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DEFINITION OF ψ-CSBP.

A CSBP (X,Px) is a non-negative valued strong Markov process with probabilities
(Px, x ≥ 0) such that for any x, y ≥ 0, Px+y = Px ∗ Py.

In particular
Ex(e−θXt ) = e−xut(θ), x, θ, t ≥ 0,

where ut(θ) uniquely solves the evolution equation

ut(θ) +

∫ t

0
ψ(us(θ))ds = θ, t ≥ 0.

Here, we assume that the so-called branching mechanism ψ takes the form

ψ(θ) = −αθ + βθ2 +

∫
(0,∞)

(e−θx − 1 + θx)Π(dx), θ ≥ 0,

where α ∈ R, β ≥ 0 and Π is a measure concentrated on (0,∞) which satisfies∫
(0,∞)(x ∧ x2)Π(dx) <∞.
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PROPERTIES.

We assume that the process is conservative, i.e.∫
0+

1
|ψ(ξ)|

dξ =∞.

It is easily verified that

Ex[Xt] = xe−ψ
′(0+)t, t, x ≥ 0.

We say that the CSBP is supercritical, critical or subcritical accordingly as
−ψ′(0+) = α is strictly positive, equal to zero or strictly negative.

For a supercritical ψ-CSBP the probability of extinction is

Px(lim
t↑∞

Xt = 0) = e−λ
∗x,

where λ∗ is the unique root on (0,∞) of the equation ψ(θ) = 0.
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SUPERCRITICAL CSBP.
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PROLIFIC SKELETON I.

The supercritical ψ-CSBP is equal in law to the total mass process obtained by the
following construction.
I Initiate Po(λ∗x) independent Galton-Watson processes with branching generator

q

∑
k≥0

pkrk − r

 =
1
λ∗
ψ(λ∗(1− r)), r ∈ [0, 1],

where q = ψ′(λ∗), p0 = p1 = 0 and for k ≥ 2

pk =
1

λ∗ψ′(λ∗)

{
β(λ∗)21{k=2} + (λ∗)k

∫
(0,∞)

rk

k!
e−λ

∗rΠ(dr)

}
.

I Along the edges immigrate CSBPs at rate

2βdQ∗ +

∫ ∞
0

ye−λ
∗yΠ(dy)dP∗y ,

where P∗x , x ≥ 0 is the law of the CSBP with branching mechanism
ψ∗(λ) = ψ(λ+ λ∗) and Q∗ is the associated excursion measure.
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PROLIFIC SKELETON II.
I Given that an individual dies and branches into k ≥ 2 offspring, an independent
ψ∗-CSBP is immigrated with initial mass r with probability

ηk(dr) =
1

pkλ∗ψ′(λ∗)

{
β(λ∗)2δ0(dr)1{k=2} + (λ∗)k rk

k!
e−λ

∗rΠ(dr)

}
.

I Finally an independent ψ∗-CSBP is issued at time zero with initial mass x.

time
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BRANCHING MECHANISM.

λ
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BRANCHING MECHANISM.

 (λ + λ
∗)

1

λ∗
 (λ∗(1− r))

1

 0(0+)
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BRANCHING MECHANISM.
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BRANCHING MECHANISM.
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BRANCHING MECHANISM.

 (θ + λ)−  (λ)

1
λ
 (λ(1− r))

λ-skeleton  λ-CSBP

1
 0(λ)p0
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λ-SKELETON I.

Let λ ≥ λ∗.
Define the Esscher transformed branching mechanism ψλ : R+ → R+ for θ ≥ −λ and
λ ≥ λ∗ by ψλ(θ) = ψ(θ + λ)− ψ(λ).

The supercritical ψ-CSBP is equal in law to the total mass process obtained by the
following construction.
I Initiate Po(λx) independent Galton-Watson processes with branching generator

q

∑
k≥0

pkrk − r

 =
1
λ
ψ(λ(1− r)), r ∈ [0, 1],

where q = ψ′(λ), p0 = ψ(λ)/λψ′(λ), p1 = 0 and for k ≥ 2

pk =
1

λψ′(λ)

{
βλ21{k=2} +

∫
(0,∞)

(λr)k

k!
e−λrΠ(dr)

}
.
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λ-SKELETON II.

