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CONTINUOUS-STATE BRANCHING
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Abstract

In this paper we study the α-stable continuous-state branching processes (for α ∈ (1, 2])
and the α-stable continuous-state branching processes conditioned never to become
extinct in the light of positive self-similarity. Understanding the interaction of the
Lamperti transformation for continuous-state branching processes and the Lamperti
transformation for positive, self-similar Markov processes gives access to a number of
explicit results concerning the paths of α-stable continuous-state branching processes and
α-stable continuous-state branching processes conditioned never to become extinct.
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1. Introduction

This paper is principally concerned with positive, self-similar Markov processes (PSSMPs)
which are also either continuous-state branching processes or continuous-state branching pro-
cesses with immigration. All of the aforementioned processes shall be defined in more detail
in the next section. However, for the purpose of giving a brief sense of the main goals of this
paper in this section, we briefly recall the following.

A PSSMP X = (Xt , t ≥ 0) has the defining property that it is a nonnegative-valued strong
Markov process with probabilities (Qx, x ≥ 0) such that, for each k > 0,

the law of (kXk−αt , t ≥ 0) under Qx is given by Qkx,

where α > 0 is a constant known as the index of self-similarity. A continuous-state branch-
ing process (CSBP) on the other hand is a nonnegative-valued strong Markov process with
probabilities (Px, x ≥ 0) such that, for any x, y ≥ 0, Px+y is equal in law to the convolution
of Px and Py . CSBPs may be thought of as the continuous (in time and space) analogues
of classical Bienaymé–Galton–Watson branching processes. Associated with a CSBP (Y,Px)
is its Malthusian parameter, −ρ, which characterises the mean rate of growth in the sense
that Ex(Yt ) = xe−ρt for all t ≥ 0. The PSSMPs, which are simultaneously CSBPs, that
we shall consider are critical in the sense that ρ = 0 and they are closely related, via a path
transformation, to spectrally positive α-stable Lévy processes for α ∈ (1, 2]. Being critical
processes, standard theory allows us to talk about CSBPs conditioned never to become extinct
in an appropriate sense. Roughly speaking, we may think of the latter as the result of a Doob
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h-transform of the law of a CSBP with h(x) = x. Owing to the recent works of Lambert [15],
[17], it is known that in the case in which ρ = 0, a CSBP conditioned never to become extinct
also corresponds, in an appropriate sense, to a CSBP with immigration. We shall see that, when
the underlying CSBP is a PSSMP, then so is the associated CSBP with immigration.

The first result in this paper, in Subsection 3.2, plays upon the explicit nature of all of the
aforementioned processes and their special link with α-stable processes, and specifies how we
transform between each of them with the help of either a Doob h-transform or one of two
possible space–time changes which are commonly referred to as Lamperti transformations.
Some of these transformations are already known; however, we provide a complete picture.
Our goal is then to take advantage of some of these transforms and to provide a more detailed
description of the dynamics of both the self-similar CSBPs and the self-similar CSBPs with
immigration.

Specifically, for self-similar CSBPs, we are interested in a more detailed description of
how the process becomes extinct. We do this by time reversing its path from the moment of
extinction. In particular, we specify integral tests furnishing law of the iterated logarithm (LIL)
type results of the time-reversed process. For the case of self-similar CSBPs with immigration,
we are interested in integral tests for its lower envelope at times 0 and ∞ when the process
is issued from the origin. Understanding CSBPs and CSBPs with immigration in the context
of self-similarity also leads to some explicit fluctuation identities involving their last passage
times. This we do in Section 4. As our work is closely related to [17] in spirit, we conclude the
paper with some remarks about a different kind of conditioning considered there which results
in quasistationary distributions.

2. Some processes revisited

This section is dedicated to introducing more notation as well as providing more rigorous
definitions of the stochastic processes that are of primary interest in this paper.

