Skeletal stochastic differential equations for continuous-state branching process

A. Kyprianou, D. Fekete, J. Fontbona

DEFINITION OF ψ -CSBP.

A CSBP (X, \mathbb{P}_x) is a non-negative valued strong Markov process with probabilities $(\mathbb{P}_x, x \ge 0)$ such that for any $x, y \ge 0$, $\mathbb{P}_{x+y} = \mathbb{P}_x * \mathbb{P}_y$.

In particular

$$\mathbb{E}_{x}(\mathrm{e}^{-\theta X_{t}})=\mathrm{e}^{-xu_{t}(\theta)}, \qquad x,\theta,t\geq 0,$$

where $u_t(\theta)$ uniquely solves the evolution equation

$$u_t(\theta) + \int_0^t \psi(u_s(\theta)) \mathrm{d}s = \theta, \qquad t \ge 0.$$

Here, we assume that the so-called branching mechanism ψ takes the form

$$\psi(\theta) = -\alpha\theta + \beta\theta^2 + \int_{(0,\infty)} (e^{-\theta x} - 1 + \theta x) \Pi(dx), \ \theta \ge 0,$$

where $\alpha \in \mathbb{R}$, $\beta \geq 0$ and Π is a measure concentrated on $(0, \infty)$ which satisfies $\int_{(0,\infty)} (x \wedge x^2) \Pi(dx) < \infty$.

PROPERTIES.

We assume that the process is conservative, i.e.

$$\int_{0+} \frac{1}{|\psi(\xi)|} \mathrm{d}\xi = \infty.$$

It is easily verified that

$$\mathbb{E}_{x}[X_{t}] = x \mathrm{e}^{-\psi'(0+)t}, \qquad t, x \ge 0.$$

We say that the CSBP is supercritical, critical or subcritical accordingly as $-\psi'(0+) = \alpha$ is strictly positive, equal to zero or strictly negative.

For a **supercritical** ψ -CSBP the probability of extinction is

$$\mathbb{P}_x(\lim_{t\uparrow\infty}X_t=0)=\mathrm{e}^{-\lambda^*x},$$

where λ^* is the unique root on $(0, \infty)$ of the equation $\psi(\theta) = 0$.

PROLIFIC SKELETON I.

The supercritical ψ -CSBP is equal in law to the total mass process obtained by the following construction.

▶ Initiate $Po(\lambda^* x)$ independent Galton-Watson processes with branching generator

$$q\left(\sum_{k\geq 0} p_k r^k - r\right) = \frac{1}{\lambda^*} \psi(\lambda^*(1-r)), \qquad r \in [0,1],$$

where $q = \psi'(\lambda^*)$, $p_0 = p_1 = 0$ and for $k \ge 2$

$$p_k = \frac{1}{\lambda^* \psi'(\lambda^*)} \left\{ \beta(\lambda^*)^2 \mathbf{1}_{\{k=2\}} + (\lambda^*)^k \int_{(0,\infty)} \frac{r^k}{k!} e^{-\lambda^* r} \Pi(dr) \right\}.$$

Along the edges immigrate CSBPs at rate

$$2\beta d\mathbb{Q}^* + \int_0^\infty y \mathrm{e}^{-\lambda^* y} \Pi(\mathrm{d} y) \mathrm{d} \mathbb{P}_y^*,$$

where \mathbb{P}_{x}^{*} , $x \ge 0$ is the law of the CSBP with branching mechanism $\psi^{*}(\lambda) = \psi(\lambda + \lambda^{*})$ and \mathbb{Q}^{*} is the associated excursion measure.

ĺn	tro	du	ctic	m	
0	0				

PROLIFIC SKELETON II.

Given that an individual dies and branches into $k \ge 2$ offspring, an independent ψ^* -CSBP is immigrated with initial mass r with probability

$$\eta_k(\mathrm{d}r) = \frac{1}{p_k \lambda^* \psi'(\lambda^*)} \left\{ \beta(\lambda^*)^2 \delta_0(\mathrm{d}r) \mathbf{1}_{\{k=2\}} + (\lambda^*)^k \frac{r^k}{k!} \mathrm{e}^{-\lambda^* r} \Pi(\mathrm{d}r) \right\}.$$

Finally an independent ψ^* -CSBP is issued at time zero with initial mass x.

Introduction	Supercritical CSBP	Subcritical CSBP
00	000000000	000000000000

Introduction	Supercritical CSBP
00	000000000

Introduction	Supercritical CSBP	Subcritical CSBP
00	000000000	000000000000

Introduction	Supercritical CSBP	Subcritical CSBP
00	000000000	000000000000

000000000000000000000000000000000000000	Introduction	Supercritical CSBP	Subcritical CSBP
	00	000000000	000000000000

7/26 < □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ = - 의 < 은

λ -skeleton I.

