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Abstract Consider any supercritical Galton-Watson process which may become ex-
tinct with positive probability. It is a well-understood and intuitively obvious phe-
nomenon that, on the survival set, the process may be pathwise decomposed into
a stochastically ‘thinner’ Galton-Watson process, which almost surely survives and
which is decorated with immigrants, at every time step, initiating independent copies
of the original Galton-Watson process conditioned to become extinct. The thinner
process is known as the backbone and characterizes the genealogical lines of de-
scent of prolific individuals in the original process. Here, prolific means individuals
who have at least one descendant in every subsequent generation to their own.

Starting with Evans and O’Connell [18], there exists a cluster of literature,
[14, 32, 5, 2, 28], describing the analogue of this decomposition (the so-called
backbone decomposition) for a variety of different classes of superprocesses and
continuous-state branching processes. Note that the latter family of stochastic pro-
cesses may be seen as the total mass process of superprocesses with non-spatially
dependent branching mechanism.

In this article we consolidate the aforementioned collection of results concerning
backbone decompositions and describe a result for a general class of supercritical
superprocesses with spatially dependent branching mechanisms. Our approach ex-
poses the commonality and robustness of many of the existing arguments in the
literature.
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1 Superprocesses and Markov branching processes

This paper concerns a fundamental decomposition which can be found amongst a
general family of superprocesses and has, to date, been identified for a number of
specific sub-families thereof by a variety of different authors. We therefore start
by briefly describing the general family of superprocesses that we shall concern
ourselves with. The reader is referred to the many, and now classical, works of
Dynkin for further details of what we present below; see for example [7, 8, 9, 10,
11]. The books of Le Gall [30], Etheridge [15] and Li [31] also serve as an excellent
point of reference.

Let E be a domain of Rd . Following the setting of Fitzsimmons [21], we are
interested in strong Markov processes, X = {Xt : t ≥ 0}which are valued in MF(E),
the space of finite measures with support in E. The evolution of X depends on two
quantities P and ψ . Here, P = {Pt : t ≥ 0} is the semi-group of an Rd-valued
diffusion killed on exiting E, and ψ is a so-called branching mechanism which, by
assumption, takes the form

ψ(x,λ ) =−α(x)λ +β (x)λ 2 +
∫
(0,∞)

(e−λ z−1+λ z)π(x,dz), (1)

where α and β ≥ 0 are bounded measurable mappings from E to R and [0,∞)
respectively and for each x ∈ E, π(x,dz) is a measure concentrated on (0,∞) such
that x→

∫
(0,∞)(z∧ z2)π(x,dz) is bounded and measurable. The latter ensure that the

total mass of X is finite in expectation at each time. For technical reasons, we shall
additionally assume that the diffusion associated to P satisfies certain conditions.
These conditions are lifted from Section II.1.1 (Assumptions 1.1A and 1.1B) on
pages 1218-1219 of [8]1. They state that P has associated infinitesimal generator

L = ∑
i, j

ai, j
∂ 2

∂xi∂x j
+∑

i
bi

∂

∂xi
,

where the coefficients ai, j and b j are space dependent coefficients satisfying:

(Uniform Elliptically) There exists a constant γ > 0 such that

∑
i,l

ai, juiu j ≥ γ ∑
i

u2
i

for all x ∈ E and u1, · · · ,ud ∈ R.

(Hölder Continuity) The coefficients ai, j and bi are uniformly bounded and Hölder
continuous in such way that there exist a constants C > 0 and α ∈ (0,1] with

|ai, j(x)−ai, j(y)|, |bi(x)−bi(y)| ≤C|x− y|α

1 The assumptions on P may in principle be relaxed. The main reason for this imposition here
comes in the proof of Lemma 5 where a comparison principle is used for diffusions.
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for all x,y ∈ E. Throughout, we shall refer to X as the (P,ψ)-superprocess.
For each µ ∈MF(E) we denote by Pµ the law of X when issued from initial

state X0 = µ . The semi-group of X , which in particular characterizes the laws {Pµ :
µ ∈MF(E)}, can be described as follows. For each µ ∈MF(E) and all f ∈ bp(E),
the space of non-negative, bounded measurable functions on E,

Eµ(e−〈 f ,Xt 〉) = exp
{
−
∫

E
u f (x, t)µ(dx)

}
t ≥ 0, (2)

where u f (x, t) is the unique non-negative solution to the equation

u f (x, t) = Pt [ f ](x)−
∫ t

0
ds ·Ps[ψ(·,u f (·, t− s))](x) x ∈ E, t ≥ 0. (3)

See for example Theorem 1.1 on pages 1208-1209 of [8] or Proposition 2.3 of [21].
Here we have used the standard inner product notation,

〈 f ,µ〉=
∫

E
f (x)µ(dx),

for µ ∈MF(E) and any f such that the integral makes sense.
Suppose that we define E = {〈1,Xt〉= 0 for some t > 0}, the event of extinction.

For each x ∈ E write
w(x) =− logPδx(E ). (4)

It follows from (2) that

Eµ(e−θ〈1,Xt 〉) = exp
{
−
∫

E
uθ (x, t)µ(dx)

}
t ≥ 0, (5)

Note that uθ (t,x) is increasing in θ and that Pµ(〈1,Xt〉= 0) is monotone increasing.
Using these facts and letting θ → ∞, then t→ ∞, we get that

Pµ(E ) = lim
t→∞

Pµ(〈1,Xt〉= 0) = exp
{
−
∫

E
lim
t→∞

lim
θ→∞

uθ (x, t)µ(dx)
}
. (6)

By choosing µ = δx, with x ∈ E, we see that

Pµ(E ) = exp
{
−
∫

E
w(x)µ(dx)

}
. (7)

For the special case that ψ does not depend on x and P is conservative, 〈1,Xt〉
is a continuous state branching process. If ψ(λ ) satisfy the following condition:∫

∞ 1
ψ(λ )

dλ < ∞,

then Pµ almost surely we have E = {limt→∞〈1,Xt〉= 0}, that is to say the event of
extinction is equivalent to the event of extinguishing, see [2] and [28] for examples.
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By first conditioning the event E on Ft := σ{Xs : s ≤ t}, we find that for all
t ≥ 0,

Eµ(e−〈w,Xt 〉) = e−〈w,µ〉.

The function w will play an important role in the forthcoming analysis and hence-
forth we shall assume that it respects the following property.

(A): w is locally bounded away from 0 and ∞.

Note that the notion of supercriticality is implicitly hidden in the assumption
above, specifically in that w is locally bounded away from 0. This ensures that the
extinction probability in (7) is not unity. We point out that we do not need local
compact support property of X . The reason we consider diffusion as our spatial
motion is that we will use the comparison principle of some integral equation, see
(47) below. We expect that our results hold for more general superprocesses, for
example, super-Lévy processes.

