ > 0,

∞∑
n=1

Pδx

(
supp(Xnδ) �⊂ Danδ

)
< ∞,

then Borel–Cantelli says that the function a is an appropriate choice, if also ζ(at ) = O(t) holds. Since the probability
one particle is present in a set is trivially dominated by the expected particle number in that set, it will be much easier
to check that

∞∑
n=1

Eδx 〈1Dc
anδ

,Xnδ〉 < ∞.

If D = R
d and Dt = Bt and we can choose at such that, for some ε > 0,∫

|y|>at

p(x, y, t)

φ(y)
dy < e−(λc+ε)t ,

then we will have satisfied

∞∑
n=1

Ex〈1Dc
anδ

,Xnδ〉 < ∞.
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Heuristically, at least for a nicely decaying φ̃, if the transition density2 p(t, x, y) converges to its equilibrium
φ(y)φ̃(y) sufficiently quickly even for very large y, we might hope to take

at ≈ F−1(eλct
)
, where F(α) =

∫
|y|>α

φ̃(y)dy.

If the spine starts at a very large position, since it is ergodic it will tend to move back toward the origin, albeit
taking a potentially large time, and Ventcel-Freidlin large deviation theory suggests that it will “closely” follow the
path of a deterministic particle with the same drift function. We can use this to guess for a suitable form for ζ(t). At
least heuristically, to find out how far away the spine particle may start in order that it both returns to the vicinity
of the origin and then ergodizes towards its invariant measure before large time t , we can consider the deterministic
differential equation

ḟ (t) = μ
(
f (t)

) − σ 2(f (t)
)∇φ(f (t))

φ(f (t))

when L = 1
2σ 2(x)� − μ(x) · ∇ , and, for example, often take ζ(t) a little larger than |f −1(t)| in one dimensional

settings.
Indeed, these heuristics appear to the correct form for both at and ζ(t) in the examples considered below.

Example 10 (OU process with quadratic breeding rate). Let σ,μ,a, b > 0 and consider

L := 1

2
σ 2� − μx · ∇ on R

d

corresponding to an (inward) Ornstein–Uhlenbeck process and let β(x) := bx2 + a. Since L corresponds to a recur-
rent diffusion and β is a smooth function with β ≥ 0 and β �≡ 0, it follows that λc > 0 (see Chapter 4 in [27]). The
equilibrium distribution for L is given by a normal density,

π(x) =
(

μ

πσ 2

)d/2

exp

{
− μ

σ 2
x2

}
.

Suppose that μ > σ
√

2b. Defining γ ± := 1
2σ 2 (μ ± √

μ2 − 2bσ 2), for the principal eigenvalue problem with (L +
β)φ = λcφ we can take

λc := σ 2γ − + a, φ(x) := c− exp
{
γ −x2} and φ̃(x) = c+ exp

{−γ +x2},
where c− := (1 − (2bσ 2/μ2))d/8, c+ := c−(μ/(πσ 2))d/2. Note that L + β is a self-adjoint operator with respect to
π , and for the h-transform of a second-order operator A,

φ̃Ah = hφ̃A.

Calculations using the “one-particle picture” (Eq. (3)) reveal that, in expectation, the support of the process grows
like

√
λct/γ + and one can pick at = √

λt/γ + for any λ > λc and condition (iii) in Definition 4 will hold.
The spine is also an (inward) Ornstein–Uhlenbeck process with parameter α := μ − 2γ −σ 2 = √

μ2 − 2bσ 2 with

(L + β − λc)
φ = L + σ 2 ∇φ

φ
· ∇ = 1

2
σ 2� − αx · ∇ on R

d,

and transition density

p(x, y, t) =
(

α

πσ 2(1 − e−2(α/σ 2)t )

)d/2

exp

[
−α

∑d
i=1(yi − xie−(α/σ 2)t )2

σ 2(1 − e−2(α/σ 2)t )

]
.

2Later we will see that this transition density corresponds to the “spine.”



Strong Law of Large Numbers for branching diffusions 287

We see that the drift of the inward OU reduces the influence of any starting position exponentially in time. Indeed, one
can take ζ(t) = (1 + ε)(σ 2/2α) log t for any ε > 0 for condition (iv∗) in Definition 4 to hold. Finally, we trivially note
that ζ(at ) = O(t) (in fact, only log t growth), hence, for p sufficiently close to 1, all necessary conditions are satisfied
for our strong law theorem to hold.

Note that a strong law for a generalization of this model can be found in [23] where the convergence is proved
using a martingale expansion for continuous functions g ∈ L2(π) (rather than compactly supported g). Almost sure
asymptotic growth rates (and a.s. support) for the same model are studied in [20].