Let $\lambda \geq \lambda^*$. Define the Esscher transformed branching mechanism $\psi_{\lambda} : \mathbb{R}_+ \to \mathbb{R}_+$ for $\theta \geq -\lambda$ and $\lambda \geq \lambda^*$ by $\psi_{\lambda}(\theta) = \psi(\theta + \lambda) - \psi(\lambda)$.

The supercritical ψ -CSBP is equal in law to the total mass process obtained by the following construction.

• Initiate $Po(\lambda x)$ independent Galton-Watson processes with branching generator

$$q\left(\sum_{k\geq 0}p_kr^k-r\right)=\frac{1}{\lambda}\psi(\lambda(1-r)),\qquad r\in[0,1],$$

where $q = \psi'(\lambda)$, $p_0 = \psi(\lambda) / \lambda \psi'(\lambda)$, $p_1 = 0$ and for $k \ge 2$

$$p_k = \frac{1}{\lambda \psi'(\lambda)} \left\{ \beta \lambda^2 \mathbf{1}_{\{k=2\}} + \int_{(0,\infty)} \frac{(\lambda r)^k}{k!} \mathrm{e}^{-\lambda r} \Pi(\mathrm{d}r) \right\}.$$

λ -skeleton II.

Along the edges immigrate CSBPs at rate

$$2\beta d\mathbb{Q}^{(\lambda)} + \int_0^\infty y \mathrm{e}^{-\lambda y} \Pi(\mathrm{d} y) \mathrm{d} \mathbb{P}_y^{(\lambda)},$$

where $\mathbb{P}_x^{(\lambda)}$, $x \ge 0$ is the law of the CSBP with branching mechanism ψ_{λ} and $\mathbb{Q}^{(\lambda)}$ is the associated excursion measure.

Given that an individual dies and branches into $k \in \mathbb{N}_0 \setminus \{1\}$ offspring, an independent ψ_{λ} -CSBP is immigrated with initial mass r with probability

$$\begin{split} \eta_k(\mathrm{d}r) &= \frac{1}{p_k \lambda \psi'(\lambda)} \left\{ \psi(\lambda) \mathbf{1}_{\{k=0\}} \delta_0(\mathrm{d}r) + \beta \lambda^2 \mathbf{1}_{\{k=2\}} \delta_0(\mathrm{d}r) \right. \\ &\left. + \mathbf{1}_{\{k\geq 2\}} \frac{(\lambda r)^k}{k!} \mathrm{e}^{-\lambda r} \Pi(\mathrm{d}r) \right\}, \end{split}$$

Finally an independent ψ_{λ} -CSBP is issued at time zero with initial mass *x*.

9/26 《 □ ▷ 《 @ ▷ 《 볼 ▷ 《 볼 ▷ 》 및 · · · 이 Q (~

Introduction	Supercritical CSBP	Subcritical CSBP
00	0000000000	00000000000

SDE.

The process (X, \mathbb{P}_x) , x > 0, can be represented as the unique strong solution to the stochastic differential equation (SDE)

$$X_{t} = x + \alpha \int_{0}^{t} X_{s-} ds + \sqrt{2\beta} \int_{0}^{t} \int_{0}^{X_{s-}} W(ds, du) + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r \tilde{N}(ds, dr, d\nu),$$
(1)

for $x > 0, t \ge 0$, where

- ▶ W(ds, du) is a white noise process on $(0, \infty)^2$ based on the Lebesgue measure $ds \otimes du$,
- ▶ $N(ds, dr, d\nu)$ is a Poisson point process on $(0, \infty)^3$ with intensity $ds \otimes \Pi(dr) \otimes d\nu$, and $\tilde{N}(ds, dr, d\nu)$ the compensated measure of $N(ds, dr, d\nu)$.

10/26

・ロト・日本・モート モー うへの

THINNING OF THE SDE I.