I Along the edges immigrate CSBPs at rate

2βdQ(λ) +

∫ ∞
0

ye−λyΠ(dy)dP(λ)
y ,

where P(λ)
x , x ≥ 0 is the law of the CSBP with branching mechanism ψλ and Q(λ)

is the associated excursion measure.
I Given that an individual dies and branches into k ∈ N0 \ {1} offspring, an

independent ψλ-CSBP is immigrated with initial mass r with probability

ηk(dr) =
1

pkλψ′(λ)

{
ψ(λ)1{k=0}δ0(dr) + βλ21{k=2}δ0(dr)

+1{k≥2}
(λr)k

k!
e−λrΠ(dr)

}
,

I Finally an independent ψλ-CSBP is issued at time zero with initial mass x.
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SDE.

The process (X,Px), x > 0, can be represented as the unique strong solution to the
stochastic differential equation (SDE)

Xt = x + α

∫ t

0
Xs−ds +

√
2β
∫ t

0

∫ Xs−

0
W(ds,du) +

∫ t

0

∫ ∞
0

∫ Xs−

0
rÑ(ds,dr,dν),

(1)

for x > 0, t ≥ 0, where
I W(ds,du) is a white noise process on (0,∞)2 based on the Lebesgue measure

ds⊗ du,
I N(ds,dr,dν) is a Poisson point process on (0,∞)3 with intensity ds⊗Π(dr)⊗ dν,

and Ñ(ds,dr,dν) the compensated measure of N(ds,dr,dν).
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THINNING OF THE SDE I.

We can introduce an additional mark to atoms of N, resulting in an ‘extended’ Poisson
random measure,N (ds,dr,dν,dk) on (0,∞)3 × N0 with intensity

ds⊗Π(dr)⊗ dν ⊗
(λr)k

k!
e−λr](dk).

Define three random measures by

N0(ds,dr,dν) = N (ds,dr,dν, {k = 0}),

N1(ds,dr,dν) = N (ds,dr,dν, {k = 1})

and
N2(ds,dr,dν) = N (ds,dr,dν, {k ≥ 2}).

We have that N0, N1 and N2 are independent Poisson point processes on (0,∞)3 with
respective intensities ds⊗ e−λrΠ(dr)⊗ dν, ds⊗ (λr)e−λrΠ(dr)⊗ dν and
ds⊗

∑∞
k=2(λr)ke−λrΠ(dr)/k!⊗ dν.
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THINNING OF THE SDE II.

Xt = x + α

∫ t

0
Xs−ds +

√
2β
∫ t

0

∫ Xs−

0
W(ds,du) +

∫ t

0

∫ ∞
0

∫ Xs−

0
rÑ0(ds,dr,dν)

+

∫ t

0

∫ ∞
0

∫ Xs−

0
rN1(ds,dr,dν) +

∫ t

0

∫ ∞
0

∫ Xs−

0
rN2(ds,dr,dν)

−
∫ t

0

∫ ∞
0

Xs−

∞∑
n=1

(λr)n

n!
e−λrrΠ(dr)ds

= x− ψ′(λ)

∫ t

0
Xsds +

√
2β
∫ t

0

∫ Xs−

0
W(ds,du) +

∫ t

0

∫ ∞
0

∫ Xs−

0
rÑ0(ds,dr,dν)

+

∫ t

0

∫ ∞
0

∫ Xs−

0
rN1(ds,dr,dν) + 2βλ

∫ t

0
Xs−ds

+

∫ t

0

∫ ∞
0

∫ Xs−

0
rN2(ds,dr,dν),

(In the last equality we have used that−
∫
(0,∞)(1− e−λr)rΠ(dr) = −α+ 2βλ−ψ′(λ)).
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THINNING OF THE SDE II.
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∫ ∞
0

∫ Xs−

0
rN2(ds,dr,dν)