This is certainly a non-trivial model and it highlights the strength of our general result. In particular, a quadratic
breeding rate is critical in the sense that a BBM with breeding rate β(x) = const · xp explodes in a finite time a.s. if
and only if p > 2, with explosion in the expected population size when p = 2. When a branching inward OU process
with quadratic breeding is considered here, a strong enough drift with μ > σ

√
2b can balance the high breeding,

whereas any lower drift would lead to a dramatically different behavior.

Example 11 (Outward OU process with constant breeding rate). Let σ,μ > 0;b > dμ and consider

L := 1

2
σ 2� + μx · ∇ on R

d

corresponding to an “outward” Ornstein–Uhlenbeck process and let β(·) ≡ b. As the spatial movements have no
affect on the branching, the global population grows like eβt and this is achieved “naturally” with particles moving
freely. This corresponds to (L+β)φ̃ = bφ̃ with φ̃ ≡ 1. On the other hand, the principal eigenvalue is λc = b−dμ < b

with φ(x) = const · exp{−(μ/σ 2)x2}, it being associated with the local, as opposed to global, growth rate.
After some similar expectation calculations to the inward OU in quadratic potential, an upper bound on the

process’ spread is roughly the same as for an individual outward OU particle, that is, we can take at = exp{(1 +
δ)(μ/σ 2)t} for any δ > 0.

Despite the transient nature of the original motion, the spine is an inward OU process

(L + β − λc)
φ = L + σ 2 ∇φ

φ
· ∇ = 1

2
σ 2� − μx · ∇ on R

d ,

with equilibrium φφ̃(x) ∝ exp{−(μ/σ 2)x2}. Intuitively, this is the motion that maximizes the local growth rate at
λc (here it is the original motion “conditioned to keep returning to the origin”). We can therefore take ζ(t) = (1 +
ε)(σ 2/μ) log t for any ε > 0 and hence still find that ζ(at ) = (1 + ε)(1 + δ)t = O(t). All the conditions required for
the strong law to hold are again satisfied.

Example 12 (BBM with β ∈ C+
c (Rd) and β �≡ 0 for d = 1,2). Consider the ( 1

2� + β)-branching diffusion where
β ∈ C+

c (Rd) and β �≡ 0 for d = 1,2. Since Brownian motion is recurrent in dimension d = 1,2, it follows that λc > 0
and in fact, the operator 1

2� + β − λc is product-critical and even product-p-critical for all p > 1 (see Example 22
in [16]).

We now show how to find a ζ that satisfies (iv∗) in Definition 4. We do it for d = 1, the d = 2 case is similar.
Let b > 0 be so large that supp(β) ⊂ [−b, b] and let M := maxR β . Recall that p(t, x, y) denotes the (ergodic)

kernel corresponding to ( 1
2�+β −λc)

φ . In this example P will denote the corresponding probability. By comparison

with the constant branching rate case, it is evident that at := √
2M · t is an appropriate choice, because it is well

known that a BBM with constant rate M has velocity
√

2M . Therefore, we have to find a ζ which satisfies that for any
fixed ball B ,

lim
t→∞ sup

|z|≤t

∣∣∣∣p(z,B, ζ(t))∫
B

φφ̃(y)dy
− 1

∣∣∣∣ = 0

together with the condition that ζ(at ) = ζ(
√

2M · t) = O(t) as n → ∞.
An easy computation (see again Example 22 in [16]) shows that on R \ [−b, b],(

1

2
� + β − λc

)φ

= 1

2
� − sgn(x) · √2λc

d

dx
,
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where sgn(x) := x/|x|, x �= 0. Fix an ε and let τ±b and τ0 denote the first hitting time (by a single Brownian particle)
of [−b, b] and of 0, respectively. We first show that as t → ∞,

sup
b<|x|≤t

Px

[
τ±b >

t(1 + ε)√
2λc

]
→ 0. (6)

Obviously, it is enough to show that, for example,

Pt

[
τ0 >

t(1 + ε)√
2λc

]
→ 0,

where P corresponds to 1
2� − √

2λc
d

dx
on [0,∞). Indeed, if W denotes standard Brownian motion starting at the

origin with probability Q, then

Pt

[
τ0 >

t(1 + ε)√
2λc

]
≤ Pt [Yt(1+ε)/

√
2λc

> 0] = Q

[
t − √

2λc

t (1 + ε)√
2λc

+ Wt (1+ε)/
√

2λc
> 0

]
= Q[Wt (1+ε)/

√
2λc

> εt] → 0

(the last term tends to zero by the SLLN for W ).
We now claim that ζ(t) := t (1+2ε)√

2λc
satisfies

lim
t→∞ sup

|z|≤t

∣∣∣∣p(z,B, ζ(t))∫
B

φφ̃(y)dy
− 1

∣∣∣∣ = 0.

