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Classical Cramér-Lundberg process

The classical risk insurance ruin problem sees the wealth of an insurance
problem modelled by the so-called Cramér-Lundberg process:

Xt := x+ ct−
Nt∑
i=1

ξi,

with the understanding that x is the initial wealth, c is the rate at which
premiums are collected and {Nt : t ≥ 0} is a Poisson process describing
the arrival of the i.i.d. claims {ξi : i ≥ 0}.
This is nothing but a spectrally negative Lévy process (Lévy process with
no positive jumps and non-monotone paths).

Henceforth we do not distinguish between the case that X is a
Cramér-Lundberg process and a general spectrally negative Lévy process.
Appeal to the usual Markovian notation {Px : x ∈ R}.
A classical field of study, so called Gerber-Shiu, theory, concerns the study
of the joint law of

τ−0 , Xτ−0
and X

τ−0 −
,

the time of ruin, the deficit at ruin and the wealth prior to ruin.
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Gerber-Shiu Theory

Ruin

u

v
x

We are interested in (Gerber-Shiu penalty measure)

Ex(e−qτ
−
0 ;−X

τ−0
∈ du, X

τ−0 −
∈ dv).

More generally, one can pose the question for a general spectrally negative
Lévy process.
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The general solution

Work with Laplace exponent instead of characteristic exponent, θ ≥ 0

E(eθXt) = eψ(θ)t,

where

ψ (λ) = −aλ+
1

2
σ2λ2 +

∫
(0,∞)

(e−λx − 1 + λx1(x<1))ν (dx) ,

a ∈ R, σ2 ≥ 0 and ν is a measure satisfying
∫

(0,∞)
(1 ∧ x2)ν(dx) <∞.

Theorem [scale functions]: For each q ≥ 0, there exists a continuous,
non-decreasing function W (q) : [0,∞)→ [0,∞) satisfying∫ ∞

0

e−λxW (q)(x)dx =
1

ψ(λ)− q

for λ > Φ(q) := sup{θ : ψ(θ) = q}.
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The general solution

u

v
x

Ex(e−qτ
−
0 ;−X

τ−0
∈ du, X

τ−0 −
∈ dv) =

{
e−Φ(q)vW (q)(x)−W (q)(x− y)

}
ν(v+du)
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Reflection strategies

Consider paying out dividends {Lt : t ≥ 0} from the insurance risk process
{Xt : t ≥ 0}.
A particular dividend strategy takes the form

Lt = a ∨ (sup
s≤t

Xs)− a

for some a > 0, a so-called reflection strategy.

a

Net present value of dividends paid until ruin

Ex

(∫ σa

0

e−qtdLt

)

for x, q ≥ 0, where σa = inf{t > 0 : Xt − Lt < 0}.
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Reflection strategies

a

I =

∫ σa

0

e−qtdLt =

∫ ep

0

e−qL
−1
s ds

where ep is an independent and exponentially distributed random variable
with some parameter p > 0.

Remarkably all integer moments2 of I can be computed under Pa.
Specifically

Ea

[(∫ σa

0

e−qtdLt

)n]
= n!

n∏
k=1

W (kq)(a)

W (kq)′(a)

2Question to the zealots: can fractional moments be computed explicitly?
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Refraction strategies

Consider a strategy, L, which pays out dividends at a linear rate δ
provided the aggregate process, X − L, exceeds a threshold b > 0.

Mathematically speaking, this can only be expressed through the
stochastic differential equation

Ut = Xt −
∫ t

0

δ1(Us>b)ds.

Surprisingly difficult to show that this SDE has a unique strong solution.
Many desired quantities can again be computed through the use of scale
functions.
Suppose that limt↑∞Xt =∞ and δ < E(X1) so that limt↑∞ Ut =∞.
Allowing for U to persist beyond ruin, we are interested in the total time
spent without dividends being paid,

∫∞
0

1(Ut<b)dt.
Starting at the barrier

Eb
[
exp

{
−q
∫ ∞

0

1(Ut<b)dt

}]
=

(E(X1)− δ)Φ(q)

q − δΦ(q)
.

When b = 0, one minus this quantity gives a Parisian-type ruin probability.
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Perturbation through Heavy and Light tax

A cumulative tax is paid proportional to the maximum wealth seen to date
by the insurance firm, leaving an aggregate

Ut = Xt − γ sup
s≤t

Xs t ≥ 0,

for γ ∈ (0, 1).

More generally, define Xt = sups≤tXs and

Ut = Xt −
∫

(0,t]

γ(Xu)dXu, t ≥ 0.

where γ : R→ [0,∞).

We consider two regimes

Heavy tax: γ : R→ (1,∞)

Light tax: γ : R→ [0, 1)
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Gerber-Shiu Theory

Perturbation through Heavy and Light tax

Ut = Xt −
∫

(0,t]

γ(Xu)dXu =

∫
(0,t]

(1− γ(Xu))dXu + (Xt −Xt)

This offers the following path decomposition: The process U , with
U0 = x > 0, follows the deterministic and monotone curve

γ̄(s) = x+

∫ s

x

(1− γ(s))ds, s ≥ x

interlaced with excursions of X from its maximum X.
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Probability of Ruin

Consider the ruin time for the insurance risk process with tax,

T−0 = inf{t > 0 : Ut < 0}.

Theorem: Take the light tax regime. Fix x > 0.

Px(T−0 <∞) = 1− exp

(
−
∫ ∞
x

W ′(γ̄(s))

W (γ̄(s))
ds

)
.

Here we write W in place of W (0) for convenience.

In the heavy tax regime it is (intuitively) trivial to deduce that

Px(T−0 <∞) = 1
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Net present value of tax paid until ruin

Suppose that U0 = x and define

a∗(x) = inf{s ≥ x : γ̄(s) < 0} ∈ (0,∞].

Theorem: Take either light or heavy tax. For q ≥ 0,

Ex
[ ∫ T−

0

0

e−quγ(Xu) dXu

]
=

∫ a∗(x)

x

exp

(
−
∫ t

x

W (q)′(γ̄(s))

W (q)(γ̄(s))
ds

)
γ(t) dt.
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Type II creeping for heavy tax

For a general Lévy process we say that it creeps downwards if for some
(and hence for all) x > 0, Px(X

τ−0
= 0) > 0, where

τ−0 = inf{t > 0 : Xt < 0}.

Spectrally negative Lévy processes creep downwards if and only if a
Gaussian component is present.

When does the Lévy insurance risk process X with tax creep downwards?

In the case of light tax, creeping occurs by the same mechanism as for a
pure Lévy process during an excursion of U from the increasing curve γ̄.
Hence there is creeping if and only if a Gaussian component is present in
X.

In the case of heavy tax, creeping can occur during an excursion of U from
γ̄ (in which case a Gaussian component is needed), OR, if γ̄ decreases
sharply enough to the origin, then U can meet the origin continuously
whilst moving along the curve γ̄.
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Theorem: In the case of heavy tax, for x > 0, assume that

a∗(x) = inf{s ≥ x : γ̄(s) = 0} <∞.

Then

Px(type II creeping at 0) = exp

(
−
∫ a∗(x)

x

W ′(γ̄(s))

W (γ̄(s))
ds

)
.

Corollary: If we choose γ is continuous then Px(type II creeping at 0) > 0
if and only if X is a Lévy process with bounded variation paths.
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Conclusion:
Gerber-Shiu theory is applied excursion theory