−
∫ t

0

∫ ∞
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0

∫ ∞
0
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0
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(In the last equality we have used that−
∫
(0,∞)(1− e−λr)rΠ(dr) = −α+ 2βλ−ψ′(λ)).
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Theorem
Suppose that ψ corresponds to a supercritical branching mechanism (i.e. α > 0) and λ ≥ λ∗.
Consider the coupled system of SDEs(

Λt
Zt

)
=

(
Λ0
Z0

)
− ψ′(λ)

∫ t

0

(
Λs−
0

)
ds +

√
2β
∫ t

0

∫ Λs−

0

(
1
0

)
W(ds,du)

+

∫ t

0

∫ ∞
0

∫ Λs−

0

(
r
0

)
Ñ0(ds,dr,dν)

+

∫ t

0

∫ ∞
0

∫ Zs−

1

(
r
0

)
N1(ds,dr,dj)

+

∫ t

0

∫ ∞
0

∫ ∞
0

∫ Zs−

1

(
r

k− 1

)
N2(ds,dr,dk,dj)

+ 2β
∫ t

0

(
Zs−
0

)
ds, t ≥ 0, (2)

with Λ0 ≥ 0 given and fixed. Under the assumption that Z0 is an independent random
variable which is Poisson distributed with intensity λΛ0 the system (2) has a unique strong
solution such that:

(i) For t ≥ 0, Zt|FΛ
t is Poisson distributed with intensity λΛt, where

FΛ
t := σ(Λs : s ≤ t);

(ii) The process (Λt, t ≥ 0) is a weak solution to (1).
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(DRIVING SOURCES OF RANDOMNESS I.)

Let N0 = {0} ∪ N and ](d`) =
∑

i∈N0
δi(d`), ` ≥ 0.

Then in the previous theorem
I N0 is a Poisson random measure on (0,∞)3 with intensity measure

ds⊗ e−λrΠ(dr)⊗ dν, Ñ0 is the associated compensated version of N0,

I N1(ds,dr,dj) is a Poisson point process on (0,∞)2 × N with intensity
ds⊗ re−λrΠ(dr)⊗ ](dj),

I N2(ds,dr,dk,dj) is a Poisson point process on (0,∞)2 × N0 × N with intensity
ψ′(λ)ds⊗ ηk(dr)⊗ pk](dk)⊗ ](dj), and

I W(ds,du) is the white noise process on (0,∞)2 based on the Lebesgue measure
ds⊗ du.
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SUBCRITICAL CSBP.
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RAY-KNIGHT REPRESENTATION.

Assume that Grey’s condition is satisfied, ie.∫ ∞ 1
ψ(θ)

du <∞.

Let
I (ξt, t ≥ 0) be a spectrally positive Lévy process with Laplace exponent ψ,

I (ξ̂
(t)
r , 0 ≤ r ≤ t), where ξ̂(t)

r := ξt − ξ(t−r)−, the time reversed process at time t,

I Ŝ(t)
r := sups≤r ξ̂

(t)
s .

The process (Ht, t ≥ 0) is called the height process if Ht is the local time at level 0, at
time t of Ŝ(t) − ξ̂(t).
Denote by La

t the local time up to time t of H at level a ≥ 0, and let
Tx := inf{t ≥ 0 : ξt = −x}.

Then the generalised Ray-Knight theorem for the ψ-CSBP process states that
(La

Tx
, a ≥ 0) has a càdàg modification for which

(Lt
Tx
, t ≥ 0)

d
= (X,Px),

that is, the two processes are equal in law.
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GENEALOGY OF SUBCRITICAL CSBP.
Excursions of H away from 0 form a PPP, denote by n its intensity, and let ε be a
canonical excursion under n.
Let ζ = inf{s > 0, εs = 0}, and define

dε(s, t) = εs + εt − inf
s∧t≤r≤s∨t

εr, (s, t) ∈ [0, ζ]2.

Then we can define the equivalence relation ∼ε, such that (s ∼ε t) is and only if
dε(s, t) = 0, and Tε = [0, ζ]\ ∼ε.