(The condition ζ(at ) = O(t) is obviously satisfied.) By the ergodicity of p(t, x, y), it is sufficient to show that ζ

satisfies

lim
t→∞ sup

b<|z|≤t

∣∣∣∣p(z,B, ζ(t))∫
B

φφ̃(y)dy
− 1

∣∣∣∣ = 0.

Let, for example, b < x ≤ t . By the strong Markov property at τb (the hitting time of b) and by (6),

p(x,B, ζ(t))∫
B

φφ̃(y)dy
= p(b,B, ζ(t) − t (1 + ε)/

√
2λc)∫

B
φφ̃(y)dy

Px

[
τb ≤ t (1 + ε)√

2λc

]
+ o(1),

uniformly in b < x ≤ t .
Finally,

lim
t→∞

p(b,B, ζ(t) − t (1 + ε)/
√

2λc)∫
B

φφ̃(y)dy
= 1

because p(t, x, y) is an ergodic kernel and

lim
t→∞

[
ζ(t) − t (1 + ε)√

2λc

]
= lim

t→∞
tε√
2λc

= ∞,

completing the proof of our claim about ζ .

Example 13 (Non-symmetric operator). For the sake of concreteness, we give here a simple example for a non-
symmetric operator that satisfies our assumptions, by slightly modifying the setting of Example 12. (For more on
symmetric operators, see Section 4.10 in [27].)

In Example 12 set d=2. Now add a drift b(x, y) as follows. Let b = (b1, b2)
T , where b1(x, y) := m(x)n(y) and

b2(x, y) := p(x)q(y). If m,n,p,q are smooth compactly supported functions, then so is b, and the same argument
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as in the previous example shows that the conditions are satisfied, but if m(x)n′(y) is not equal to p′(x)q(y) for all
(x, y), that is, if m/p′(x) is not equal to q/n′(y), then the operator is not symmetric, because then b is not a gradient
vector.

Hence, whenever q/n′ is not a constant or m/p′ is not a constant, this setting constitutes a non-symmetric example
for the SLLN.

Example 14 (Bounded domain). First note that when D is bounded, an important subset of Pp(D),p > 1 is formed
by the operators L + β which are uniformly elliptic on D with bounded coefficients which are smooth up to the
boundary of D and with λc > 0. That is, in this case L + β − λc is critical (see [27], Section 4.7), and since φ and
φ̃ are Dirichlet eigenfunctions (are zero at the boundary of D), it is even product-p-critical for all p > 1. Theorem 7
thus applies.

Although in this case Y is not conservative in D, in fact even Theorem 6 will be applicable whenever (iv∗) can be
strengthened to the following uniform convergence on D:

lim
t→∞ sup

z∈D,y∈B

∣∣∣∣p(z, y, ζ(t))

φφ̃(y)
− 1

∣∣∣∣ = 0. (7)

(Note that [1] has a similar global uniformity assumption – see the paragraph after (5).) Indeed, then the proof of
Theorem 6 (which can be found later, in Section 4) can be simplified, because the function a is not actually needed:
Dan can be replaced by D for all n ≥ 1.

As far as (7) is concerned, it is often relatively easy to check. For example, assume that d = 1 (the method can be
extended for radially symmetric settings too) and so let D = (r, s). Then the drift term of the spine is b + a(logφ)′.
Now, if this is negative and bounded away from zero at s − ε < x < s and positive and bounded away from zero at
r < x < r + ε with some ε ∈ (0, s − r), then (7) can be verified by a method similar to the one in the previous example.
The above condition on the drift is not hard to check in a concrete example (note that since φ satisfies the Dirichlet
boundary condition, logφ tends to −∞ at the boundary).

If we relax the regularity assumptions on L + β then, for example, φ is not necessarily upper bounded, and so we
are leaving the family of operators handled in [2] (see the four paragraphs preceding (5)); nevertheless our method
still works as long as L + β ∈ P ∗

p(D),p > 1 (for the SLLN) or L + β ∈ Pp(D),p > 1 (for the WLLN).

4. Proofs

4.1. A spine approach

To establish the Lp(Pδx ) convergence of Wφ for p > 1 we appeal to a, by now, standard technique that have been
introduced to the literature by [26] and by the references given there (in particular [25]) and involves a change of
measure inducing a “spine” decomposition. Similar applications can be found in [3,5,14,21] to name but a few. See,
for example, [18,19] as well as the discussion in [14] for yet further references.

It is important to point out that we will need the spine decomposition not only to establish the Lp-convergence
mentioned above but also in the key lemma (Lemma 18) in the proof of Theorem 6. In both cases, we found the spine
method to be indispensable and we were not able to replace it by other Lp methods.

Before we can state our spine decomposition, we need to recall some facts concerning changes of measures for
diffusions and Poisson processes.