The pathwise evolution of superprocesses is somewhat difficult to visualise on
account of their realisations at each fixed time being sampled from the space of
finite measures. However a related class of stochastic processes which exhibit sim-
ilar mathematical properties to superprocesses and whose paths are much easier
to visualise is that of Markov branching processes. A Markov branching process
Z = {Zt : t ≥ 0} takes values in the space Ma(E) of finite atomic measures in E tak-
ing the form ∑

n
i=1 δxi , where n∈N∪{0} and x1, · · · ,xn ∈E. To describe its evolution

we need to specify two quantities, (P,F), where, as before, P is the semi-group
of a diffusion on E and F is the so-called branching generator which takes the form

F(x,s) = q(x) ∑
n≥0

pn(x)(sn− s), x ∈ E,s ∈ [0,1], (8)

where q is a bounded measurable mapping from E to [0,∞) and, the measurable se-
quences {pn(x) : n≥ 0}, x ∈ E, are probability distributions. For each ν ∈Ma(E),
we denote by Pν the law of Z when issued from initial state Z0 = ν . The probability
Pν can be constructed in a pathwise sense as follows. From each point in the support
of ν we issue an independent copy of the diffusion with semi-group P . Indepen-
dently of one another, for (x, t) ∈ E × [0,∞), each of these particles will be killed
at rate q(x)dt to be replaced at their space-time point of death by n ≥ 0 particles
with probability pn(x). Relative to their point of creation, new particles behave in-
dependently to one another, as well as to existing particles, and undergo the same
life cycle in law as their parents.

By conditioning on the first split time in the above description of a (P,F)-
Markov branching process, it is also possible to show that for any f ∈ bp(E),

Eν(e−〈 f ,Zt 〉) = exp
{
−
∫

E
v f (x, t)ν(dx)

}
t ≥ 0,

where v f (x, t) solves
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e−v f (x,t) = Pt [e− f ](x)+
∫ t

0
dsPs[F(·,e−v f (·,t−s))](x) x ∈ E, t ≥ 0. (9)

Moreover, it is known, cf. Theorem 1.1 on pages 1208-1209 of [8], that the solution
to this equation is unique. This shows a similar characterisation of the semi-groups
of Markov branching processes to those of superprocesses.

The close similarities between the two processes become clearer when one takes
account of the fact that the existence of superprocesses can be justified through a
high density scaling procedure of Markov branching processes. Roughly speaking,
for a fixed triplet, (µ,P,ψ), one may construct a sequence of Markov branching
processes, say {Z(n) : n ≥ 1}, such that the n-th element of the sequence is issued
with an initial configuration of points which is taken to be an independent Poisson
random measure with intensity nµ and branching generator Fn satisfying

Fn(x,s) =
1
n
[ψ(x,n(1− s))+α(x)n(1− s)], x ∈ E,s ∈ [0,1].

It is not immediately obvious that the right-hand side above conforms to the required
structure of branching generators as stipulated in (8), however this can be shown to
be the case; see for example the discussion on p.93 of [31]. It is now a straight-
forward exercise to show that for all f ∈ bp(E) and t ≥ 0 the law of 〈 f ,n−1Z(n)

t 〉
converges weakly to the law of 〈 f ,Xt〉, where the measure Xt satisfies (2). A little
more work shows the convergence of the sequence of processes {n−1Z(n) : n ≥ 1}
in an appropriate sense to a (P,ψ)-superprocess issued from an initial state µ .

Rather than going into the details of this scaling limit, we focus instead in this pa-
per on another connection between superprocesses and branching processes which
explains their many similarities without the need to refer to a scaling limit. The ba-
sic idea is that, under suitable assumptions, for a given (P,ψ)-superprocess, there
exists a related Markov branching process, Z, with computable characteristics such
that at each fixed t ≥ 0, the law of Zt may be coupled to the law of Xt in such
a way that, given Xt , Zt has the law of a Poisson random measure with intensity
w(x)Xt(dx), where w is given by (4). The study of so-called backbone decomposi-
tions pertains to how the aforementioned Poisson embedding may be implemented
in a pathwise sense at the level of processes.

The remainder of this paper is structured as follows. In the next section we briefly
review the sense and settings in which backbone decompositions have been previ-
ously studied. Section 3 looks at some preliminary results needed to address the
general backbone decomposition that we deal with in Sections 4, 5 and 6.

2 A brief history of backbones

The basic idea of a backbone decomposition can be traced back to the setting of
Galton-Watson trees with ideas coming from Harris and Sevast’yanov; cf Harris
[24]. Within any supercritical Galton-Watson process with a single initial ancestor
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for which the probability of survival is not equal to 0 or 1, one may identify pro-
lific genealogical lines of descent on the event of survival. That is to say, infinite
sequences of descendants which have the property that every individual has at least
one descendant in every subsequent generation beyond its own. Together, these pro-
lific genealogical lines of descent make a Galton-Watson tree which is thinner than
the original tree. One may describe the original Galton-Watson process in terms of
this thinner Galton-Watson process, which we now refer to as a backbone, as fol-
lows. Let 0 < p < 1 be the probability of survival. Consider a branching process
which, with probability 1− p, is an independent copy of the original Galton-Watson
process conditioned to become extinct and, with probability p, is a copy of the
backbone process, having the additional feature that every individual in the back-
bone process immigrates an additional random number of offspring, each of which
initiate independent copies of the original Galton-Watson process conditioned to
become extinct. With an appropriate choice of immigration numbers, the resulting
object has the same law as the original Galton-Watson process.

In Evans and O’Connell [18], and later in Engländer and Pinsky [14], a new de-
composition of a supercritical superprocess with quadratic branching mechanism
was introduced in which one may write the distribution of the superprocess at time
t ≥ 0 as the result of summing two independent processes together. The first is a
copy of the original process conditioned on extinction. The second process is under-
stood as the superposition of mass from independent copies of the original process
conditioned on extinction which have immigrated ‘continuously’ along the path of
an auxiliary dyadic branching particle diffusion which starts with a random number
of initial ancestors whose cardinality and spatial position is governed by an inde-
pendent Poisson point process. The embedded branching particle system is known
as the backbone (as opposed to the spine or immortal particle which appears in an-
other related decomposition, introduced in Roelly-Coppoletta and Rouault [33] and
Evans [17]). In both [18] and [14] the decomposition is seen through the semi-group
evolution equations which drive the process semi-group. However no pathwise con-
struction is offered.

A pathwise backbone decomposition appears in Salisbury and Verzani [32], who
consider the case of conditioning a super-Brownian motion as it exits a given do-
main such that the exit measure contains at least n pre-specified points in its support.
There it was found that the conditioned process has the same law as the superposi-
tion of mass that immigrates in a Poissonian way along the spatial path of a branch-
ing particle motion which exits the domain with precisely n particles at the pre-
specified points. Another pathwise backbone decomposition for branching particle
systems is given in Etheridge and Williams [16], which is used in combination with
a limiting procedure to prove another version of Evan’s immortal particle picture.

In Duquesne and Winkel [5] a version of the Evans-O’Connell backbone de-
composition was established for more general branching mechanisms, albeit with-
out taking account of spatial motion. In their case, quadratic branching is replaced
by a general branching mechanism ψ which is the Laplace exponent of a spec-
trally positive Lévy process and which satisfies the conditions 0 < −ψ ′(0+) < ∞

and
∫

∞ 1/ψ(ξ )dξ < ∞. Moreover, the decomposition is offered in the pathwise
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sense and is described through the growth of genealogical trees embedded within
the underling continuous state branching process. The backbone is a continuous-
time Galton Watson process and the general nature of the branching mechanism
induces three different kinds of immigration. Firstly there is continuous immigra-
tion which is described by a Poisson point process of independent processes along
the trajectory of the backbone where the rate of immigration is given by a so-called
excursion measure which assigns zero initial mass, and finite life length of the im-
migrating processes. A second Poisson point process along the backbone describes
the immigration of independent processes where the rate of immigration is given
by the law of the original process conditioned on extinguishing and with a posi-
tive initial volume of mass randomised by an infinite measure. This accounts for
so-called discontinuous immigration. Finally, at the times of branching of the back-
bone, independent copies of the original process conditioned on extinguishing are
immigrated with randomly distributed initial mass which depends on the number of
offspring at the branch point. The last two forms of immigration do not occur when
the branching mechanism is purely quadratic.