We can introduce an additional mark to atoms of *N*, resulting in an 'extended' Poisson random measure, $\mathcal{N}(ds, dr, d\nu, dk)$ on $(0, \infty)^3 \times \mathbb{N}_0$ with intensity

$$\mathrm{d} s\otimes \Pi(\mathrm{d} r)\otimes \mathrm{d} \nu\otimes rac{(\lambda r)^k}{k!}\mathrm{e}^{-\lambda r}\sharp(\mathrm{d} k).$$

Define three random measures by

$$\begin{split} N^0(\mathrm{d} s,\mathrm{d} r,\mathrm{d} \nu) &= \mathcal{N}(\mathrm{d} s,\mathrm{d} r,\mathrm{d} \nu,\{k=0\}),\\ N^1(\mathrm{d} s,\mathrm{d} r,\mathrm{d} \nu) &= \mathcal{N}(\mathrm{d} s,\mathrm{d} r,\mathrm{d} \nu,\{k=1\}) \end{split}$$

and

$$N^{2}(\mathrm{d} s, \mathrm{d} r, \mathrm{d} \nu) = \mathcal{N}(\mathrm{d} s, \mathrm{d} r, \mathrm{d} \nu, \{k \geq 2\}).$$

We have that N^0 , N^1 and N^2 are independent Poisson point processes on $(0, \infty)^3$ with respective intensities $ds \otimes e^{-\lambda r} \Pi(dr) \otimes d\nu$, $ds \otimes (\lambda r) e^{-\lambda r} \Pi(dr) \otimes d\nu$ and $ds \otimes \sum_{k=2}^{\infty} (\lambda r)^k e^{-\lambda r} \Pi(dr) / k! \otimes d\nu$.

THINNING OF THE SDE II.

$$\begin{split} X_t &= x + \alpha \int_0^t X_{s-} ds + \sqrt{2\beta} \int_0^t \int_0^{X_{s-}} W(ds, du) + \int_0^t \int_0^\infty \int_0^{X_{s-}} r \tilde{N}^0(ds, dr, d\nu) \\ &+ \int_0^t \int_0^\infty \int_0^{X_{s-}} r N^1(ds, dr, d\nu) + \int_0^t \int_0^\infty \int_0^{X_{s-}} r N^2(ds, dr, d\nu) \\ &- \int_0^t \int_0^\infty X_{s-} \sum_{n=1}^\infty \frac{(\lambda r)^n}{n!} e^{-\lambda r} r \Pi(dr) ds \\ &= x - \psi'(\lambda) \int_0^t X_s ds + \sqrt{2\beta} \int_0^t \int_0^{X_{s-}} W(ds, du) + \int_0^t \int_0^\infty \int_0^{X_{s-}} r \tilde{N}^0(ds, dr, d\nu) \\ &+ \int_0^t \int_0^\infty \int_0^{X_{s-}} r N^1(ds, dr, d\nu) + 2\beta\lambda \int_0^t X_{s-} ds \\ &+ \int_0^t \int_0^\infty \int_0^{X_{s-}} r N^2(ds, dr, d\nu), \end{split}$$

(In the last equality we have used that $-\int_{(0,\infty)} (1-e^{-\lambda r})r\Pi(dr) = -\alpha + 2\beta\lambda - \psi'(\lambda)$).

12/26

THINNING OF THE SDE II.

$$\begin{split} \mathbf{X}_{t} &= x + \alpha \int_{0}^{t} X_{s-} \mathrm{ds} + \sqrt{2\beta} \int_{0}^{t} \int_{0}^{X_{s-}} W(\mathrm{ds}, \mathrm{d}u) + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r \tilde{N}^{0}(\mathrm{ds}, \mathrm{d}r, \mathrm{d}\nu) \\ &+ \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r N^{1}(\mathrm{ds}, \mathrm{d}r, \mathrm{d}\nu) + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r N^{2}(\mathrm{ds}, \mathrm{d}r, \mathrm{d}\nu) \\ &- \int_{0}^{t} \int_{0}^{\infty} X_{s-} \sum_{n=1}^{\infty} \frac{(\lambda r)^{n}}{n!} \mathrm{e}^{-\lambda r} r \Pi(\mathrm{d}r) \mathrm{ds} \\ &= x - \psi'(\lambda) \int_{0}^{t} X_{s} \mathrm{ds} + \sqrt{2\beta} \int_{0}^{t} \int_{0}^{X_{s-}} W(\mathrm{ds}, \mathrm{d}u) + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r \tilde{N}^{0}(\mathrm{ds}, \mathrm{d}r, \mathrm{d}\nu) \\ &+ \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r N^{1}(\mathrm{ds}, \mathrm{d}r, \mathrm{d}\nu) + 2\beta\lambda \int_{0}^{t} X_{s-} \mathrm{ds} \\ &+ \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{X_{s-}} r N^{2}(\mathrm{ds}, \mathrm{d}r, \mathrm{d}\nu), \end{split}$$

(In the last equality we have used that $-\int_{(0,\infty)} (1-e^{-\lambda r})r\Pi(dr) = -\alpha + 2\beta\lambda - \psi'(\lambda)$).