Girsanov change of measure
Suppose that Y is adapted to some filtration {Gt : t ≥ 0}. Under the change of measure

dP
φ
x

dPx

∣∣∣∣
Gt

= φ(Yt )

φ(x)
e− ∫ t

0 (λc−β(Ys))ds (8)

the process (Y,P
φ
x ) corresponds to the h-transformed (h = φ) generator (L+β −λc)

φ = L+ aφ−1∇φ · ∇ . Note now
in particular that since L+β ∈ P1(D), it follows that (Y,P

φ
x ) is an ergodic diffusion with transition density p(x, y, t)

and an invariant density φφ̃.
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Change of measure for Poisson processes
Suppose that given a non-negative continuous function g(t), t ≥ 0, the Poisson process (n,L

g) where n = {{σi : i =
1, . . . , nt }: t ≥ 0} has instantaneous rate g(t). Further, assume that n is adapted to {Gt : t ≥ 0}. Then under the change
of measure

dL
2g

dLg

∣∣∣∣
Gt

= 2nt exp

{
−

∫ t

0
g(s)ds

}

the process (n,L
2g) is also a Poisson process with rate 2g. See Chapter 3 in [24].

Theorem 15 (The spine construction). Let {Ft : t ≥ 0} be the natural filtration generated by X. Define the change
of measure

dP̃δx

dPδx

∣∣∣∣
Ft

= e−λct
〈φ,Xt 〉
φ(x)

= W
φ
t

φ(x)
.

Then, under P̃δx , X can be constructed as follows:

• a single particle, Y = {Yt }t≥0, referred to as the spine, initially starts at x and moves as a diffusion corresponding
to the h-transformed operator L + aφ−1∇φ · ∇;

• the spine undergoes fission into two particles at an accelerated rate 2β(Yt ) at time t , one of which is selected
uniformly at random to continue the spine motion Y ;

• the remaining child gives rise to an independent copy of a P -branching diffusion started at its space–time point of
creation.

A similar construction for BBM was established in Chauvin and Rouault [7]. See Theorem 5 in [14] on how to
prove it.3

Remark 16 (The spine decomposition). Theorem 15 says that (X, P̃δx ) has the same law as a process constructed

in the following way. A (Y,P
φ
x )-diffusion is initiated along which (L,β;D)-branching processes immigrate at space–

time points {(Yσi
, σi): i ≥ 1} where, given Y,n = {{σi : i = 1, . . . , nt }: t ≥ 0} is a Poisson process with law L

2β(Y ). It
will often be very useful to think of (X, P̃δx ) as being constructed in this richer way and it will be convenient to define
the natural filtration of the spine and the birth process along the spine as Gt := σ(Ys, ns : s ≤ t). Note that using the
“spine construction” of (X, P̃ ), we can write

W
φ
t = e−λctφ(Yt ) +

nt∑
i=1

e−λcσi Wi,

where, conditional on the spine filtration Gt , Wi is an independent copy of the martingale W
φ
t started from position Yσi

and run for time t −σi where σi is the ith fission time along the spine for i = 1, . . . , nt . Remembering that particles off
the spine behave the same as if under the original measure P and that the martingale property gives Eδx (W

φ
t ) = φ(x),

we then have the so called “spine decomposition”:

Ẽ
(
W

φ
t |Gt

) = e−λctφ(Yt ) +
nt∑

i=1

e−λcσi φ(Yσi
). (9)

3Although the construction in [14] was for a branching process with killing on the boundary of a compact domain, the analysis applies almost
verbatim with obvious changes to take account of the fact that there are no boundary conditions; this straightforward exercise is left to the reader.
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The Lp-convergence of the martingale
The a.s. convergence of Wφ can be complemented with the following result.

Lemma 17. Assume that L + β belongs to Pp(D) and that 〈βφp, φ̃〉 < ∞ for some p ∈ (1,2]. Then, for x ∈ D, Wφ

is an Lp(Pδx )-convergent martingale. Moreover, if supD β < ∞, then the same conclusion holds if we only assume
that p > 1.

Proof. Pick p so that q = p−1 ∈ (0,1], 〈φp, φ̃〉 < ∞ and 〈βφp, φ̃〉 < ∞. (If K := supD β < ∞ and we only assume
that p > 1, then 〈φp, φ̃〉 = 〈φq,φφ̃〉 < ∞ implies 〈φr, φ̃〉 = 〈φr−1, φφ̃〉 < ∞ and 〈βφr, φ̃〉 ≤ K〈φr−1, φφ̃〉 < ∞ for
all r ∈ (0,p), and so we can assume that in fact p ∈ (1,2].)