The compact metric space (Tε, dε) is called a Lévy random tree.

height

s t

CRT
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T-SKELETON.
Fix T > 0.
Define (ZT

t , 0 ≤ t < T) as the process that counts the number of excursions above level
t that hit level T.
Then ZT is a time-dependent continuous-time Galton-Watson process which at time t
branching at rate

qT−t =
uT−t(∞)ψ′(uT−t(∞))− ψ(uT−t(∞))

uT−t(∞)
, t ∈ [0,T),

and its offspring distribution (pT−t
k , k ≥ 0) is given by pT−t

0 = pT−t
1 = 0,

pT−t
k =

1
uT−t(∞)qT−t ×

{
βu2

T−t(∞)1{k=2} +

∫ ∞
0

(uT−t(∞)x)k

k!
e−uT−t(∞)xΠ(dx)

}
.

T

t
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Z
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t
= 5
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∫ ∞
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(uT−t(∞)x)k
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e−uT−t(∞)xΠ(dx)

}
.

T

t

Z
T

0
∼ Po(uT (1)x)
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IMMIGRATION.

As
P [XT = 0|Ft] = e−XtuT−t(∞),

the law of X conditioned to die out by time T can be obtained by the following change
of measure

dPT
x

dPx

∣∣∣∣
Ft

=
e−XtuT−t(∞)

e−xuT(∞)
, t ≥ 0, x > 0.

We get that (X,PT
x ) is a time-dependent CSBP with Laplace transform

ET
x [e−θXt ] = e−xVT

t (θ), 0 ≤ t < T, x, θ ≥ 0,

where
VT

t (θ) = ut(θ + uT−t(∞))− uT(∞).

Note that
lim
t→T

uT−t(∞) =∞, and lim
T→∞

uT−t(∞) = 0.
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Theorem
Suppose that ψ corresponds to a (sub)critical branching mechanism (i.e. α ≤ 0) which satisfies
Grey’s condition. Fix a time horizon T > 0 and consider the coupled system of SDEs(

ΛT
t

ZT
t

)
=

(
ΛT

0
ZT

0

)
−
∫ t

0
ψ′(uT−s(∞))

(
ΛT

s−
0

)
ds +

√
2β
∫ t

0

∫ ΛT
s−

0

(
1
0

)
W(ds,du)

+

∫ t

0

∫ ∞
0

∫ ΛT
s−

0

(
r
0

)
Ñ0

T(ds,dr,dν)

+

∫ t

0

∫ ∞
0

∫ ZT
s−

1

(
r
0

)
N1

T(ds,dr,dj)

+

∫ t

0

∫ ∞
0

∫ ∞
0

∫ ZT
s−

1

(
r

k− 1

)
N2

T(ds,dr,dk,dj)

+ 2β
∫ t

0

(
ZT

s−
0

)
ds, 0 ≤ t < T. (3)

with ΛT
0 ≥ 0 given and fixed. Under the assumption that ZT

0 is an independent random
variable which is Poisson distributed with intensity uT(∞)ΛT

0 the system (3) has a unique
strong solution such that:

(i) For T > t ≥ 0, ZT
t |FΛT

t is Poisson distributed with intensity uT−t(∞)ΛT
t ,

where FΛT

t := σ(ΛT
s : s ≤ t);

(ii) Conditional on (FΛT
t , 0 ≤ t < T), the process (ΛT

t , 0 ≤ t < T) is a weak
solution to (1).
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(DRIVING FORCES OF RANDOMNESS II.)
In the previous theorem
I N0

T is a Poisson random measure on [0,∞)3 with intensity
ds⊗ e−uT−s(∞)rΠ(dr)⊗ dν.

I N1
T is a Poisson process on [0,∞)2 × N0 with intensity

ds⊗ re−uT−s(∞)rΠ(dr)⊗ ](dj),

I N2
T(ds,dr,dk,dj) is a Poisson process on [0,∞)2 × N0 × N with intensity{

uT−s(∞)ψ′(uT−s(∞))− ψ(uT−s(∞))

uT−s(∞)

}
ds⊗ ηT−s

k (dr)⊗ pT−s
k ](dk)⊗ ](dj),

where, for k ≥ 2,

ηT−s
k (dr) =

βu2
T−s(∞)1{k=2}δ0(dr) + (uT−s(∞)r)k e−uT−s(∞)rΠ(dr)/k!

pT−s
k (uT−s(∞)ψ′(uT−s(∞))− ψ(uT−s(∞)))

, r ≥ 0,

I W(ds,du) is the white noise process on (0,∞)2 based on the Lebesgue measure
ds⊗ du.
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CONDITIONING ON SURVIVAL.