Theorem

Suppose that ψ corresponds to a supercritical branching mechanism (i.e. $\alpha > 0$) and $\lambda \ge \lambda^*$. Consider the coupled system of SDEs

Supercritical CSBP

$$\begin{pmatrix} \Lambda_t \\ Z_t \end{pmatrix} = \begin{pmatrix} \Lambda_0 \\ Z_0 \end{pmatrix} - \psi'(\lambda) \int_0^t \begin{pmatrix} \Lambda_{s-} \\ 0 \end{pmatrix} ds + \sqrt{2\beta} \int_0^t \int_0^{\Lambda_{s-}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} W(ds, du) + \int_0^t \int_0^\infty \int_0^{\Lambda_{s-}} \begin{pmatrix} r \\ 0 \end{pmatrix} \tilde{N}^0(ds, dr, d\nu) + \int_0^t \int_0^\infty \int_1^{Z_{s-}} \begin{pmatrix} r \\ 0 \end{pmatrix} N^1(ds, dr, dj) + \int_0^t \int_0^\infty \int_0^\infty \int_1^{Z_{s-}} \begin{pmatrix} r \\ k-1 \end{pmatrix} N^2(ds, dr, dk, dj) + 2\beta \int_0^t \begin{pmatrix} Z_{s-} \\ 0 \end{pmatrix} ds, \quad t \ge 0,$$
(2)

with $\Lambda_0 \ge 0$ given and fixed. Under the assumption that Z_0 is an independent random variable which is Poisson distributed with intensity $\lambda \Lambda_0$ the system (2) has a unique strong solution such that:

- (i) For t ≥ 0, Z_t | F_t^Λ is Poisson distributed with intensity λΛ_t, where F_t^Λ := σ(Λ_s : s ≤ t);
- (ii) The process $(\Lambda_t, t \ge 0)$ is a weak solution to (1).

(DRIVING SOURCES OF RANDOMNESS I.)

Let
$$\mathbb{N}_0 = \{0\} \cup \mathbb{N}$$
 and $\sharp(d\ell) = \sum_{i \in \mathbb{N}_0} \delta_i(d\ell), \ell \ge 0$.

Then in the previous theorem

- ▶ \mathbb{N}^0 is a Poisson random measure on $(0, \infty)^3$ with intensity measure $ds \otimes e^{-\lambda r} \Pi(dr) \otimes d\nu$, $\tilde{\mathbb{N}}^0$ is the associated compensated version of \mathbb{N}^0 ,
- ▶ $\mathbb{N}^1(ds, dr, dj)$ is a Poisson point process on $(0, \infty)^2 \times \mathbb{N}$ with intensity $ds \otimes re^{-\lambda r} \Pi(dr) \otimes \sharp(dj)$,
- ▶ $\mathbb{N}^2(ds, dr, dk, dj)$ is a Poisson point process on $(0, \infty)^2 \times \mathbb{N}_0 \times \mathbb{N}$ with intensity $\psi'(\lambda) ds \otimes \eta_k(dr) \otimes p_k \sharp(dk) \otimes \sharp(dj)$, and
- ▶ W(ds, du) is the white noise process on $(0, \infty)^2$ based on the Lebesgue measure $ds \otimes du$.

SUBCRITICAL CSBP.

RAY-KNIGHT REPRESENTATION.

Assume that Grey's condition is satisfied, ie.

$$\int^{\infty} \frac{1}{\psi(\theta)} \mathrm{d}u < \infty.$$

Let

► $(\xi_t, t \ge 0)$ be a spectrally positive Lévy process with Laplace exponent ψ ,

J

► $(\hat{\xi}_r^{(t)}, 0 \le r \le t)$, where $\hat{\xi}_r^{(t)} := \xi_t - \xi_{(t-r)-}$, the time reversed process at time *t*,

$$\blacktriangleright \hat{S}_r^{(t)} := \sup_{s \le r} \hat{\xi}_s^{(t)}.$$

The process $(H_t, t \ge 0)$ is called the height process if H_t is the local time at level 0, at time *t* of $\hat{S}^{(t)} - \hat{\xi}^{(t)}$. Denote by L_t^a the local time up to time *t* of *H* at level $a \ge 0$, and let $T_x := \inf\{t \ge 0 : \xi_t = -x\}$.

Then the generalised Ray-Knight theorem for the ψ -CSBP process states that $(L^a_{T_v}, a \ge 0)$ has a càdàg modification for which

$$(L_{T_x}^t, t \ge 0) \stackrel{d}{=} (X, \mathbb{P}_x),$$

that is, the two processes are equal in law.