We adopt an approach similar to the one in [22]. Using the conditional form of Jensen’s inequality, the spine
decomposition (9) and that (u + v)q ≤ uq + vq for u,v > 0 when q ∈ (0,1], we find

φ(x)−1Eδx

[(
W

φ
t

)p] = Ẽδx

[(
W

φ
t

)q] = Ẽδx

{
Ẽ

[(
W

φ
t

)q |Gt

]}
≤ Ẽδx

{[
Ẽ

(
W

φ
t |Gt

)]q}
≤ E

φ
x L

2β(Y )

(
e−λcqtφ(Yt )

q +
nt∑

i=1

e−λcqσi φ(Yσi
)q

)

= e−λcqt
E

φ
x

[
φ(Yt )

q
] + E

φ
x

[∫ t

0
e−λcqs2β(Ys)φ(Ys)

q ds

]
.

Call the two expressions on the right-hand side the spine term, A(x, t), and the sum term, B(x, t), respectively. Since
Y has generator L + aφ−1(∇φ) · ∇ and 〈φ, φ̃〉 = 1, Y is ergodic and E

φ
x (f (Yt )) → 〈f φ, φ̃〉 for every measurable f

satisfying 〈f φ, φ̃〉 < ∞. Then

lim
t↑∞ eλcqtA(t, x) = lim

t↑∞E
φ
x

(
φ(Yt )

q
) = 〈

φp, φ̃
〉
< ∞

for all x ∈ D. For the sum term note that lims↑∞ E
φ
x (β(Ys)φ(Ys)

q) = 〈βφp, φ̃〉 < ∞ and so limt↑∞ B(t, x) < ∞ for
all x ∈ D. By Doob’s inequality, Wφ is therefore an Lp-convergent (uniformly integrable) martingale, as required. �

4.2. Proof of Theorem 6 along lattice times

The statement that Eδx (W
φ∞) = φ(x) as well as the one after it follow from Lemma 17 and the first paragraph of its

proof respectively.
The rest of the proof will be based on the following key lemma.

Lemma 18. Fix δ > 0 and let B ⊂⊂ D. Define

Ut = e−λct 〈φ|B,Xt 〉,
where φ|B(x) = φ(x)1(x∈B). Then for any non-decreasing sequence {mn}n≥1,

lim
n↑∞

∣∣U(mn+n)δ − E(U(mn+n)δ|Fnδ)
∣∣ = 0, Pδx -a.s.

Proof. We will suppress the dependence in n in our notation below and simply write m instead mn. Suppose that
{Xi : i = 1, . . . ,Nnδ} describes the configuration of particles at time nδ. Note that we may always write

U(m+n)δ =
Nnδ∑
i=1

e−nδλcU
(i)
mδ, (10)
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where given Fnδ , the collection {U(i)
mδ : i = 1, . . . ,Nnδ} are mutually independent and equal in distribution to Umδ

under PδXi
respectively.

By the Borel–Cantelli lemma, it is sufficient to prove that for x ∈ D and for all ε > 0,∑
n≥1

Pδx

(∣∣U(m+n)δ − E(U(m+n)δ|Fnδ)
∣∣ > ε

)
< ∞.

To this end we first note that,

Pδx

(∣∣U(m+n)δ − E(U(m+n)δ|Fnδ)
∣∣ > ε

) ≤ 1

εp
Eδx

(∣∣U(m+n)δ − E(U(m+n)δ|Fnδ)
∣∣p)

.

Now recall the following very useful result, for example, see [4] or [6]: if p ∈ (1,2) and Zi are independent random
variables with E(Zi) = 0 (or they are martingale differences), then

E

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣
p

≤ 2p
n∑

i=1

E|Zi |p. (11)

(This is trivially true for p = 2.) Jensen’s inequality also implies that for each n ≥ 1, |∑n
i=1 ui |p ≤ np−1 ∑n

i=1(|ui |p)

and, in particular, |u + v|p ≤ 2p−1(|u|p + |v|p).
Note that

Us+t − E(Us+t |Ft ) =
Nt∑
i=1

e−λct
(
U(i)

s − E
(
U(i)

s |Ft

))
,

where conditional on Ft , Zi := U
(i)
s − E(U

(i)
s |Ft ) are independent with E(Zi) = 0. Thus, by (11) and Jensen,

E
(∣∣Us+t − E(Us+t |Ft )

∣∣p|Ft

)
≤ 2pe−pλct

Nt∑
i=1

E
(∣∣U(i)

s − E
(
U(i)

s |Ft

)∣∣p|Ft

)

≤ 2pe−pλct

Nt∑
i=1

E
(
2p−1(∣∣U(i)

s

∣∣p + ∣∣E(
U(i)

s |Ft

)∣∣p)|Ft

)

≤ 2pe−pλct

Nt∑
i=1

2p−1E
(∣∣U(i)

s

∣∣p + E
(∣∣U(i)

s

∣∣p|Ft

)|Ft

)

≤ 22pe−pλct

Nt∑
i=1

E
(∣∣U(i)

s

∣∣p|Ft

)
.