Concurrently to the work of [5] and within the class of branching mechanisms
corresponding to spectrally positive Lévy processes with paths of unbounded vari-
ation (also allowing for the case that −ψ ′(0+) = ∞), Bertoin et al. [3] identify the
aforementioned backbone as characterizing prolific genealogies within the under-
ling continuous state branching process.

Berestycki et al. [2] extend the results of [18] and [5], showing that for su-
perprocesses with relatively general motion and non-spatial branching mechanism
corresponding to spectrally positive Lévy processes with finite mean, a pathwise
backbone decomposition arises. The role of the backbone is played by a branch-
ing particle diffusion with the same motion operator as the superprocesses and, like
Salisbury and Verzani [32], additional mass immigrates along the trajectory of the
backbone in a Poissonian way. Finally Kyprianou and Ren [28] look at the case of a
continuous-state branching process with immigration for which a similar backbone
decomposition to [2] can be shown.

As alluded to in the abstract, our objective in this article is to provide a general
backbone decomposition which overlaps with many of the cases listed above and, in
particular, exposes the general effect on the backbone of spatially dependent branch-
ing. It is also our intention to demonstrate the robustness of some of the arguments
that have been used in earlier work on backbone decompositions. Specifically, we
are referring to the original manipulations associated with the semi-group equations
given in Evans and O’Connell [18] and Engländer and Pinsky [14], as well as the use
the Dynkin-Kuznetsov excursion measure, as found in Salisbury and Verzani [32],
Berestyki et al. [2] and Kyprianou and Ren [28], to describe the rate of immigration
along the backbone.
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3 Preliminaries

Before stating and proving the backbone decomposition, it will first be necessary to
describe a number of mathematical structures which will play an important role.

3.1 Localisation

Suppose that the stochastic process ξ = {ξt : t ≥ 0} on E ∪ {†}, where † is its
cemetery state, is the diffusion in E corresponding to the semi-group P . We shall
denote its probabilities by {Πx : x∈E}. Throughout this paper, we shall take bp(E×
[0, t]) to be the space of non-negative, bounded measurable functions on E× [0, t],
and it is implicitly understood that for all functions f ∈ bp(E × [0, t]), we extend
their spatial domain to include {†} and set f ({†,s}) = 0.

Definition 1. For any open, bounded set D compactly embedded in E (written D⊂⊂
E), and t ≥ 0, there exists a random measure X̃D

t supported on the boundary of
D× [0, t) such that, for all f ∈ bp(E × [0, t]) with the additional property that the
value of f (x,s) on E× [0, t] is independent of s and µ ∈MF(D), the space of finite
measures on D,

− logEµ

(
e−〈 f ,X̃

D
t 〉
)
=
∫

E
ũD

f (x, t)µ(dx), t ≥ 0, (10)

where ũD
f (x, t) is the unique non-negative solution to the integral equation

ũD
f (x, t) = Πx[ f (ξt∧τD , t ∧ τ

D)]−Πx

[∫ t∧τD

0
ψ(ξs, ũD

f (ξs, t− s))ds

]
, (11)

and τD = inf{t ≥ 0,ξt ∈ Dc}. Note that, here, we use the obvious notation that
〈 f , X̃D

t 〉 =
∫

∂ (D×[0,t)) f (x,s)X̃D
t (dx,ds). Moreover, with a slight abuse of notation,

since their effective spatial domain is restricted to D∪{†} in the above equation,
we treat ψ and ũD

f as functions in bp(E× [0, t]) and accordingly it is clear how to
handle a spatial argument equal to †, as before. In the language of Dynkin [10], X̃D

t
is called an exit measure.

Now we define a random measure XD
t on D such that 〈 f ,XD

t 〉= 〈 f , X̃D
t 〉 for any

f ∈ bp(D), the space of non-negative, bounded measurable functions on D, where,
henceforth, as is appropriate, we regard f as a function defined on E× [0,∞) in the
sense that

f (x, t) =
{

f (x), x ∈ D
0, x ∈ E \D.

(12)

Then for any f ∈ bp(D) and µ ∈MF(D),
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− logEµ

(
e−〈 f ,X

D
t 〉
)
=
∫

E
uD

f (x, t)µ(dx), t ≥ 0, (13)

where uD
f (x, t) is the unique non-negative solution to the integral equation

uD
f (x, t) = Πx[ f (ξt); t < τ

D]−Πx

[∫ t∧τD

0
ψ(ξs,uD

f (ξs, t− s))ds

]
, x ∈ D. (14)

As a process in time, X̃D = {X̃D
t : t ≥ 0} is a superprocess with branching mech-

anism ψ(x,λ )1D(x), but whose associated semi-group is replaced by that of the
process ξ absorbed on ∂D. Similarly, as a process in time, XD = {XD

t : t ≥ 0} is a
superprocess with branching mechanism ψ(x,λ )1D(x), but whose associated semi-
group is replaced by that of the process ξ killed upon leaving D. One may think of
XD

t as describing the mass at time t in X which historically avoids exiting the do-
main D. Note moreover that for any two open bounded domains, D1 ⊂⊂ D2 ⊂⊂ E,
the processes X̃D1 and X̃D2 (and hence XD1 and XD2 ) are consistent in the sense that

X̃D1
t = (

˜̃XD2
t )D1 , (15)

for all t ≥ 0 (and similarly XD1
t = (XD2

t )D1 for all t ≥ 0).

3.2 Conditioning on extinction

In the spirit of the relationship between (10) and (11), we have that w is the unique
solution to

w(x) = Πx[w(ξt∧τD)]−Πx

[∫ t∧τD

0
ψ(ξs,w(ξs))ds

]
, x ∈ D, (16)

for all open domains D⊂⊂E. Again, with a slight abuse of notation, we treat w with
its spatial domain E ∪{†} as a function on E× [0, t] and w(†) := 0. From Lemma
1.5 in [8] we may transform (16) to the equation

w(x) = Πx

[
w(ξt∧τD)exp

{
−
∫ t∧τD

0

ψ(ξs,w(ξs))

w(ξs)
ds
}]

, x ∈ D,

which shows that for all open bounded domains D,

w(ξt∧τD)exp

{
−
∫ t∧τD

0

ψ(ξs,w(ξs))

w(ξs)
ds

}
, t ≥ 0, (17)

is a martingale.



10 A. E. Kyprianou, J-L, Pérez and Y.-X. Ren

The function w can be used to locally describe the law of the superprocess when
conditioned on global extinction (as opposed to extinction on the sub-domain D).
The following lemma outlines standard theory.

Lemma 1. Suppose that µ ∈MF(E) satisfies 〈w,µ〉<∞ (so, for example, it suffices
that µ is compactly supported). Define

P∗µ(·) = Pµ(·|E ).