GENEALOGY OF SUBCRITICAL CSBP.

Excursions of *H* away from 0 form a PPP, denote by n its intensity, and let ϵ be a canonical excursion under n.

Let $\zeta = \inf\{s > 0, \epsilon_s = 0\}$, and define

$$d_{\epsilon}(s,t) = \epsilon_s + \epsilon_t - \inf_{s \wedge t \le r \le s \lor t} \epsilon_r, \quad (s,t) \in [0,\zeta]^2.$$

Then we can define the equivalence relation \sim_{ϵ} , such that $(s \sim_{\epsilon} t)$ is and only if $d_{\epsilon}(s,t) = 0$, and $\mathcal{T}_{\epsilon} = [0,\zeta] \setminus \sim_{\epsilon}$.

The compact metric space $(\mathcal{T}_{\epsilon}, d_{\epsilon})$ is called a Lévy random tree.

height

Fix T > 0. Define $(Z_t^T, 0 \le t < T)$ as the process that counts the number of excursions above level *t* that hit level *T*.

Then Z^T is a time-dependent continuous-time Galton-Watson process which at time t branching at rate

$$q^{T-t} = \frac{u_{T-t}(\infty)\psi'(u_{T-t}(\infty)) - \psi(u_{T-t}(\infty))}{u_{T-t}(\infty)}, \qquad t \in [0,T),$$

and its offspring distribution $(p_k^{T-t}, k \ge 0)$ is given by $p_0^{T-t} = p_1^{T-t} = 0$,

$$p_k^{T-t} = \frac{1}{u_{T-t}(\infty)q^{T-t}} \times \left\{ \beta u_{T-t}^2(\infty) \mathbf{1}_{\{k=2\}} + \int_0^\infty \frac{(u_{T-t}(\infty)x)^k}{k!} \mathrm{e}^{-u_{T-t}(\infty)x} \Pi(dx) \right\}.$$

Fix T > 0. Define $(Z_t^T, 0 \le t < T)$ as the process that counts the number of excursions above level *t* that hit level *T*.

Then Z^T is a time-dependent continuous-time Galton-Watson process which at time t branching at rate

$$q^{T-t} = \frac{u_{T-t}(\infty)\psi'(u_{T-t}(\infty)) - \psi(u_{T-t}(\infty))}{u_{T-t}(\infty)}, \qquad t \in [0,T),$$

and its offspring distribution $(p_k^{T-t}, k \ge 0)$ is given by $p_0^{T-t} = p_1^{T-t} = 0$,

$$p_k^{T-t} = \frac{1}{u_{T-t}(\infty)q^{T-t}} \times \left\{ \beta u_{T-t}^2(\infty) \mathbf{1}_{\{k=2\}} + \int_0^\infty \frac{(u_{T-t}(\infty)x)^k}{k!} \mathrm{e}^{-u_{T-t}(\infty)x} \Pi(dx) \right\}.$$

Fix T > 0. Define $(Z_t^T, 0 \le t < T)$ as the process that counts the number of excursions above level t that hit level T.

Then Z^T is a time-dependent continuous-time Galton-Watson process which at time t branching at rate

$$q^{T-t} = \frac{u_{T-t}(\infty)\psi'(u_{T-t}(\infty)) - \psi(u_{T-t}(\infty))}{u_{T-t}(\infty)}, \qquad t \in [0,T),$$

and its offspring distribution $(p_k^{T-t}, k \ge 0)$ is given by $p_0^{T-t} = p_1^{T-t} = 0$,

$$p_k^{T-t} = \frac{1}{u_{T-t}(\infty)q^{T-t}} \times \left\{ \beta u_{T-t}^2(\infty) \mathbf{1}_{\{k=2\}} + \int_0^\infty \frac{(u_{T-t}(\infty)x)^k}{k!} \mathrm{e}^{-u_{T-t}(\infty)x} \Pi(dx) \right\}.$$

Fix T > 0. Define $(Z_t^T, 0 \le t < T)$ as the process that counts the number of excursions above level *t* that hit level *T*.

Then Z^T is a time-dependent continuous-time Galton-Watson process which at time t branching at rate

$$q^{T-t} = \frac{u_{T-t}(\infty)\psi'(u_{T-t}(\infty)) - \psi(u_{T-t}(\infty))}{u_{T-t}(\infty)}, \qquad t \in [0,T),$$

and its offspring distribution $(p_k^{T-t}, k \ge 0)$ is given by $p_0^{T-t} = p_1^{T-t} = 0$,

$$p_k^{T-t} = \frac{1}{u_{T-t}(\infty)q^{T-t}} \times \left\{ \beta u_{T-t}^2(\infty) \mathbf{1}_{\{k=2\}} + \int_0^\infty \frac{(u_{T-t}(\infty)x)^k}{k!} \mathrm{e}^{-u_{T-t}(\infty)x} \Pi(dx) \right\}.$$

IMMIGRATION.