2.1. Spectrally positive Lévy processes

Let (Px, x ∈ R) be a family of probability measures on the space of càdlàg mappings (those
that are continuous from the right with left limits) from [0,∞) to R, denoted D , such that, for
each x ∈ R, the canonical process X is a Lévy process with no negative jumps issued from x.
Set P := P0. So Px is the law ofX+x under P. The Laplace exponentψ : [0,∞)→ (−∞,∞)
of X is specified by E(exp{−λXt }) = etψ(λ) for λ ∈ R, and can be expressed in the form

ψ(λ) = aλ+ βλ2 +
∫
(0,∞)

(e−λx − 1+ λx1{x<1})�(dx), (1)

where a ∈ R, β ≥ 0, and � is a σ -finite measure such that∫
(0,∞)

(1 ∧ x2)�(dx) <∞.

Henceforth, we shall assume that (X,P) is not a subordinator (recall that a subordinator is a
Lévy process with increasing sample paths). In this case, it is known that the Laplace exponent
ψ is strictly convex and tends to∞ as λ goes to∞. In this case, we define, for q ≥ 0,

�(q) = inf{λ ≥ 0 : ψ(λ) > q},
the right inverse ofψ . Then�(0) is the largest root of the equationψ(λ) = 0. TheoremVII.1 of
[1] implies that the condition�(0) > 0 holds if and only if the process drifts to∞. Moreover,
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almost surely, the paths of X drift to ∞, oscillate, or drift to −∞ according respectively to
whether ψ ′(0+) < 0, ψ ′(0+) = 0, or ψ ′(0+) > 0.

2.2. Conditioning to stay positive

We also need to make use of Lévy processes conditioned to stay positive. The following
commentary is taken from [1, Chapter VII] and [7], and is adapted to our setting, where (X,P)
is a Lévy process with no negative jumps, but not a subordinator. The process, X, conditioned
to stay positive, is the strong Markov process whose law is given by

P↑x (Xt ∈ dy) = lim
q↓0

Px

(
Xt ∈ dy, t <

e

q

∣∣∣∣ τ0 >
e

q

)
, t ≥ 0, x, y > 0, (2)

where e is an independent and exponentially distributed random variable with mean 1 and

τ0 = inf{t > 0 : Xt ≤ 0}.
It turns out that the measure on the left-hand side can also be constructed as the result of a Doob
h-transform of X killed when it first exits (0,∞). In the special case in which ψ ′(0+) ≤ 0,
the resulting semigroup is thus given by

P↑x (Xt ∈ dy) = 1− e−�(0)y

1− e−�(0)x
Px(Xt ∈ dy, t < τ0), t ≥ 0, x, y > 0,

where the ratio on the right-hand side is understood as y/x in the case in which �(0) = 0 (i.e.
the case in which ψ ′(0+) = 0). Moreover, the family of measures (P↑x , x > 0) induced on D
are probability measures, and when X has unbounded variation paths, the law P↑x converges
weakly as x ↓ 0 to a measure denoted by P↑.

Now, define X̂ := −X, the dual process ofX. Denote by P̂x the law of X̂ when issued from
x so that (X, P̂x) = (X̂,P−x). The dual process conditioned to stay positive in the sense of (2)
is again a Doob h-transform of (X, P̂x) killed when it first exits (0,∞). In this case, assuming
(conversely to P↑x ) that ψ ′(0+) ≥ 0, we have

P̂
↑
x (Xt ∈ dy) = W(y)

W(x)
P̂x(Xt ∈ dy, t < τ0), t ≥ 0, x, y > 0,

whereW is the so-called scale function for the process−X. The latter is the unique continuous
function on (0,∞) with Laplace transform∫ ∞

0
e−λxW(x) dx = 1

ψ(λ)
, λ ≥ 0, (3)

where we recall thatψ is the Laplace exponent ofX, defined in the previous subsection. In this
case the measure P̂

↑
x is always a probability measure, and there is always weak convergence as

x ↓ 0 to a probability measure, which we denote by P̂
↑

.