Then for any f ∈ bp(E× [0, t]) with the additional property that the value of f (x,s)
on E× [0, t] is independent of s and µ ∈MF(D),

− logE∗µ
(

e−〈 f ,X̃
D
t 〉
)
=
∫

D
ũD,∗

f (x, t)µ(dx),

where ũD,∗
f (x, t) = ũD

f+w(x, t)−w(x) and it is the unique solution of

ũD,∗
f (x, t) = Πx[ f (ξt∧τD)]−Πx

[∫ t∧τD

0
ψ
∗(ξs, ũ

D,∗
f (ξs, t− s))ds

]
, x ∈ D, (18)

where ψ∗(x,λ ) =ψ(x,λ +w(x))−ψ(x,w(x)), restricted to D, is a branching mech-
anism of the kind described in the introduction and for each µ ∈MF(E), (X̃ ,P∗µ) is
a superprocess. Specifically, on E,

ψ
∗(x,λ ) =−α

∗(x)λ +β (x)λ 2 +
∫
(0,∞)

(e−λ z−1+λ z)π∗(x,dz), (19)

where
α
∗(x) = α(x)−2β (x)w(x)−

∫
(0,∞)

(1− e−w(x)z)zπ(x,dz)

and
π
∗(x,dz) = e−w(x)z

π(x,dz) on E× (0,∞).

Proof. For all f ∈ bp(∂ (D× [0, t))) with the additional property that the value of
f (x,s) on E× [0, t] is independent of s, we have

E∗µ(e−〈 f ,X̃
D
t 〉) = Eµ(e−〈 f ,X̃

D
t 〉|E )

= e〈w,µ〉Eµ(e−〈 f ,X̃
D
t 〉1E )

= e〈w,µ〉Eµ(e−〈 f ,X̃
D
t 〉EX̃D

t
(1E ))

= e〈w,µ〉Eµ(e−〈 f+w,X̃D
t 〉)

= e−〈ũ
D
f+w(·,t)−w,µ〉.

Using (11) and (16) then it is straightforward to check that ũD,∗
f (x, t) = ũD

f+w(x, t)−
w(x) is a non-negative solution to (18), which is necessarily unique. The proof is
complete as soon as we can show that ψ∗(x,λ ), restricted to D, is a branching
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mechanism which falls into the appropriate class. One easily verifies the formula
(19) and that the new parameters α∗ and π∗, restricted to D, respect the properties
stipulated in the definition of a branching mechanism in the introduction. �

Corollary 1. For any bounded open domain D ⊂⊂ E, any function f ∈ bp(D) and
any µ ∈MF(D) satisfying 〈w,µ〉< ∞,

− logE∗µ
(

e−〈 f ,X
D
t 〉
)
=
∫

D
uD,∗

f (x, t)µ(dx),

where uD,∗
f (x, t) = ũD

f+w(x, t)−w(x) and it is the unique solution of

uD,∗
f (x, t) = Πx[ f (ξt); t < τ

D]−Πx

[∫ t∧τD

0
ψ
∗(ξs,u

D,∗
f (ξs, t− s))ds

]
, x ∈ D,

(20)
where ψ∗ is defined by (19).

3.3 Excursion measure

Associated to the law of the processes X , are the measures {N∗x : x ∈ E}, defined
on the same measurable space as the probabilities {P∗

δx
: x ∈ E} are defined on, and

which satisfy

N∗x(1− e−〈 f ,Xt 〉) =− logE∗
δx
(e−〈 f ,Xt 〉) = u∗f (x, t), (21)

for all f ∈ bp(E) and t ≥ 0. Intuitively speaking, the branching property implies
that P∗

δx
is an infinitely divisible measure on the path space of X , that is to say the

space of measure-valued cadlag functions, D([0,∞)×M (E)), and (21) is a ‘Lévy-
Khinchine’ formula in which N∗x plays the role of its ‘Lévy measure’. Such measures
are formally defined and explored in detail in [13].

Note that, by the monotonicity property, for any two open bounded domains,
D1 ⊂⊂ D2 ⊂⊂ E,

〈 f ,XD1
t 〉 ≤ 〈 f ,X

D2
t 〉 N∗x-a.e.,

for all f ∈ bp(D1) understood in the sense of (12), x ∈ D1 and t ≥ 0. Moreover, for
an open bounded domain D and f as before, it is also clear that N∗(1− e−〈 f ,X

D
t 〉) =

uD,∗
f (x, t).

The measures {N∗x : x ∈ E} will play a crucial role in the forthcoming analysis in
order to describe the ‘rate’ of a Poisson point process of immigration.
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3.4 A Markov branching process

In this section we introduce a particular Markov branching process which is built
from the components of the (P,ψ)-superprocess and which plays a central role in
the backbone decomposition.

Recall that we abuse our notation and extend the domain of w with the implicit
understanding that w(†) = 0. Note, moreover, that thanks to (17), we have that, for
x ∈ E, w(x)−1w(ξt)exp

{
−
∫ t

0 ψ(ξs,w(ξs))/w(ξs)ds
}

is in general a positive local

martingale (and hence a supermartingale) under Πx. For each t ≥ 0, let F ξ

t = σ(ξs :
s≤ t). Let ζ = inf{t > 0 : ξt ∈ {†}} be the life time of ξ . The formula

dΠ w
x

dΠx

∣∣∣∣
F

ξ

t

=
w(ξt)

w(x)
exp
{
−
∫ t

0

ψ(ξs,w(ξs))

w(ξs)
ds
}

on {t < ζ}, t ≥ 0,x ∈ E,

(22)
uniquely determines a family of (sub-)probability measures {Π w

x : x ∈ E}. It is
known that under these new probabilities, ξ is a right Markov process on E; see
[6, Section 10.4], [25] or [34, Section 62]. We will denote by Pw the semi-group of
the E ∪{†}-valued process ξ whose probabilities are {Π w

x : x ∈ E}.

Remark 1. The equation (16) may formally be associated with the equation Lw(x)−
ψ(x,w(x)) = 0 on E, and the semi-group Pw corresponds to the diffusion with
generator

Lw
0 := Lw−w−1Lw = Lw−w−1

ψ(·,w),

where Lwu = w−1L(wu) for any u in the domain of L. Intuitively speaking, this
means that the dynamics associated to Pw, encourages the motion of ξ to visit
domains where the global survival rate is high and discourages it from visiting do-
mains where the global survival rate is low. (Recall from (7) that larger values of
w(x) make extinction of the (P,ψ)-superprocess less likely under Pδx .)

Henceforth the process Z = {Zt : t ≥ 0} will denote the Markov branching pro-
cess whose particles move with associated semi-group Pw. Moreover, the branch-
ing generator is given by

F(x,s) = q(x) ∑
n≥0

pn(x)(sn− s), (23)

where

q(x) = ψ
′(x,w(x))− ψ(x,w(x))

w(x)
, (24)

p0(x) = p1(x) = 0 and for n≥ 2,

pn(x) =
1

w(x)q(x)

{
β (x)w2(x)1{n=2}+wn(x)

∫
(0,∞)

yn

n!
e−w(x)y

π(x,dy)
}
.

Here we use the notation



The backbone decomposition for spatially dependent supercritical superprocesses 13

ψ
′(x,w(x)) :=

∂

∂λ
ψ(x,λ )

∣∣∣∣
λ=w(x)

, x ∈ E.

Note that the choice of q(x) ensures that {pn(x) : n≥ 0} is a probability mass func-
tion. In order to see that q(x)≥ 0 for all x ∈ E (but q 6= 0), write

q(x) = β (x)w(x)+
1

w(x)

∫
(0,∞)

(1− e−w(x)z(1+w(x)z))π(x,dz) (25)

and note that β ≥ 0, w > 0 and 1− e−λ z(1+λ z), λ ≥ 0, are all non-negative.