As

$$\mathbb{P}\left[X_T=0|\mathcal{F}_t\right]=\mathrm{e}^{-X_tu_{T-t}(\infty)},$$

the law of X conditioned to die out by time T can be obtained by the following change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^T}{\mathrm{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \frac{\mathrm{e}^{-X_t u_{T-t}(\infty)}}{\mathrm{e}^{-x u_T(\infty)}}, \qquad t \ge 0, x > 0.$$

We get that (X, \mathbb{P}_x^T) is a time-dependent CSBP with Laplace transform

$$\mathbb{E}_x^T[\mathrm{e}^{-\theta X_t}] = \mathrm{e}^{-xV_t^T(\theta)}, \quad 0 \le t < T, \ x, \theta \ge 0,$$

where

$$V_t^T(\theta) = u_t(\theta + u_{T-t}(\infty)) - u_T(\infty).$$

Note that

$$\lim_{t\to T} u_{T-t}(\infty) = \infty, \text{ and } \lim_{T\to\infty} u_{T-t}(\infty) = 0.$$

19/26

イロト イロト イモト イモト 一日

Theorem

Suppose that ψ corresponds to a (sub)critical branching mechanism (i.e. $\alpha \leq 0$) which satisfies Grey's condition. Fix a time horizon T > 0 and consider the coupled system of SDEs

$$\begin{pmatrix} \Lambda_t^T \\ Z_t^T \end{pmatrix} = \begin{pmatrix} \Lambda_0^T \\ Z_0^T \end{pmatrix} - \int_0^t \psi'(u_{T-s}(\infty)) \begin{pmatrix} \Lambda_{s-}^T \\ 0 \end{pmatrix} ds + \sqrt{2\beta} \int_0^t \int_0^{\Lambda_{s-}^I} \begin{pmatrix} 1 \\ 0 \end{pmatrix} W(ds, du)$$

$$+ \int_0^t \int_0^\infty \int_0^{\Lambda_{s-}^T} \begin{pmatrix} r \\ 0 \end{pmatrix} \tilde{N}_T^0(ds, dr, d\nu)$$

$$+ \int_0^t \int_0^\infty \int_1^{Z_{s-}^T} \begin{pmatrix} r \\ 0 \end{pmatrix} N_T^1(ds, dr, dj)$$

$$+ \int_0^t \int_0^\infty \int_0^\infty \int_1^{Z_{s-}^T} \begin{pmatrix} r \\ k-1 \end{pmatrix} N_T^2(ds, dr, dk, dj)$$

$$+ 2\beta \int_0^t \begin{pmatrix} Z_{s-}^T \\ 0 \end{pmatrix} ds, \quad 0 \le t < T.$$

$$(3)$$

with $\Lambda_0^T \ge 0$ given and fixed. Under the assumption that Z_0^T is an independent random variable which is Poisson distributed with intensity $u_T(\infty)\Lambda_0^T$ the system (3) has a unique strong solution such that:

- (i) For $T > t \ge 0$, $Z_t^T | \mathcal{F}_t^{\Lambda^T}$ is Poisson distributed with intensity $u_{T-t}(\infty) \Lambda_t^T$, where $\mathcal{F}_t^{\Lambda^T} := \sigma(\Lambda_s^T : s \le t)$;
- (ii) Conditional on $(\mathcal{F}^{\Lambda_t^T}, 0 \le t < T)$, the process $(\Lambda_{t=0}^T, 0 \le t < T)$ is a weak

21/26

(DRIVING FORCES OF RANDOMNESS II.)

