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DEFINITION OF 1-CSBP.

A CSBP (X, Py) is a non-negative valued strong Markov process with probabilities
(Py,x > 0) such that for any x,yy > 0, Pyyy = Py x Py.

In particular
Ex(e %) = e ¥u(0) x,0,t >0,

where u;(60) uniquely solves the evolution equation
t
ur(0) + / 1 (us(0))ds = 0, t>0.
0
Here, we assume that the so-called branching mechanism ¢ takes the form

P(0) = —ab + B> + (™% — 14 6x)II(dx), 6 >0,
(0,00)

where o € R, 8 > 0 and II is a measure concentrated on (0, co) which satisfies
f(o (x/\x )II(dx) < oco.
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PROPERTIES.

We assume that the process is conservative, i.e.

1
/0+ e % =

It is easily verified that
Ei[Xi] = xe ¥ OD 4 x> 0.

We say that the CSBP is supercritical, critical or subcritical accordingly as
—1/(0+) = « is strictly positive, equal to zero or strictly negative.

For a supercritical 1)-CSBP the probability of extinction is
Py(lim X; = 0) = e,
oo
where A* is the unique root on (0, co) of the equation ¢(0) = 0.
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PROLIFIC SKELETON 1.

The supercritical 4-CSBP is equal in law to the total mass process obtained by the
following construction.

> Initiate Po(A*x) independent Galton-Watson processes with branching generator

q (ZPHJ‘—T’> = %w()‘*(l_r))a re [071]7

k>0

where g = ¢/ (A\*), po = p1 = 0and fork > 2

_ # *12 *\k ﬁ —A\*r
e X ) {w g2y + (A7) /@,m) ke H(d’)}-

> Along the edges immigrate CSBPs at rate
24dQ* + / ye‘)‘*yH(dy)dP;,
0

where P}, x > 0is the law of the CSBP with branching mechanism

Y»*(A) = (A + A*) and Q* is the associated excursion measure.
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PROLIFIC SKELETON II.

> Given that an individual dies and branches into k > 2 offspring, an independent
1*-CSBP is immigrated with initial mass r with probability

1

"= -
) = )

K
{5(>\*)250(dr)1{k_2} + (A*)k;!e_vrﬂ(dr)} .

> Finally an independent ¢)*-CSBP is issued at time zero with initial mass x.

Al

time
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A-SKELETON I.

Let A > A\*.
Define the Esscher transformed branching mechanism ¢ : Ry — Ry for @ > —X and
A > A" by 12 (0) = $(0 + A) — $(N).

The supercritical 4-CSBP is equal in law to the total mass process obtained by the
following construction.

> Initiate Po(Ax) independent Galton-Watson processes with branching generator

(Zpkr"—r>= v(M1—71)), relo1],

k>0

where g = ¥’ (N), po = Pp(A) /AP’ (A), p1 = 0and fork > 2

)\
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A-SKELETON II.

> Along the edges immigrate CSBPs at rate
28dQ™ + / ye MII(dy)dP{Y,
0

where IP’,(CA), x > 01is the law of the CSBP with branching mechanism ' and Q™
is the associated excursion measure.

> Given that an individual dies and branches into k € Ny \ {1} offspring, an
independent 1), -CSBP is immigrated with initial mass r with probability

ni(dr) = P)\T {d’ )1 (k=03 So(dr) + BN 1(x—p} 6o (dr)

)k
>0y ( k') e_’\’H(dr)} R

> Finally an independent v, -CSBP is issued at time zero with initial mass x.
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SDE.

The process (X, Py), x > 0, can be represented as the unique strong solution to the
stochastic differential equation (SDE)

t topXe_ t oo pXe
Xt =x+ a/ Xs—ds + \/25/ / W(ds, du) +/ / / rN(ds, dr, dv),
0 0 Jo 0o Jo Jo

)

for x > 0, > 0, where
> W(ds,du) is a white noise process on (0, c0)? based on the Lebesgue measure
ds ® du,
> N(ds, dr,dv) is a Poisson point process on (0, c0)? with intensity ds ® TI(dr) ® dv,
and N(ds, dr, dv) the compensated measure of N(ds, dr, dv).
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THINNING OF THE SDE I.

We can introduce an additional mark to atoms of N, resulting in an ‘extended” Poisson
random measure, N (ds, dr, dv, dk) on (0, 00)3 x Ny with intensity

(Ar)F

ds @ TI(dr) @ dv © ~—-—e ™ VH(dk).

Define three random measures by
N(ds, dr, dv) = N (ds, dr, dv, {k = 0}),
N'(ds,dr,dv) = N(ds,dr,dv, {k = 1})

and
N2(ds,dr,dv) = N(ds,dr, dv, {k > 2}).