Definition 2. In the sequel we shall refer to Z as the (Pw,F)-backbone. Moreover,
in the spirit of Definition 1, for all bounded domains D and t ≥ 0, we shall also
define Z̃D

t to be the atomic measure, supported on ∂ (D× [0, t)), describing particles
in Z which are first in their genealogical line of descent to exit the domain D× [0, t).

Just as with the case of exit measures for superprocesses, we define the random
measure, ZD = {ZD

t : t ≥ 0}, on D such that 〈 f ,ZD
t 〉 = 〈 f , Z̃D

t 〉 for any f ∈ bp(D),
where we remind the reader that we regard f as a function defined on E × [0,∞)
as in (12). As a process in time, ZD is a Markov branching process, with branching
generator which is the same as in (23) except that the branching rate q(x) is replaced
by qD(x) := q(x)1D(x), and associated motion semi-group given by that of the pro-
cess ξ killed upon leaving D. Similarly to the case of superprocesses, for any two
open bounded domains, D1 ⊂⊂ D2 ⊂⊂ E, the processes Z̃D1 and Z̃D2 (and hence
ZD1 and ZD2 ) are consistent in the sense that

Z̃D1
t = (

˜̃ZD2
t )D1

for all t ≥ 0 (and similarly ZD1
t = (ZD2

t )D1 for all t ≥ 0).

4 Local backbone decomposition

We are interested in immigrating (P,ψ∗)-superprocesses onto the path of an
(Pw,F)-backbone within the confines of an open, bounded domain D ⊂⊂ E and
initial configuration ν ∈Ma(D), the space of finite atomic measures in D of the
form ∑

n
i=1 δxi , where n ∈ N∪{0} and x1, · · · ,xn ∈ D. There will be three types of

immigration: continuous, discontinuous and branch-point immigration which we
now describe in detail. In doing so, we shall need to refer to individuals in the pro-
cess Z for which we shall use classical Ulam-Harris notation, see for example p290
of Harris and Hardy [23]. Although the Ulam-Harris labelling of individuals is rich
enough to encode genealogical order, the only feature we really need of the Ulam-
Harris notation is that individuals are uniquely identifiable amongst T , the set labels
of individuals realised in Z. For each individual u ∈ T we shall write bu and du for
its birth and death times respectively, {zu(r) : r ∈ [bu,du]} for its spatial trajectory
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and Nu for the number of offspring it has at time du. We shall also write T D for the
set of labels of individuals realised in ZD. For each u ∈T D we shall also define

τ
D
u = inf{s ∈ [bu,du],zu(s) ∈ Dc},

with the usual convention that inf /0 := ∞. Note that if u ∈ T D, we denote by ω its
historical path on [0,du] (the spatial motion of its ancestors, including itself). Then
we have inf{t ≥ 0 : ω(t) ∈ Dc} ≥ bu.

Definition 3. For ν ∈Ma(D) and µ ∈MF(D), let ZD be a Markov branching pro-
cess with initial configuration ν , branching generator which is the same as in (23),
except that the branching rate q(x) is replaced by qD(x) := q(x)1D(x), and associ-
ated motion semi-group given by that of Pw killed upon leaving D. Let XD,∗ be an
independent copy of XD under P∗µ . Then we define the measure valued stochastic
process ∆ D = {∆ D

t : t ≥ 0} such that, for t ≥ 0,

∆
D
t = XD,∗

t + ID,N∗
t + ID,P∗

t + ID,η
t , (26)

where ID,N∗ = {ID,N∗
t : t ≥ 0}, ID,P∗ = {ID,P∗

t : t ≥ 0} and ID,η = {ID,η
t : t ≥ 0} are

defined as follows.

i) (Continuous immigration:) The process ID,N∗ is measure-valued on D such that

ID,N∗
t = ∑

u∈T D
∑

bu<r≤t∧du∧τD
u

X (D,1,u,r)
t−r ,

where, given ZD, independently for each u ∈T D such that bu < t,

∑
bu<r≤t∧du∧τD

u

δ(r,X(D,1,u,r))

is a Poisson point process on [bu, t ∧du∧ τD
u ]×D([0,∞)×M (E)) with intensity

dr×2β (zu(r))dN∗zu(r).

ii) (Discontinuous immigration:) The process ID,P∗ is measure-valued on D such
that

ID,P∗
t = ∑

u∈T D
∑

bu<r≤t∧du∧τD
u

X (D,2,u,r)
t−r ,

where, given ZD, independently for each u ∈T D such that bu < t,

∑
bu<r≤t∧du∧τD

u

δ(r,X(D,2,u,r))

is a Poisson point process on [bu, t ∧du∧ τD
u ]×D([0,∞)×M (E)) with intensity
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dr×
∫

y∈(0,∞)
ye−w(zu(r))yπ(zu(r),dy)×dP∗yδzu(r)

.

iii)(Branch point biased immigration:) The process ID,η is measure-valued on D
such that

ID,η
t = ∑

u∈T D

1{du≤t∧τD
u }X

(D,3,u)
t−du

,

where, given ZD, independently for each u ∈ T D such that du < t ∧ τD
u , the pro-

cesses X (D,3,u) are independent copies of the canonical process XD issued at time
du with law P∗Yuδzu(du)

such that, given u has n ≥ 2 offspring, the independent

random variable Yu has distribution ηn(zu(du),dy), where

ηn(x,dy)=
1

q(x)w(x)pn(x)

{
β (x)w2(x)δ0(dy)1{n=2}+w(x)n yn

n!
e−w(x)y

π(x,dy)
}
.

(27)

It is not difficult to see that ∆ D is consistent in the domain D in the sense of (15).
Accordingly, we denote by P(µ,ν) the law induced by {∆ D

t ,D∈O(E), t ≥ 0}, where
O(E) is the collection of bounded open sets in E.

The so-called backbone decomposition of (XD,Pµ) for µ ∈MF(D) entails look-
ing at the process ∆ D in the special case that we randomise the law P(µ,ν) by replac-
ing the deterministic choice of ν with a Poisson random measure having intensity
measure w(x)µ(dx). We denote the resulting law by Pµ .

Theorem 1. For any µ ∈MF(D), the process (∆ D,Pµ) is Markovian and has the
same law as (XD,Pµ).

5 Proof of Theorem 1

The proof involves several intermediary results in the spirit of the non-spatially de-
pendent case of Berestycki et al. [2]. Localisation will be an important part of the
process, allowing us to make use of Assumption A and uniqueness properties for
certain integral equations. Accordingly, throughout we take D as an open, bounded
domain such that D ⊂⊂ E. Any function f defined on D will be extended to E by
defining f = 0 on E \D.

Lemma 2. Suppose that µ ∈MF(D), ν ∈Ma(D), t ≥ 0 and f ∈ bp(D). We have

E(µ,ν)

(
e−〈 f ,I

D,N∗
t +ID,P∗

t 〉|{ZD
s : s≤ t}

)
= exp

{
−
∫ t

0
〈φ(·,uD,∗

f (·, t− s)),ZD
s 〉ds

}
,

where

φ(x,λ ) = 2β (x)λ +
∫
(0,∞)

(1− e−λy)ze−w(x)y
π(x,dy), x ∈ D, λ ≥ 0. (28)
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Proof. We write

〈 f , ID,N∗
t +ID,P∗

t 〉= ∑
u∈T D

∑
bu<r≤t∧du∧τD

u

〈 f ,X (D,1,u,r)
t−r 〉+ ∑

u∈T D
∑

bu<r≤t∧du∧τD
u

〈 f ,X (D,2,u,r)
t−r 〉.