Then, as a consequence of the previous estimate, we have that∑
n≥1

Eδx

(∣∣U(m+n)δ − E(U(m+n)δ|Fnδ)
∣∣p)

≤ 22p
∑
n≥1

e−λcnδpEδx

(
Nnδ∑
i=1

EδXi

[
(Umδ)

p
])

. (12)
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Recalling the definition of the terms A(x, t) and B(x, t) from the proof of Lemma 17 and trivially noting that
Ut ≤ W

φ
t , we have∑

n≥1

Eδx

(∣∣U(m+n)δ − E(U(m+n)δ|Fnδ)
∣∣p)

≤ 22p
∑
n≥1

e−λcnδpEδx

(
Nnδ∑
i=1

EδXi

[(
W

φ
mδ

)p])

≤ 22p
∑
n≥1

Eδx

(
Nnδ∑
i=1

e−pλcnδφ(Xi)
(
A(Xi,mδ) + B(Xi,mδ)

))

= 22p
∑
n≥1

φ(x)e−qλcδnE
φ
x

(
A(Ynδ,mδ) + B(Ynδ,mδ)

)
,

where we have used the “one-particle picture” (Eq. (3)) and the spine change of measure at (8). Since the spine Y is
Markovian and ergodic under P

φ
x , we know that

E
φ
x

[
A(Ynδ,mδ)

] = e−λcqmδ
E

φ
x

(
φ(Y(m+n)δ)

q
)
.

Denoting m∞ := limn→∞ mn, the latter converges to e−qλcm∞δ〈φp, φ̃〉 (which will be zero if m∞ = ∞) as n ↑ ∞.
Recall the assumption that 〈βφp, φ̃〉 < ∞. Similarly to previously, we have that

E
φ
x

[
B(Ynδ,mδ)

] = 2
∫ mδ

0
e−λcqs

E
φ
x

(
β(Ys+nδ)φ(Ys+nδ)

q
)

ds

which has a finite limit equal to 2
∫ m∞δ

0 e−λcqs〈βφp, φ̃〉ds as n ↑ ∞. These facts are enough to conclude that the last
sum remains finite to complete the Borel–Cantelli argument. �

We now complete the proof of Theorem 6 along lattice times. Assume that L+β ∈ P ∗
p for some p > 1. Recall now

that I (B) := ∫
B

φ(y)φ̃(y)dy < 1 and that {Xi : i = 1, . . . ,Nt } describes the configuration of particles in the process
at time t > 0. Note that, similarly to (10),

E(Ut+s |Ft ) =
Nt∑
i=1

e−λctφ(Xi)p(Xi,B, s) =
Nt∑
i=1

e−λc(t+s)

∫
B

φ(y)q(Xi, y, s)dy

=
Nt∑
i=1

e−λctφ(Xi)I (B) +
Nt∑
i=1

e−λc(t+s)

∫
B

φ(y)Q(Xi, y, s)dy

= I (B)W
φ
t +

Nt∑
i=1

e−λc(t+s)

∫
B

φ(y)Q(Xi, y, s)dy =: I (B)W
φ
t + Θ(t, s).

Let us replace now t by nδ and s by mnδ, where

mn := ζ(anδ)/δ,

and a, ζ are the functions4 appearing in the definition of P ∗
p . (Although we do not need it yet, we note that, according

to (iv) in Definition 4, one has mn ≤ Kn, where K > 0 does not depend on δ.) Then

E(U(n+mn)δ|Fnδ) = I (B)W
φ
nδ + Θ(nδ,mnδ).

4Note that since x,B are fixed we re-iterate our earlier comment that it is not necessary to indicate the dependency of ζ and α on B or the
dependency of ζ and a on x.
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Define the event

An := {
supp(Xnδ) �⊂ Danδ

}
.

Using the second part of Definition 4(iv) along with the choice of mn and that I (B) < 1, we have

∣∣Θ(nδ,mnδ)
∣∣ ≤

Nnδ∑
i=1

e−λcnδφ(Xi)e
−λcmnδαmnδ + ∣∣Θ(nδ,mnδ)

∣∣1An

= e−λcmnδαmnδW
φ
nδ + ∣∣Θ(nδ,mnδ)

∣∣1An.