We have that N°, N! and N? are independent Poisson point processes on (0, 00)® with
respective intensities ds ® e~ VTI(dr) ® dv, ds ® (Ar)e MTI(dr) ® dv and
ds @ 302, (Ar)ke=MTI(dr) /k! @ dv.
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THINNING OF THE SDE II.

t tpXe t oo pXeo
Xt:x—&—a/ Xs,ds—f—\/zﬁ/ / W(ds,du)—i—/ / / NO(ds, dr, dv)
0 0 Jo 0oJo Jo
t poo  pXs— t poo X
+ / / / N (ds, dr, dv) + / / / rN?(ds, dr, dv)
0oJo Jo
/ / Xeo Le**’rn(dr)ds
b pXs t poo pXs_
:x—w’()\)/ Xsds+\/25/ / W(ds,du)-l—/ / / rNO(ds, dr, dv)
0 0 Jo 0oJo Jo
t poo pXs— t
+ / / / N (ds, dr, dv) + 28A / X._ds
0o Jo Jo 0
t oo Xs—
+// / rNZ(ds,dr,du),
0o Jo Jo

(In the last equality we have used that — f(o o) (1—e M)rIl(dr) = —a+28X =9/ (\)).
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THINNING OF THE SDE II.

Xy

—x— () /Otxsds+\/273/0t /OXS_ W(ds,du)—l—/ot /OOO /OXS_ rNO(ds, dr, dv)

t poo pXs_ t
+ / / / N (ds, dr, dv) + 282 / X._ds
0 Jo 0 0
t o] X5
+/ / / er(ds, dr,dv),
0 Jo 0

(In the last equality we have used that — f(o o) (1—e M)rII(dr) = —a+28X—¢'(\)).
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Theorem
Suppose that v corresponds to a supercritical branching mechanism (i.e. o > 0) and X > X*.
Consider the coupled system of SDEs

( /z\f ): < 23 )—w’(A)/Ot( 6\5‘ )ds+\/273/0t/0A5_ ( (1) )W(ds,du)
+/Ot/0°°/OA§_ ( 0 )No(ds,dr,dy)
+/Ot/0°°/1257 ( 0 )Nl(ds,dr,dj)
+/0t/000/000/125_ ( o )Nz(ds,dr,dk,dj)

t
+25/0 ( OZS‘ )ds, t>0, )

with Ag > 0 given and fixed. Under the assumption that Z is an independent random
variable which is Poisson distributed with intensity AAg the system (2) has a unique strong
solution such that:

(i) Fort >0, Zt|]:tA is Poisson distributed with intensity A\, where
FPhi=o(As s <t);

(ii) The process (A¢,t > 0) is a weak solution to (1).
13/26
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(DRIVING SOURCES OF RANDOMNESS 1.)

Let Np = {0} UNand #(d¢) = EieNO 60;(de), ¢ > 0.
Then in the previous theorem
> N is a Poisson random measure on (0, 00)? with intensity measure

ds® e_’\’l'[(dr) ® dv, ¥ is the associated compensated version of NO,

> N'(ds, dr, dj) is a Poisson point process on (0, 00)? x N with intensity
ds ® re=MTI(dr) ® #(dj),

> N2(ds, dr, dk, dj) is a Poisson point process on (0, c0)? x Ny x N with intensity
P’ (N)ds @ mi(dr) ® prt(dk) @ #(dj), and

> W(ds,du) is the white noise process on (0, 00)? based on the Lebesgue measure
ds ® du.
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RAY-KNIGHT REPRESENTATION.

Assume that Grey’s condition is satisfied, ie.

/mﬁdu<oo.

Let
> (&, t > 0) be a spectrally positive Lévy process with Laplace exponent v,

> (éft) ,0 <r <t), where é,(t) =& — §(4—p)—, the time reversed process at time f,

- 50 i s, 0.

The process (H;, t > 0) is called the height process if H; is the local time at level 0, at
time t of S() — £(0),

Denote by L{ the local time up to time ¢ of H at level 2 > 0, and let

Ty :=inf{t >0:& = —x}.

Then the generalised Ray-Knight theorem for the 1)-CSBP process states that
(LA 0= 0) has a cadag modification for which

(Lh,,t > 0) £ (X, Py),

that is, the two processes are equal in law.
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GENEALOGY OF SUBCRITICAL CSBP.

Excursions of H away from 0 form a PPP, denote by n its intensity, and let € be a
canonical excursion under n.
Let ¢ = inf{s > 0, es = 0}, and define

_ _ : 2
de (57 t) =€+ € s/\térrlgs\/t €r, (57 t) € [07 C] .

Then we can define the equivalence relation ~, such that (s ~ t) is and only if
de(s,t) =0,and Tc = [0, ¢]\ ~e.