2.3. CSBPs and CSBPs with immigration

CSBPs are the analogue of Bienaymé–Galton–Watson processes in continuous time and
continuous-state space. Such classes of processes have been introduced by Jirina [14] and
studied by many authors including Bingham [3], Grey [11], Grimvall [12], and Lamperti [18],
[19], to name but a few. A CSBP Y = (Yt , t ≥ 0) is a Markov process taking values in [0,∞],
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where 0 and∞ are two absorbing states. Moreover, Y satisfies the branching property; that is
to say, the Laplace transform of Yt satisfies

Ex(exp{−λYt }) = exp{−xut (λ)} for λ ≥ 0, (4)

for some function ut (λ). According to Silverstein [28], the function ut (λ) is determined by the
integral equation ∫ λ

ut (λ)

1

ψ(u)
du = t, (5)

where ψ is the Laplace exponent of a spectrally positive Lévy process and is known as the
branching mechanism of Y .

Lamperti [18] observed that CSBPs are connected to Lévy processes with no negative jumps
by a simple time change. More precisely, consider the spectrally positive Lévy process (X,Px)
started at x > 0 and with Laplace exponent ψ . Now, we introduce the clock

At =
∫ t

0

ds

Xs
, t ∈ [0, τ0),

and its inverse
θ(t) = inf{s ≥ 0 : As > t}.

Then the time-changed process Y = (Xθ(t), t ≥ 0), under Px , is a CSBP with initial population
of size x. The transformation described above shall henceforth be referred to as the CSB
Lamperti representation.

A CSBP is called supercritical, critical, or subcritical according respectively to whether its
associated Lévy process drifts to +∞, oscillates, or drifts to −∞; in other words, according
respectively to whether ψ ′(0+) < 0, ψ ′(0+) = 0, or ψ ′(0+) > 0. It is known that a CSBP Y
with branching mechanism ψ has a finite time extinction almost surely if and only if∫ ∞

1

du

ψ(u)
<∞ and ψ ′(0+) ≥ 0. (6)

In this work we are also interested in CSBPs with immigration. In the remainder of this
subsection we assume that the CSBP is critical, i.e. ψ ′(0+) = 0. Recall that a CSBP with
immigration is a strong Markov process taking values in [0,∞], where 0 is no longer absorbing.
If (Y↑t : t ≥ 0) is a process in this class then its semigroup is characterised by

Ex(exp{−λY↑t }) = exp

{
−xut (λ)−

∫ t

0
φ(ut−s(λ))ds

}
for λ ≥ 0,

where φ is a Bernstein function satisfying φ(0) = 0 and is referred to as the immigration
mechanism. See, for example, [17] for a formal definition. Roelly and Rouault [26], and more
recently Lambert [17], showed that if

T0 = inf{t > 0 : Yt = 0}
then the limit

lim
s↑∞Px(Yt ∈ dy | T0 > t + s), t ≥ 0, x, y > 0, (7)
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exists and defines a semigroup which is that of a CSBP with immigration having initial
population size x and immigration mechanism

φ(λ) = ψ ′(λ), λ ≥ 0.

The limit (7) may be thought of as conditioning the CSBP not to become extinct.
Lambert [17] also proved an interesting connection between the conditioning for a CSBP

(7) and for the underlying Lévy process (2). Specifically, Lambert showed that (Xθ ,P↑x ) =
(Y↑,Px), where the latter process has an immigration mechanism given by ψ ′(λ). Another
way of phrasing this is that the CSBP with immigration obtained by conditioning a critical
CSBP not to become extinct is equal in law to the underlying spectrally positive Lévy process
conditioned to stay positive and then time changed with the CSB Lamperti representation.
Moreover, Lambert also showed that, when P↑x is used to describe the law of Y , then it fulfills
the following Doob h-transform:

P↑x (Yt ∈ dy) = y

x
Px(Yt ∈ dy, t < T0) for y > 0 and t ≥ 0.

3. Self-similarity, and α-stable CSBPs and α-stable CSBPs with immigration

Before we investigate self-similar CSBPs and self-similar CSBPs with immigration, let us
first address how self-similarity and the associated Lamperti transformation manifests itself for
the case of a spectrally positive α-stable process. This turns out to be key to understanding
self-similarity of CSBPs and CSBPs with immigration.