Hence conditioning on ZD, appealing to the independence of the immigration pro-
cesses together with Campbell’s formula and that N∗x(1− e−〈 f ,X

D
s 〉) = uD,∗

f (x,s), we
have

E(µ,ν)(e
−〈 f ,ID,N∗

t 〉|{ZD
s : s≤ t})

= exp

{
− ∑

u∈T D

2
∫ t∧du∧τD

u

bu

β (zu(r)) ·N∗zu(r)(1− e−〈 f ,X
D
t−r〉)dr

}

= exp

{
− ∑

u∈T D

2
∫ t∧du∧τD

u

bu

β (zu(r))u
D,∗
f (zu(r), t− r)dr

}
. (29)

On the other hand

E(µ,ν)(e
−〈 f ,ID,P∗

t 〉|{ZD
s : s≤ t})

= exp

{
− ∑

u∈T D

∫ t∧du∧τD
u

bu

∫
∞

0
ye−w(zu(r))yπ(zu(r),dy)E∗yδzu(r)

(1− e−〈 f ,X
D
t−r〉)dr

}

= exp

{
− ∑

u∈T D

∫ t∧du∧τD
u

bu

∫
∞

0
(1− e−uD,∗

f (zu(r),t−r)y)ye−w(zu(r))yπ(zu(r),dy)dr

}
.

(30)

Combining (29) and (30) the desired result follows. ut

Lemma 3. Suppose that the real-valued function J(s,x,λ ) defined on [0,T )×D×R
satisfies that for any c > 0 there is a constant A(c) such that

|J(s,x,λ1)− J(s,x,λ2)| ≤ A(c)|λ1−λ2|,

for all s ∈ [0,T ), x ∈ D and λ1,λ2 ∈ [−c,c]. Then for any bounded measurable
function g(s,x) on [0,T )×D, the integral equation

v(t,x) = g(t,x)+
∫ t

0
Πx
[
J(t− s,ξs,v(t− s,ξs));s < τ

D]dx, t ∈ [0,T ),

has at most one bounded solution.

Proof. Suppose that v1 and v2 are two solutions, then there is a constant c > 0 such
that −c≤ v1,v2 ≤ c and

‖v1− v2‖(t)≤ A(c)
∫ t

0
‖v1− v2‖(s)ds,
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where ‖v1− v2‖(t) = supx∈D |v1(t,x)− v2(t,x)|, t ∈ (0,T ). It follows from Gron-
wall’s lemma (see, for example, Lemma 1.1 on page 1208 of [8]) that ‖v1−v2‖(t) =
0, t ∈ [0,T ).

Lemma 4. Fix t > 0. Suppose that f ,h ∈ bp(D) and gs(x) is jointly measurable in
(x,s) ∈ D× [0, t] and bounded on finite time horizons of s such that gs(x) = 0 for
x ∈ Dc. Then for any µ ∈MF(D), x ∈ D and t ≥ 0,

e−W (x,t) := E(µ,δx)

[
exp
(
−
∫ t

0
〈gt−s,ZD

s 〉ds−〈 f , ID,η
t 〉−〈h,ZD

t 〉
)]

is the unique [0,1]-valued solution to the integral equation

w(x)e−W (x,t) = Πx

[
w(ξt∧τD)e

−h(ξt∧τD )
]

+Πx

[∫ t∧τD

0
[Ht−s(ξs,−w(ξs)e−W (ξs,t−s))−w(ξs)e−W (ξs,t−s)gt−s(ξs)

−ψ(ξs,w(ξs))e−W (ξs,t−s)]ds

]
, (31)

for x ∈ D, where

Ht−s(x,λ )= q(x)λ +β (x)λ 2+
∫

∞

0
(e−λy−1+λy)e−(w(x)+uD,∗

f (x,t−s))y
π(x,dy), x∈D,

and q(x) was defined in (24).

Proof. Following Evans and O’Connell [18] it suffices to prove the result in the case
when g is time invariant. To this end, let us start by defining the semi-group Ph,D

by

Ph,D
t [k](x) = Πx

(
e−

∫ t∧τD
0 h(ξs)dsk(ξt∧τD)

)
for h,k ∈ bp(D), (32)

where, for convenience, we shall write

PD
t [k] = P0,D

t [k]. (33)

Recall that for h,k ∈ bp(D), h(x) = k(x) = 0 for x /∈ D. Then we have

Ph,D
t [k](x) = Πx

(
e−

∫ t
0 h(ξs)dsk(ξt); t < τ

D
)

for h,k ∈ bp(D). (34)

Define the function χ(x) = ψ(x,w(x))/w(x). Conditioning on the first splitting
time in the process ZD and recalling that the branching occurs at the spatial rate
qD(x) = 1D(x)(ψ ′(x,w(x))−χ(x)) we get that for any x ∈ D,
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e−W (x,t) =
1

w(x)
P

g+q+χ,D
t [we−h](x)

+Π
w
x

[∫ t∧τD

0
exp
(
−
∫ s

0
(g+q)(ξr)dr

)
{

q(ξs) ∑
n≥2

pn(ξs)e−nW (ξs,t−s)
∫
(0,∞)

ηn(ξs,dy)e−yuD,∗
f (ξs,t−s)

}
ds

]
.(35)

From (27) we quickly find that for x ∈ D,

∑
n≥2

pn(x)e−nW (x,t−s)
∫
(0,∞)

ηn(x,dy)e−yuD,∗
f (x,t−s)

=
1

q(x)w(x)

{
Ht−s(x,−w(x)e−W (x,t−s))+w(x)q(x)e−W (x,t−s)

}
.

Using the above expression in (35) we have that

w(x)e−W (x,t) = P
g+q+χ,D
t [we−h](x)

+Πx

[∫ t∧τD

0
exp
(
−
∫ s

0
(g+q+χ)(ξr)dr

)
[
(Ht−s(ξs,−w(ξs)e−W (ξs,t−s))+w(ξs)q(ξs)e−W (ξs,t−s))

]
ds

]
.

Now appealing to Lemma 1.2 in Dynkin [11] and recalling that χ(·)=ψ(·,w(·))/w(·)
on D, we may deduce that for any x ∈ D,

w(x)e−W (x,t) = PD
t [we−h](x)

+Πx

[∫ t∧τD

0
[Ht−s(ξs,−w(ξs)e−W (ξs,t−s))−w(ξs)g(ξs)e−W (ξs,t−s)

−ψ(ξs,w(ξs))e−W (ξs,t−s)]ds

]
(36)

as required. Note that in the above computations we have implicitly used that w is
uniformly bounded away from ∞ on D.

To complete the proof we need to show uniqueness of solutions to (36). Lemma 3
offers sufficient conditions for uniqueness of solutions to a general family of integral
equations which includes (36). In order to check these sufficient conditions, let us
define wD = supy∈D w(y). Thanks to Assumption (A) we have that 0 < wD < ∞. For
s≥ 0, x ∈ D and λ ∈ [0,wD], define the function J(s,x,λ ) := [Hs(x,−λ )− (g(x)+
χ(x))λ ]. We rewrite (36) as

w(x)e−W (x,t) = PD
t [we−h](x)+

∫ t

0
Πx

[
J(t− s,ξs,w(ξs)e−W (ξs,t−s));s < τ

D
]

ds.
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Lemma 3 tells us that (36) has a unique solution as soon as we can show that J
is continuous in s and that for each fixed T > 0, there exists a K > 0 (which may
depend on D and T ) such that

sup
s≤T

sup
y∈D
|J(s,y,λ1)− J(s,y,λ2)| ≤ K|λ1−λ2|, λ1,λ2 ∈ (0,wD].