The compact metric space (7¢, dc) is called a Lévy random tree.

height
4
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T-SKELETON.
Fix T > 0.
Define (ZI,0 <t < T) as the process that counts the number of excursions above level
t that hit level T.

Then ZT is a time-dependent continuous-time Galton-Watson process which at time #
branching at rate
gt ur—t(00)¢’ (ur—(00)) — P (ur—¢(0))

= ir—(00) , te0,T),

and its offspring distribution (pZ_t, k > 0) is given by pg = p{_f =0,

1
pz'—t _ ﬁ {BuT t(oo)l{k 2 +/ M uTt(OO)xH(dx)}.

ur_¢(c0)q

T N\ I\V/\'\ /\/\ N\ I\VA

S LT
AR WAV W

18/ 26



Introduction Supercritical CSBP Subcritical CSBP

- 00000000000 090809000000 _
T-SKELETON.
FixT > 0.
Define (Z],0 < t < T) as the process that counts the number of excursions above level
t that hit level T.

Then ZT is a time-dependent continuous-time Galton-Watson process which at time #
branching at rate

gt = ur_(00)’ (ur—(00)) — W (ur—4(c0))

(o) e

and its offspring distribution (p{ft, k > 0) is given by pg = p{ft =0,

pgff _ % {B”T t(oo)l{k 2} +/ M —MTt(OO)xH(dx)}.

ur_¢(c0)q

T N l\/\'\ i /\/\ I\ ’\l\
v \

S L
AWV AW

18/ 26



Introduction Supercritical CSBP Subcritical CSBP

- 00000000000 090809000000 _
T-SKELETON.
FixT > 0.
Define (Z],0 < t < T) as the process that counts the number of excursions above level
t that hit level T.

Then ZT is a time-dependent continuous-time Galton-Watson process which at time #
branching at rate

gt = ur_(00)’ (ur—(00)) — W (ur—4(c0))

(o) e

and its offspring distribution (p{ft, k > 0) is given by pg = p{ft =0,

pgff _ % {B”T t(oo)l{k 2} +/ M —MTt(OO)xH(dx)}.

ur_¢(c0)q

. aal O /\/\ b Do
NVis L/l 5

, W MEWL
PO T

———

18/ 26



Introduction Supercritical CSBP Subcritical CSBP

00 00000000000 000@00000000
I I

T-SKELETON.

Fix T > 0.
Define (Z],0 < t < T) as the process that counts the number of excursions above level
t that hit level T.
Then ZT is a time-dependent continuous-time Galton-Watson process which at time #
branching at rate
gt = ur—¢(00)Y’ (ur—t(o0)) — T/J(Hrft(oo)), Le0,7),
ur—¢(c0)

and its offspring distribution (p{ft, k > 0) is given by pg = p{ft =0,

_— 1 )  (ur—i(00)0)" (oo
pk = W X {BMT—t(OO)l{k—Z} +/0 Te ur_( )XH(dx) .

. A /\'\ Zj ~ Po(ur(00)) /\/\ n N
N Wl [

, R |
ML AL T

———
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IMMIGRATION.

As
P [XT = Ol]:t] = e—XtuT_,(oo)’

the law of X conditioned to die out by time T can be obtained by the following change

of measure ; X (o)
dP; e AthT—t(o0
dPx | 7, T Temur(se) £20,x>0.

We get that (X, PT) is a time-dependent CSBP with Laplace transform
Elle "] =1 0<t<T, x,0>0,

where
VI(0) = ur(0 + ur_4(00)) — ur(c).

Note that
lim ur_¢(c0) =00, and lim ur_¢(c0) = 0.
t—T T—o0

19/ 26



Introduction Supercritical CSBP Subcritical CSBP

00 00000000000 000008000000
I I

Theorem
Suppose that 1) corresponds to a (sub)critical branching mechanism (i.e. o < 0) which satisfies
Grey’s condition. Fix a time horizon T > 0 and consider the coupled system of SDEs

()= () vorson (3F Joe i [ (1 s
L (s
L) e
+/Ot/0°°/0 /125_ ( P )N%(ds,dr,dhdj)
+2/3/0t(OZsTf>ds, 0<t<T. ®)

with AT > 0 given and fixed. Under the assumption that ZT is an independent random

variable which is Poisson distributed with intensity ur(co)A] the system (3) has a unique
strong solution such that:

o

(i) ForT > t>0, ZT|.7-'AT is Poisson distributed with intensity ur_(co)AT,
where ]—'A =o(AT:s<t);

(ii) Condltlonal on (]—"At 0 <t < T), the process (AT, 0 < t < T) is a weak

Y g
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(DRIVING FORCES OF RANDOMNESS I1.)