In the previous theorem

- ▶ \mathbb{N}_T^0 is a Poisson random measure on $[0, \infty)^3$ with intensity $\mathrm{d} s \otimes \mathrm{e}^{-u_{T-s}(\infty)r}\Pi(\mathrm{d} r) \otimes \mathrm{d} \nu$.
- ▶ \mathbb{N}_T^1 is a Poisson process on $[0, \infty)^2 \times \mathbb{N}_0$ with intensity $ds \otimes r e^{-u_{T-s}(\infty)r} \Pi(dr) \otimes \sharp(dj)$,
- ▶ $\mathbb{N}_T^2(ds, dr, dk, dj)$ is a Poisson process on $[0, \infty)^2 \times \mathbb{N}_0 \times \mathbb{N}$ with intensity

$$\left\{\frac{u_{T-s}(\infty)\psi'(u_{T-s}(\infty))-\psi(u_{T-s}(\infty))}{u_{T-s}(\infty)}\right\}\mathrm{d} s\otimes \eta_k^{T-s}(\mathrm{d} r)\otimes p_k^{T-s}\sharp(\mathrm{d} k)\otimes\sharp(\mathrm{d} j),$$

where, for $k \ge 2$,

$$\eta_k^{T-s}(\mathrm{d}r) = \frac{\beta u_{T-s}^2(\infty) \mathbf{1}_{\{k=2\}} \delta_0(\mathrm{d}r) + (u_{T-s}(\infty)r)^k \,\mathrm{e}^{-u_{T-s}(\infty)r} \Pi(\mathrm{d}r)/k!}{p_k^{T-s} (u_{T-s}(\infty)\psi'(u_{T-s}(\infty)) - \psi(u_{T-s}(\infty)))}, \qquad r \ge 0,$$

▶ W(ds, du) is the white noise process on $(0, \infty)^2$ based on the Lebesgue measure $ds \otimes du$.

CONDITIONING ON SURVIVAL.

The law of $(\Lambda_t^T, 0 \le t < T)$ conditional on $(\mathcal{F}^{\Lambda_t^T} \cap \{Z_0^T \ge 1\}, 0 \le t < T)$ is that of the law of the ψ -CSBP, *X*, conditioned to survive until time T.

This law is can be obtained by the following change of measure for $t \ge 0, x > 0$

$$\frac{\mathrm{d}\widetilde{\mathbb{P}}_x^T}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{1 - \mathrm{e}^{-X_t u_{T-t}(\infty)}}{1 - \mathrm{e}^{-x u_T(\infty)}}.$$

• We have for
$$k \ge 1$$

$$\mathbf{P}_{x}^{T}[Z_{0}=k|Z_{0}\geq 1]=\frac{(u_{T}(\infty)x)^{k}}{k!}\frac{\mathrm{e}^{-u_{T}(\infty)x}}{1-\mathrm{e}^{-u_{T}(\infty)x}}.$$

▶ If n_T denotes the conditional probability $n(\cdot | \sup_{s \ge 0} \epsilon_s \ge T)$, then the first branch time γ_T of the individual corresponding to the excursion ϵ is given by

$$n_T(\gamma_T > t) = \frac{\psi(u_T(\infty))}{u_T(\infty)} \frac{u_{T-t}(\infty)}{\psi(u_{T-t}(\infty))},$$

for $t \in [0, T)$.

CONDITIONING ON SURVIVAL.

The law of $(\Lambda_t^T, 0 \le t < T)$ conditional on $(\mathcal{F}^{\Lambda_t^T} \cap \{Z_0^T \ge 1\}, 0 \le t < T)$ is that of the law of the ψ -CSBP, *X*, conditioned to survive until time T.

Take $T \to \infty$.

This law is can be obtained by the following change of measure for $t \ge 0, x > 0$

$$\frac{\mathrm{d}\widetilde{\mathbb{P}}_{x}^{T}}{\mathrm{d}\mathbb{P}_{x}}\bigg|_{\mathcal{F}_{t}} = \frac{1 - \mathrm{e}^{-X_{t}u_{T-t}(\infty)}}{1 - \mathrm{e}^{-xu_{T}(\infty)}} \longrightarrow \mathrm{e}^{-\alpha t}\frac{X_{t}}{x}$$

• We have for $k \ge 1$

$$\mathbf{P}_{x}^{T}[Z_{0}=k|Z_{0}\geq 1]=\frac{(u_{T}(\infty)x)^{k}}{k!}\frac{\mathrm{e}^{-u_{T}(\infty)x}}{1-\mathrm{e}^{-u_{T}(\infty)x}}\longrightarrow 0, \text{ unless } k=1.$$

▶ If n_T denotes the conditional probability $n(\cdot | \sup_{s \ge 0} \epsilon_s \ge T)$, then the first branch time γ_T of the individual corresponding to the excursion ϵ is given by

$$n_T(\gamma_T > t) = \frac{\psi(u_T(\infty))}{u_T(\infty)} \frac{u_{T-t}(\infty)}{\psi(u_{T-t}(\infty))} \longrightarrow 1,$$

for $t \in [0, T)$.

Introduction	L
00	

23/26

EMERGENCE OF THE SPINE.

Note that the convergence is in a weak sense.