3.1. Stable processes and the PSSMP Lamperti representation

Stable Lévy processes with no negative jumps are Lévy processes with Laplace exponent of
the type given in (1) that satisfy the scaling property for some index α > 0. More precisely,
there exists a constant α > 0 such that, for any k > 0,

the law of (kXk−αt , t ≥ 0) under Px is Pkx . (8)

In this subsection, (X,Px) shall denote a stable Lévy process with no negative jumps of index
α ∈ (1, 2] starting at x ∈ R (see Chapter VII of [1] for further discussion on stable Lévy
processes). It is known that the Laplace exponent of (X,Px) takes the form

ψ(λ) = c+λα, λ ≥ 0, α ∈ (0, 2),

where c+ is a nonnegative constant. The case in which α = 2 corresponds to the process
(X,Px) being a multiple of standard Brownian motion. In the remainder of this work, when
we consider the case in which α = 2, we shall refer to the Brownian motion, i.e. we choose
c+ = 1

2 .
Recall that the stable Lévy process killed at the first time that it enters the negative half-line

is defined by
X

†
t := Xt1{t<τ0}, t ≥ 0,

where τ0 = inf{t ≥ 0 : Xt ≤ 0}. From the previous subsection, a stable Lévy process with no
negative jumps conditioned to stay positive is tantamount to a Doob-h transform of the killed
process where h(x) = x. According to Caballero and Chaumont [4], both the processX and its
conditioned version belong to the class of PSSMPs; that is to say, positive Markov processes
satisfying property (8).
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From Lamperti’s [19] work, it is known that the family of PSSMPs up to its first hitting time
of 0 may be expressed as the exponential of a Lévy process, time changed by the inverse of its
exponential functional. More precisely, let (X,Qx) be a self-similar Markov process started
from x > 0 that fulfills the scaling property for some α > 0. Then, under Qx , there exists a
Lévy process ξ = (ξt , t ≥ 0), possibly killed at an independent exponential time, which does
not depend on x and such that

Xt = x exp{ξζ(tx−α)}, 0 ≤ t ≤ xαI (αξ),
where

ζ(t) = inf{s ≥ 0 : Is(αξ) > t},
Is(αξ) =

∫ s

0
exp{αξu} du,

and I (αξ) = lim
t→+∞ It (αξ).

We shall refer to this transformation as the PSSMP Lamperti representation.
In [9], it was shown that a stable Lévy process with index α ∈ (1, 2) killed at the first time

that it enters the negative half-line has underlying Lévy process ξ , whose Laplace exponent is
given by

�(λ) = m �(λ+ α)
�(λ)�(α)

for λ ≥ 0,

wherem > 0 is the mean of−ξ , which is finite. Note that this last fact implies that the process
ξ drifts towards−∞. In the Brownian case, i.e. when α = 2, the Lévy process ξ is a Brownian
motion with drift a = − 1

2 .
The Laplace exponent of the underlying Lévy process, denoted by ξ∗, of the stable Lévy

process (with α ∈ (1, 2)) conditioned to stay positive is also computed in [9]. It is given by

�∗(λ) = m �(λ− 1+ α)
�(λ− 1)�(α)

for λ ≥ 0.

Here we use the gamma function for values x ∈ (−1, 0) via the relation x�(x) = �(1+ x). In
this case, the Lévy process ξ∗ drifts towards +∞. When α = 2, it is not difficult to show that
the process ξ∗ is a Brownian motion with drift a = 1

2 .
Next we remark that, under P̂x , the stable Lévy process X has no positive jumps. From

Corollary 6 of [9], it is known that the underlying Levy process in the PSSMP Lamperti
representation of the spectrally negative stable Lévy process conditioned to stay positive is ξ̂ ,
the dual of ξ . Note that in the case in which α = 2, the processes ξ̂ and ξ∗ are the same.

There is a definitive relation between ξ and ξ∗ which shall be used later and, hence, we
register it as a proposition below. Its proof can be found in [9]. In the sequel, Pr shall be a
reference probability measure on D (with associated expectation operator E) under which ξ
and ξ∗ are Lévy processes, issued from the origin, whose respective laws are defined above.

Proposition 1. For every t ≥ 0 and every bounded measurable function f ,

E(f (ξ∗t )) = E(exp{ξt }f (ξt )).
In particular, the process −ξ∗ and ξ satisfy Cramér’s condition, i.e.