In the previous theorem

» NY is a Poisson random measure on [0, co)? with intensit
T y
ds @ e 1=+ () T[(dr) ® dw.

> Nl is a Poisson process on [0, 00)? x Ng with intensity
ds ® re #1=s(>)TI(dr) ® #(dj),
> N%(ds, dr, dk, dj) is a Poisson process on [0, 00)? x Ny x N with intensity

{ ur—s(00)¢" (ur—s(00)) — P (ur—s(c0))

ur_s(c0)

} ds ® T~ (dr) @ pT—*#(dk) ® #(d)),

where, for k > 2,

B2 (00)1 =y 0 (dr) + (ur_s(c0)r)* e=T=s()TI(dr) /k!
pi (ur—s(00)y (ur—5(00)) — 1 (ur—s(00)))

g S(dr) =

) el

> W(ds,du) is the white noise process on (0, 00)? based on the Lebesgue measure
ds ® du. 21/26
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CONDITIONING ON SURVIVAL.

The law of (A],0 < t < T) conditional on (]-'AfT N{Z] > 1},0 <t < T) is that of the
law of the ¥-CSBP, X, conditioned to survive until time T.

> This law is can be obtained by the following change of measure for t > 0,x > 0

dpT 1 — e~ Xeur—t(0)
B |, = 1o

» We have fork > 1

(ur(c0)x)t emtr(>o)

PZ[ZO = k|Z0 > 1] = K 1 _ e—ur(oo)x”

> If nt denotes the conditional probability n(-|sups>( €s > T), then the first branch
time 7 of the individual corresponding to the excursion e is given by

 lur(00)) (o)
RO >0 = TS Bur(oe))

fort € [0, 7).
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CONDITIONING ON SURVIVAL.

The law of (AT,0 < t < T) conditional on (]—'AtT N{Zl > 1},0 <t < T) s that of the
law of the ¥-CSBP, X, conditioned to survive until time T.

Take T — oco.
> This law is can be obtained by the following change of measure for t > 0,x > 0

d@}; 1 — e Xtur—¢(o0)

dp, T 1 e—vur(eo) e x
Fit

» We have fork > 1

(ur(co)x)t et
K 1= e ur(oo)

PI[ZO =k|Zo > 1] = — 0, unlessk = 1.

> If nt denotes the conditional probability n(-|sups~qes > T), then the first branch
time ~7 of the individual corresponding to the excursion e is given by
P(ur(oo)) _ur—i(o0)
ur (o) ¢(ur—¢(0))

HT(VT > t) = — 1,

fort € [0, 7).
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EMERGENCE OF THE SPINE.

time

Note that the convergence is in a weak sense.
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SPINE.

Theorem

Suppose that ) is a critical or subcritical branching mechanism such that Grey'’s condition
holds. Suppose, moreover, that (A, ZT),0 < t < T) is a weak solution to (3) and that Z{ is
an independent random variable which is Poisson distributed with intensity up(co)Al. Then,
conditional on the event ZI > 0, in the sense of weak convergence with respect to the
Skorokhod topology on D([0, o), R?), for all t > 0,

(AL zh,0<s <) — (X],1),0<s <),

where X is a weak solution to

t topXso t poo pXeo
Xy =x+ a/ Xs—ds + \/2ﬂ/ / W(ds, du) +/ / / rN(ds, dr, du)
0 0 Jo 0o Jo Jo

t oo
+/ / rN*(ds, dr) + 28t, t>0.
0 Jo
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Suppose that ) is a critical or subcritical branching mechanism such that Grey'’s condition
holds. Suppose, moreover, that (A, ZT),0 < t < T) is a weak solution to (3) and that Z{ is
an independent random variable which is Poisson distributed with intensity up(co)Al. Then,
conditional on the event ZI > 0, in the sense of weak convergence with respect to the
Skorokhod topology on D([0, o), R?), for all t > 0,

(AL zh,0<s <) — (X],1),0<s <),

where X is a weak solution to

t topXso t poo pXeo
Xy =x+ a/ Xs—ds + \/2ﬂ/ / W(ds, du) +/ / / rN(ds, dr, du)
0 0 Jo 0o Jo Jo

t oo
+/ / rN*(ds, dr) + 20t, t>0.
0 Jo
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(DRIVING SOURCES OF RANDOMNESS I1I.)

In the previous theorem

> W(ds,du) is a white noise process on (0, c0)? based on the Lebesgue measure
ds ® du,

> N(ds,dr,dv) is a Poisson point process on (0, c0)? with intensity ds ® TI(dr) ® dv,
and N(ds, dr, dv) is the compensated measure of N(ds, dr, dv),

> N* is a Poisson random measure on [0, co) X (0, co) with intensity measure
ds ® rII(dr).
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