Introduction 00	Supercritical CSBP 0000000000	Subcritical CSBP

SPINE.

Theorem

Suppose that ψ is a critical or subcritical branching mechanism such that Grey's condition holds. Suppose, moreover, that $((\Lambda_t^T, Z_t^T), 0 \le t < T)$ is a weak solution to (3) and that Z_0^T is an independent random variable which is Poisson distributed with intensity $u_T(\infty)\Lambda_0^T$. Then, conditional on the event $Z_0^T > 0$, in the sense of weak convergence with respect to the Skorokhod topology on $\mathbb{D}([0,\infty), \mathbb{R}^2)$, for all t > 0,

$$((\Lambda_s^T, Z_s^T), 0 \le s \le t) \to ((X_s^{\uparrow}, 1), 0 \le s \le t),$$

where X^{\uparrow} is a weak solution to

$$\begin{aligned} X_t &= x + \alpha \int_0^t X_{s-} ds + \sqrt{2\beta} \int_0^t \int_0^{X_{s-}} W(ds, du) + \int_0^t \int_0^\infty \int_0^{X_{s-}} r \tilde{N}(ds, dr, du) \\ &+ \int_0^t \int_0^\infty r N^*(ds, dr) + 2\beta t, \qquad t \ge 0. \end{aligned}$$

24/26

(日)(四)(日)(日)(日)(日)

Introduction 00	Supercritical CSBP 0000000000	Subcritical CSBP

SPINE.

Theorem

Suppose that ψ is a critical or subcritical branching mechanism such that Grey's condition holds. Suppose, moreover, that $((\Lambda_t^T, Z_t^T), 0 \le t < T)$ is a weak solution to (3) and that Z_0^T is an independent random variable which is Poisson distributed with intensity $u_T(\infty)\Lambda_0^T$. Then, conditional on the event $Z_0^T > 0$, in the sense of weak convergence with respect to the Skorokhod topology on $\mathbb{D}([0,\infty), \mathbb{R}^2)$, for all t > 0,

$$((\Lambda_s^T, Z_s^T), 0 \le s \le t) \to ((X_s^{\uparrow}, 1), 0 \le s \le t),$$

where X^{\uparrow} is a weak solution to

$$\begin{aligned} X_t &= x + \alpha \int_0^t X_{s-} ds + \sqrt{2\beta} \int_0^t \int_0^{X_{s-}} W(ds, du) + \int_0^t \int_0^\infty \int_0^{X_{s-}} r \tilde{N}(ds, dr, du) \\ &+ \int_0^t \int_0^\infty r N^*(ds, dr) + 2\beta t, \qquad t \ge 0. \end{aligned}$$

24/26

(日)(四)(日)(日)(日)(日)

25/26

(DRIVING SOURCES OF RANDOMNESS III.)

In the previous theorem

- ▶ W(ds, du) is a white noise process on $(0, \infty)^2$ based on the Lebesgue measure $ds \otimes du$,
- ▶ $N(ds, dr, d\nu)$ is a Poisson point process on $(0, \infty)^3$ with intensity $ds \otimes \Pi(dr) \otimes d\nu$, and $\tilde{N}(ds, dr, d\nu)$ is the compensated measure of $N(ds, dr, d\nu)$,
- ▶ N^* is a Poisson random measure on $[0, \infty) \times (0, \infty)$ with intensity measure $ds \otimes r\Pi(dr)$.

ntroduction	Supercritical CSBP	Subcritical CSBP
DO	0000000000	00000000000●

REFERENCES.

- D. A. Dawson and Z. Li. Stochastic equations, flows and measure-valued processes. Ann. Probab., 40(2):813-857, 2012.
- [2] T. Duquesne and J.-F. Le Gall. Random Trees, Lévy Processes and Spatial Branching Processes. ArXiv Mathematics e-prints, September 2005.
- [3] T. Duquesne and M. Winkel. Growth of Lévy trees. Probab. Theory Related Fields, 139(3-4):313D371, 2007.
- [4] D. Fekete, J. Fontbona, A. E. Kyprianou. Skeletal stochastic differential equations for continuous state branching process. *https://arxiv.org/pdf/1702.03533.pdf*, 2017.
- [5] M. C. Fittipaldi and J. Fontbona. On SDE associated with continuous-state branching processes conditioned to never be extinct. *Electron. Commun. Probab.*, 17:no. 49, 13, 2012.
- [6] Z. Li. Measure Valued Branching Markov Processes. Probability and its Applications (New York). Springer, Heidelberg, 2011.

26/26

- コン・4回シュ ヨシュ ヨン・9 くの