Since, according to Definition 4(iii), limn→∞ 1An = 0,P -a.s., therefore

lim sup
n↑∞

∣∣Θ(nδ,mnδ)
∣∣ ≤ lim

n↑∞ e−λcmnδαmnδW
φ
nδ = 0 Pδx -a.s.,

and so

lim
n↑∞

∣∣Eδx (U(n+mn)δ|Fnδ) − 〈φ|B, φ̃ dx〉Wφ∞
∣∣ = 0 Pδx -a.s. (13)

Since Span{φ|B,B ⊂⊂ D} is dense in C+
c , the result for lattice times follows by standard arguments along with

Lemma 18.

4.3. Replacing lattice times with continuous time

The following lemma is enough to conclude the convergence in Theorem 6 (see the remark after the lemma). It
upgrades convergence along lattice times to the full sequence of times and is based on the idea to be found in Lemma 8
of [1].

Lemma 19. Suppose that for some p > 1, 〈φp, φ̃〉 < ∞ and for all δ > 0 it is true that for all g ∈ C+
c (D) and x ∈ D

lim
n↑∞ e−λcnδ〈g,Xnδ〉 = 〈g, φ̃〉Wφ∞ Pδx -a.s.,

then the same result holds when nδ is replaced by t and limn↑∞ by limt↑∞.

Remark 20. Recall that we assumed that ζ(at ) = O(t) as t → ∞, and so referring to the previous subsection, mn =
ζ(anδ)/δ ≤ Kn with some K > 0 which does not depend on δ. In fact, by possibly further increasing the function a,
we can actually take ζ(at ) = Kt and mn = Kn. Then, from the previous subsection we already know that

lim
n↑∞ e−λc(K+1)nδ〈g,X(K+1)nδ〉 = 〈g, φ̃〉Wφ∞ Pδx -a.s.

Thus the assumption in Lemma 19 is indeed satisfied (write δ′ := δ(K + 1)).

Proof of Lemma 19. First suppose that B ⊂⊂ D and for each x ∈ D and ε > 0, define

Bε(x) = {
y ∈ B: φ(y) > (1 + ε)−1φ(x)

}
.

Note in particular that x ∈ Bε(x) if and only if x ∈ B . Next define for each δ > 0

Ξ
δ,ε
B (x) = 1{supp(Xt )⊂Bε(x) for all t∈[0,δ]},
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where X0 = x, and let ξ
δ,ε
B (x) = Eδx (Ξ

δ,ε
B (x)). An important feature of the latter quantity in the forthcoming proof is

that ξ
δ,ε
B (x) → 1B(x) as δ ↓ 0. With this notation we now note the crucial estimate

e−λct 〈φ|B,Xt 〉 ≥ e−λcδ

(1 + ε)

Nnδ∑
i=1

e−λcnδφ(Xi)Ξi a.s., t ∈ [
nδ, (n + 1)δ

]
,

where, given Fnδ , the random variables {Ξi : i = 1, . . . ,Nnδ} are independent and Ξi is equal in distribution to Ξ
δ,ε
B (x)

with x = Xi for i = 1, . . . ,Nnδ respectively. Note that the sum on the right-hand side is of the form (10) where now
the role of U(m+n)δ is played by the right-hand side above and the role of U

(i)
mδ is played by

φ(Xi)Ξi · e−λcδ.

Similar Lp estimates to those found in Lemma 18 show us that an estimate of the type of (12) is still valid in the
setting here and hence∑

n≥1

Eδx

(∣∣U(m+n)δ − E(U(m+n)δ|Fnδ)
∣∣p)

≤ 22p
∑
n≥1

e−λcnδpEδx

(
Nnδ∑
i=1

φ(Xi)
pξ

δ,ε
B (Xi)

)
.

However, with q = p − 1, the right-hand side can again be upper estimated by

22p
∑
n≥1

e−λcnδpEδx

〈
φp,Xnδ

〉 = 22p
∑
n≥1

e−λcnδq
E

φ
x

(
φ(Ynδ)

q
)
< ∞,

where the equality follows by Eq. (3), and the fact that the final sum is finite, follows by the ergodicity of P
φ
x and the

assumption that 〈φp, φ̃〉 < ∞.
We may now appeal to the Borel–Cantelli lemma to deduce that

lim
n↑∞

∣∣∣∣∣
Nnδ∑
i=1

e−λcnδφ(Xi)Ξi − e−λcnδ
〈
φξ

δ,ε
B ,Xnδ

〉∣∣∣∣∣ = 0

Pδx -almost surely and hence, using the fact that the Strong Law of Large Numbers has been proved already for
nδ-sequences,

lim inf
t↑∞ e−λct 〈φ|B,Xt 〉 ≥ e−λcδ

(1 + ε)

〈
φξ

δ,ε
B , φ̃

〉
W

φ∞.

Since ξ
δ,ε
B ∈ [0,1], therefore taking δ ↓ 0, by dominated convergence we have that 〈φξ

δ,ε
B , φ̃〉 → 〈φ|B, φ̃〉 in the lower

estimate above; hence subsequently taking ε ↓ 0 gives us

lim inf
t↑∞ e−λct 〈φ|B,Xt 〉 ≥ 〈φ|B, φ̃〉Wφ∞.