The law of (ΛT
t , 0 ≤ t < T) conditional on (FΛT

t ∩ {ZT
0 ≥ 1}, 0 ≤ t < T) is that of the

law of the ψ-CSBP, X, conditioned to survive until time T.

I This law is can be obtained by the following change of measure for t ≥ 0, x > 0

dP̃T
x

dPx

∣∣∣∣∣
Ft

=
1− e−XtuT−t(∞)

1− e−xuT(∞)
.

I We have for k ≥ 1

PT
x [Z0 = k|Z0 ≥ 1] =

(uT(∞)x)k

k!

e−uT(∞)x

1− e−uT(∞)x
.

I If nT denotes the conditional probability n(·| sups≥0 εs ≥ T), then the first branch
time γT of the individual corresponding to the excursion ε is given by

nT(γT > t) =
ψ(uT(∞))

uT(∞)

uT−t(∞)

ψ(uT−t(∞))
,

for t ∈ [0,T).
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CONDITIONING ON SURVIVAL.

The law of (ΛT
t , 0 ≤ t < T) conditional on (FΛT

t ∩ {ZT
0 ≥ 1}, 0 ≤ t < T) is that of the

law of the ψ-CSBP, X, conditioned to survive until time T.

Take T → ∞.
I This law is can be obtained by the following change of measure for t ≥ 0, x > 0

dP̃T
x

dPx

∣∣∣∣∣
Ft

=
1− e−XtuT−t(∞)

1− e−xuT(∞)
−→ e−αt Xt

x
.

I We have for k ≥ 1

PT
x [Z0 = k|Z0 ≥ 1] =

(uT(∞)x)k

k!

e−uT(∞)x

1− e−uT(∞)x
−→ 0, unless k = 1.

I If nT denotes the conditional probability n(·| sups≥0 εs ≥ T), then the first branch
time γT of the individual corresponding to the excursion ε is given by

nT(γT > t) =
ψ(uT(∞))

uT(∞)

uT−t(∞)

ψ(uT−t(∞))
−→ 1,

for t ∈ [0,T).
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EMERGENCE OF THE SPINE.

Note that the convergence is in a weak sense.
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SPINE.

Theorem
Suppose that ψ is a critical or subcritical branching mechanism such that Grey’s condition
holds. Suppose, moreover, that ((ΛT

t ,Z
T
t ), 0 ≤ t < T) is a weak solution to (3) and that ZT

0 is
an independent random variable which is Poisson distributed with intensity uT(∞)ΛT

0 . Then,
conditional on the event ZT

0 > 0, in the sense of weak convergence with respect to the
Skorokhod topology on D([0,∞),R2), for all t > 0,

((ΛT
s ,Z

T
s ), 0 ≤ s ≤ t)→ ((X↑s , 1), 0 ≤ s ≤ t),

where X↑ is a weak solution to

Xt = x + α

∫ t

0
Xs−ds +

√
2β
∫ t

0

∫ Xs−

0
W(ds,du) +

∫ t

0

∫ ∞
0

∫ Xs−

0
rÑ(ds,dr,du)

+

∫ t

0

∫ ∞
0

rN∗(ds,dr) + 2βt, t ≥ 0.
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(DRIVING SOURCES OF RANDOMNESS III.)

In the previous theorem

I W(ds,du) is a white noise process on (0,∞)2 based on the Lebesgue measure
ds⊗ du,

I N(ds,dr,dν) is a Poisson point process on (0,∞)3 with intensity ds⊗Π(dr)⊗ dν,
and Ñ(ds,dr,dν) is the compensated measure of N(ds,dr,dν),

I N∗ is a Poisson random measure on [0,∞)× (0,∞) with intensity measure
ds⊗ rΠ(dr).
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