Recall that g(y) is assumed to be bounded, moreover, Assumption (A) together with
the fact that

sup
y∈D

{
|α(y)|+β (y)+

∫
(0,∞)

(z∧ z2)π(y,dz)
}
< ∞ (37)

also implies that χ is bounded on D. Appealing to the triangle inequality, it now
suffices to check that for each fixed T > 0, there exists a K > 0 such that

sup
s≤T

sup
y∈D
|Hs(y,−λ1)−Hs(y,−λ2)| ≤ K|λ1−λ2|, λ1,λ2 ∈ (0,wD]. (38)

First note from Proposition 2.3 of Fitzsimmons [21] that

sup
s≤T

sup
x∈D

uD,∗
f (x,s)< ∞. (39)

Straightforward differentiation of the function Hs(x,−λ ) in the variable λ yields

− ∂

∂λ
Hs(x,−λ ) = q(x)−2β (x)λ +

∫
(0,∞)

(1− eλ z)e−(w(x)+uD,∗
f (x,s))zzπ(x,dz).

Appealing to (37) and (39) it is not difficult to show that the derivative above is
uniformly bounded in absolute value for s ≤ T , x ∈ D and λ ∈ [0,wD], from which
(38) follows by straightforward linearisation. The proof is now complete. ut

Theorem 2. For every µ ∈MF(D), ν ∈Ma(D) and f ,h ∈ bp(D)

E(µ,ν)

(
e−〈 f ,∆

D
t 〉−〈h,ZD

t 〉
)
= e−〈u

D,∗
f (·,t),µ〉−〈vD

f ,h(·,t),ν〉, (40)

where e−vD
f ,h(x,t) is the unique [0,1]-solution to the integral equation

w(x)e−vD
f ,h(x,t) = Πx

[
w(ξt∧τD)e

−h(ξt∧τD )
]

+Πx

[∫ t∧τD

0
[ψ∗(ξs,−w(ξs)e

−vD
f ,h(ξs,t−s)+uD,∗

f (ξs, t− s))−ψ
∗(ξs,u

D,∗
f (ξs, t− s))]ds

]
.(41)

Proof. Thanks to Corollary 1 it suffices to prove that

E(µ,ν)(e
−〈 f ,ID

t 〉−〈h,ZD
t 〉) = e−〈v

D
f ,h(·,t),ν〉,
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where ID := ID,N∗+ ID,P∗+ ID,η , and vD
f ,h solves (41). Putting Lemma 2 and Lemma

4 together we only need to show that, when gt−s(·) = φ(·,uD,∗
f (·, t− s)) (where φ is

given by (28)), we have that exp{−W (x, t)} is the unique [0,1]-valued solution to
(41). Again following the lead of [2], in particular referring to Lemma 5 there, it is
easy to see that on D

Ht−s(·,−w(·)e−W (·,t−s))−φ(·,uD,∗
f (·, t− s))w(·)e−W (·,t−s)− ψ(·,w(·))

w(·)
w(·)e−W (·,t−s)

= ψ
∗(·,w(·)e−W (·,t−s)+uD,∗

f (·, t− s))−ψ
∗(·,uD,∗

f (·, t− s)),

which implies that exp{−W (x, t)} is the unique [0,1]-valued solution to (41). ut

Proof of Theorem 1:. The proof is guided by the calculation in the proof of The-
orem 2 of [2]. We start by addressing the claim that (∆ D,Pµ) is a Markov process.
Given the Markov property of the pair (∆ D,ZD), it suffices to show that, given ∆ D

t ,
the atomic measure ZD

t is equal in law to a Poisson random measure with inten-
sity w(x)∆ D

t . Thanks to Campbell’s formula for Poisson random measures, this is
equivalent to showing that for all h ∈ bp(D),

Eµ(e−〈h,Z
D
t 〉|∆ D

t ) = e−〈w·(1−e−h),∆ D
t 〉,

which in turn is equivalent to showing that for all f ,h ∈ bp(D),

Eµ(e−〈 f ,∆
D
t 〉−〈h,ZD

t 〉) = Eµ(e−〈w·(1−e−h)+ f ,∆ D
t 〉). (42)

Note from (40) however that when we randomize ν so that it has the law of a Poisson
random measure with intensity w(x)µ(dx), we find the identity

Eµ(e−〈 f ,∆
D
t 〉−〈h,ZD

t 〉) = exp
〈
−uD,∗

f (·, t)−w · (1− e−vD
f ,h(·,t)),µ

〉
.

Moreover, if we replace f by w ·(1−e−h)+ f and h by 0 in (40) and again randomize
ν so that it has the law of a Poisson random measure with intensity w(x)µ(dx) then
we get

Eµ

(
e−〈w·(1−e−h)+ f ,∆ D

t 〉
)
= exp

〈
−uD,∗

w·(1−e−h)+ f
(·, t)−w ·

(
1− exp

{
−vD

w·(1−e−h)+ f ,0

})
,µ
〉
.

These last two observations indicate that (42) is equivalent to showing that, for all
f ,h as stipulated above and t ≥ 0,

uD,∗
f (x, t)+w(x)(1− e−vD

f ,h(x,t)) = uD,∗
w·(1−e−h)+ f

(x, t)+w(x)(1− e
−vD

w·(1−e−h)+ f ,0
(x,t)

).

(43)
Note that both left and right-hand sides of the equality above are necessarily non-
negative given that they are Laplace exponents of the left and right-hand sides of
(42). Making use of (20), (16), and (41), it is computationally very straightforward
to show that both left and right-hand sides of (43) solve (14) with initial condition
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f +w(1− e−h), which is bounded in D. Since (14) has a unique solution with this
initial condition, namely uD

f+w·(1−e−h)
(x, t), we conclude that (43) holds true. The

proof of the claimed Markov property is thus complete.
Having now established the Markov property, the proof is complete as soon as

we can show that (∆ D,Pµ) has the same semi-group as (XD,Pµ). However, from
the previous part of the proof we have already established that when f ,h ∈ bp(D),

Eµ

(
e−〈h,Z

D
t 〉−〈 f ,∆ D

t 〉
)
= e
−〈uD

w(1−e−h)+ f
(·,t),µ〉

= Eµ

(
e−〈 f+w(1−e−h),XD

t 〉
)
. (44)

In particular, choosing h = 0 we find

Eµ

(
e−〈 f ,∆

D
t 〉
)
= Eµ

(
e−〈 f ,X

D
t 〉
)
, t ≥ 0,

which is equivalent to saying that the semi-groups of (∆ D,Pµ) and (XD,Pµ) agree.
ut

6 Global backbone decomposition

So far we have localized our computations to an open bounded domain D. Our
ultimate objective is to provide a backbone decomposition on the whole domain E.
To this end, let Dn be a sequence of open bounded domains in E such that D1 ⊆
D2 ⊆ ·· · ⊆ Dn ⊆ ·· · ⊆ E and E = ∪n≥1Dn. Let XDn , ∆ Dn and ZDn be defined as in
previous sections with D being replaced by Dn.