Recall that this estimate was computed for the case that B ⊂⊂ D. Suppose now that B ⊆ D (not necessarily
bounded). Then there exists an increasing sequence of compactly embedded domains in B , say {Bn: n ≥ 1}, such that⋃

n≥1 Bn = B . We may then note that for each n ≥ 1

lim inf
t↑∞ e−λct 〈φ|B,Xt 〉 ≥ lim inf

t↑∞ e−λct 〈φ|Bn,Xt 〉 ≥ 〈φ|Bn, φ̃〉Wφ∞,
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and hence, as n is arbitrary,

lim inf
t↑∞ e−λct 〈φ|B,Xt 〉 ≥ 〈φ|B, φ̃〉Wφ∞, Pδx -a.s.

Now that we have a tight lower estimate for the liminf for arbitrary Borel B ⊆ D, we shall look at the limsup, also for
arbitrary Borel B ⊆ D. Using the normalization 〈φ, φ̃〉 = 1, one has

lim sup
t↑∞

e−λct 〈φ|B,Xt 〉 = W
φ∞ − lim inf

t↑∞ e−λct 〈φ|D\B,Xt 〉 ≤ 〈φ|B, φ̃〉Wφ∞, Pδx -a.s.

This, together with the liminf result, yields

lim
t↑∞ e−λct 〈φ|B,Xt 〉 = 〈φ|B, φ̃〉Wφ∞, Pδx -a.s.

Then, just like for lattice times, a straightforward measure theoretical consideration shows that φ|B can be replaced
by an arbitrary test function g ∈ C+

c (D), completing the proof. �

4.4. Proof of Theorem 7

Proof. The last part of the theorem is merely a consequence of the second paragraph of the proof of Lemma 17.
For any g ∈ C+

c (D) define for each x ∈ D the function hs(x) = E
φ
x [g(Ys)], and note that, uniformly in x and s, the

function hs(x) is bounded. Now define Ut [g] = e−λct 〈gφ,Xt 〉 and observe that, just as in Theorem 6, one has

Ut+s[g] =
Nt∑
i=1

e−λctU(i)
s [g],

where by (3),

E
(
U(i)

s [g]|Ft

) = φ
(
Xi(t)

)
hs

(
Xi(t)

)
.

Next, note from the Markov property at t and the proof5 of Theorem 6 (along lattice times) that for fixed s and x ∈ D,

lim
t↑∞ Eδx

(∣∣Ut+s[g] − E
(
Ut+s[g]|Ft

)∣∣p) = 0

and hence by the monotonicity of norms

lim
t↑∞ Eδx

(∣∣Ut+s[g] − E
(
Ut+s[g]|Ft

)∣∣) = 0. (14)

Next, making use of the one particle picture in Eq. (3) and the spine change of measure in (8), we have that

Eδx

∣∣E(
Ut+s[g]|Ft

) − 〈φg, φ̃〉Wφ
t

∣∣
≤ Eδx

(
Nt∑
i=1

e−λctφ
(
Xi(t)

)∣∣hs

(
Xi(t)

) − 〈φg, φ̃〉∣∣)

= φ(x)Eφ
x

∣∣hs(Yt ) − 〈φg, φ̃〉∣∣.
Hence taking limits as t ↑ ∞, and using ergodicity of the spine as well as the uniform boundedness of hs(x), we have

lim
t↑∞Eδx

∣∣E(
Ut+s[g]|Ft

) − 〈φg, φ̃〉Wφ
t

∣∣ ≤ φ(x)
〈∣∣hs − 〈φg, φ̃〉∣∣, φφ̃

〉
.

5Note that even though Ut is defined differently, we still have martingale differences and the key upper estimate of Ut ≤ const · Wφ
t still holds.
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Finally, noting that lims↑∞ hs(x) = 〈φg, φ̃〉 and that the hs(x) is uniformly bounded, we have by dominated conver-
gence that

lim
s↑∞ lim

t↑∞Eδx

∣∣E(
Ut+s[g]|Ft

) − 〈φg, φ̃〉Wφ
t

∣∣ ≤ φ(x)
〈

lim
s↑∞

∣∣hs − 〈φg, φ̃〉∣∣, φφ̃
〉
= 0. (15)

Now recall from Lemma 17 that the martingale Wφ converges in the Lp norm and hence

lim
t↑∞Eδx

(∣∣Wφ
t − W

φ∞
∣∣) = 0. (16)

The proof is completed by a simple application of the triangle inequality together with (14)–(16) and taking g = κ/φ

for any κ ∈ C+
c (D). �
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