Lemma 5. For any h, f ∈ bp(E) with compact support and any µ ∈MF(E), we
have that for any t ≥ 0, each element of the pair {(〈h,ZDn

s 〉,〈 f ,∆ Dn
s 〉) : s≤ t} path-

wise increases Pµ -almost surely as n → ∞. The limiting pair of processes, here
denoted by {(〈h,Zmin

s 〉,〈 f ,∆ min
s 〉) : s ≤ t}, are such that 〈 f ,∆ min

t 〉 is equal in law
to 〈 f ,Xt〉 and, given ∆ min

t , the law of Zmin
t is a Poisson random field with inten-

sity w(x)∆ min
t (dx). Moreover, Zmin is a (Pw,F) branching process with branching

generator as in (23) and associated motion semi-group given by (22).

Proof. Appealing to the stochastic consistency of ZD and ∆ D in the domain D, it
is clear that both 〈h,ZDn

t ,〉 and 〈 f ,∆ Dn
t 〉 are almost surely increasing in n. It there-

fore follows that the limit as n→∞ exists for both 〈h,ZDn
t 〉 and 〈 f ,∆ Dn

t 〉, Pµ -almost
surely. In light of the discussion at the end of the proof of Theorem 1, the distribu-
tional properties of the limiting pair are established as soon as we show that

− logEµ

(
e−〈h,Z

min
t 〉−〈 f ,∆ min

t 〉
)
=
∫

E
uw(1−e−h)+ f (x, t)µ(dx), t ≥ 0. (45)

Assume temporarily that suppµ , the support of µ , is compactly embedded in E
so that there exists an n0 ∈ N such that for n ≥ n0 we have that suppµ ⊂ Dn and
h = f = 0 on Dc

n. Thanks to (44) and monotone convergence (45) holds as soon
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as we can show that uDn
g ↑ ug for all g ∈ bp(E) satisfying g = 0 on Dc

n for n ≥ n0.
By (13) and (14), we know that uDn

g (x, t) is the unique non-negative solution to the
integral equation

uDn
g (x, t) = Πx[g(ξt∧τDn

)]−Πx

[∫ t∧τDn

0
ψ(ξs,uDn

g (ξs, t− s))ds
]
. (46)

Using Lemma 1.5 in [8] we can rewrite the above integral equation in the form

uDn
g (x, t) = Πx

[
g(ξt∧τDn

)exp
(∫ t∧τDn

0
α(ξs)ds

)]
−Πx

[∫ t∧τDn

0
exp
(∫ s

0
α(ξr)dr

)[
ψ(ξs,uDn

g (ξs, t− s))+α(ξs)uDn
g (ξs, t− s))

]
ds
]
.(47)

Since g = 0 on Dc
n for n≥ n0, we have

Πx

[
g(ξt∧τDn

)exp
(∫ t∧τDn

0
α(ξs)ds

)]
= Πx

[
g(ξt)exp

(∫ t

0
α(ξs)ds

)
; t < τDn

]
,

which is increasing in n. By the comparison principle, uDn
g is increasing in n (see

Theorem 3.2 in part II of [8]). Put ũg = limn→∞ uDn
g . Note that ψ(x,λ )+α(x)λ is

increasing in λ . Letting n→ ∞ in (47), by the monotone convergence theorem,

ũg(x, t) = Pα
t g(x)−Πx

∫ t

0
Pα

s [ψ(·, ũg(·, t− s))+α(·)ũg(·, t− s))]ds,

where

Pα
t g = Πx

[
g(ξt)exp

(∫ t

0
α(ξs)ds

)]
, g ∈ bp(E),

which in turn is equivalent to

ũg(x, t) = Psg(x)−Πx

∫ t

0
Psψ(·, ũg(·, t− s))ds.

Therefore, ũg and ug are two solutions of (3) and hence by uniqueness they are the
same, as required.

To remove the initial assumption that the support of µ is compactly embedded
in E, suppose that µn is a sequence of compactly supported measures with mutually
disjoint support such that µ = ∑k≥1 µk. By considering (45) for ∑

n
k=1 µk and taking

limits as n ↑ ∞ we see that (45) holds for µ . Note in particular that the limit on
the left hand side of (45) holds as a result of the additive property of the backbone
decomposition in the initial state µ . ut

Note that, in the style of the proof given above (appealing to monotonicity and the
maximality principle) we can easily show that the processes XDn,∗, n≥ 1, converge
distributionally at fixed times, and hence in law, to the process (X ,P∗µ); that is, a
(P,ψ∗)-superprocess. With this in mind, again appealing to the consistency and
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monotonicity of the local backbone decomposition, our main result follows as a
simple corollary of Lemma 5.

Corollary 2. Suppose that µ ∈MF(E). Let Z be a (Pw,F)-Markov branching pro-
cess with initial configuration consisting of a Poisson random field of particles in
E with intensity w(x)µ(dx). Let X∗ be an independent copy of (X ,P∗µ). Then define
the measure valued stochastic process ∆ = {∆t : t ≥ 0} such that, for t ≥ 0,

∆t = X∗t + IN
∗

t + IP
∗

t + Iη

t , (48)

where IN
∗
= {IN∗t : t ≥ 0}, IP

∗
= {IP∗t : t ≥ 0} and Iη = {Iη

t : t ≥ 0} are defined as
follows.

i) (Continuum immigration:) The process IN
∗

is measure-valued on E such that

IN
∗

t = ∑
u∈T

∑
bu<r≤t∧du

X (1,u,r)
t−r ,

where, given Z, independently for each u ∈T such that bu < t,

∑
bu<r≤t∧du

δ(r,X(1,u,r))

is a Poisson point process on [bu, t ∧du]×D([0,∞)×M (E)) with intensity

dr×2β (zu(r))dN∗zu(r).

ii) (Discontinuous immigration:) The process IP
∗

is measure-valued on E such
that

IP
∗

t = ∑
u∈T

∑
bu<r≤t∧du

X (2,u,r)
t−r ,

where, given Z, independently for each u ∈T such that bu < t,

∑
bu<r≤t∧du

δ(r,X(2,u,r))

is a Poisson point process on [bu, t ∧du]×D([0,∞)×M (E)) with intensity

dr×
∫

y∈(0,∞)
ye−w(zu(r))yπ(zu(r),dy)×dP∗yδzu(r)

.

iii)(Branch point biased immigration:) The process Iη is measure-valued on E
such that

Iη

t = ∑
u∈T D

1{du≤t}X
(3,u)
t−du

,

where, given Z, independently for each u ∈ T such that du < t, the processes
X (3,u) are independent copies of the canonical process X issued at time du with
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law P∗Yuδzu(du)
such that, given u has n ≥ 2 offspring, the independent random

variable Yu has distribution ηn(zu(du),dy), where ηn(x,dy) is defined by (27).

Then (∆ ,Pµ) is Markovian and has the same law as (X ,Pµ).
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to Lp-convergence of martingales, Séminaire de Probabilités XLII, 281-330.

24. Harris, T. (1964) The theory of branching processes, Springer-Verlag, Berlin; Prentice-Hall,
Inc., Englewood Cliffs, N.J.

25. Ito, K. and Watanabe, S. (1965) Transformation of Markov processes by multiplicative func-
tionals, Ann. Inst. Fourier, Grenobl 15, 13-30.

26. Kingman, J.F.C. (1993) Poisson processes, Oxford University Press, New York.
27. Kyprianou, A.E. (2006) Introductory lectures on fluctuations of Lévy processes with applica-
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