E(exp{−ξ∗1 }) = 1 and E(exp{ξ1}) = 1.
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Finally, we note that ξ and ξ∗ are two examples of so-called Lamperti stable processes (see,
for instance, [2], [4], [6], [10], and [24] for related expositions and the formal definition of a
Lamperti stable process).

3.2. PSSMP Lamperti representation for CSBPs and CSBPs with immigration

Suppose, as in the previous section, that (X,Px) is a spectrally positive α-stable process
with index α ∈ (1, 2] starting from x > 0. We refer to Y , the associated CSBP, as the α-stable
CSBP. Moreover, when talking of the latter process conditioned to stay positive in the sense
of the description in Subsection 2.3, i.e. the processes (Y,P↑x ) for x > 0, we shall refer to the
associated CSBP with immigration as the α-stable CSBP with immigration.

We begin by showing that α-stable CSBPs and α-stable CSBPs with immigration are self-
similar processes (positivity is obvious). To this end, we state and prove a generic result which,
in some sense, is well-known folklore and shall be useful throughout the remainder of this
section. For the sake of completeness, we include its proof.

Proposition 2. Suppose that X is any PSSMP issued from x > 0 with self-similarity index
α > 1, and let θ be the CSB Lamperti time change. Then Xθ is a PSSMP issued from x with
self-similarity index α − 1 and with the same underlying Lévy process as X.

Proof. Suppose that η is the underlying Lévy process for the process X. We first define

A· =
∫ ·

0

ds

Xs
, I·(αη) =

∫ ·
0

exp{αηs} ds, and I·((α − 1)η) =
∫ ·

0
exp{(α − 1)ηs} ds.

Recall that ζ(·) is the right-continuous inverse of I·(αη). From the PSSMP Lamperti transform
of X and the change of variable s = xαIu(αη), we obtain

AxαI·(αη) =
∫ xαI·(αη)

0

ds

x exp{ηζ(s/xα)}
= xα−1

∫ ·
0

exp{αηu}
exp{ηu} du

= xα−1
∫ ·

0
exp{(α − 1)ηu} du.

On the other hand, the right-continuous inverse of I ((α − 1)η) is defined by

h(t) = inf{s ≥ 0 : Is((α − 1)η) > t},
and recall that θ is the right-continuous inverse function of A. Hence, we have, for any
0 ≤ t < xα−1I∞((α − 1)η),

h

(
t

xα−1

)
= inf

{
s ≥ 0 : Is((α − 1)η) >

t

xα−1

}
= inf{s ≥ 0 : AxαIs(αη) > t}
= inf

{
ζ

(
u

xα

)
≥ 0 : Au > t

}
= ζ

(
θ(t)

xα

)
.
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From the PSSMP Lamperti representation of X, we have

inf{t ≥ 0 : Xθ(t) = 0} = xα−1I∞((α − 1)η),

and, for all 0 ≤ t ≤ xα−1I∞((α − 1)η),

Xθ(t) = x exp{ηζ(θ(t)/xα)} = x exp{ηh(t/xα−1)}.
This completes the proof.

This leads immediately to the conclusion that the α-stable CSBPs and the α-stable CSBPs
with immigration are self-similar with index α − 1.

Corollary 1. (i) The process (Y,Px) is a PSSMP with self-similarity index α − 1. Moreover,
its PSSMP Lamperti representation under Px is given by

Yt = x exp{ξh(tx−(α−1))}, 0 ≤ t ≤ xα−1
∫ ∞

0
exp{(α − 1)ξu} du,

where

h(t) = inf

{
s ≥ 0 :

∫ s

0
exp {(α − 1)ξu} du > t

}
.

(ii) The process (Y,P↑x ) is a PSSMP with self-similarity index α − 1. Moreover, its PSSMP
Lamperti representation under P↑x is given by

Yt = x exp{ξ∗
ζ ∗(tx−(α−1))

}, t ≥ 0,

where

ζ ∗(t) = inf

{
s ≥ 0 :

∫ s

0
exp {(α − 1)ξ∗u } du > t

}
.

Corollary 1, Proposition 1, and the discussion in the previous sections give rise to the flow
of transformations given in Figure 1, where

h1(y) = ey, h2(y) = e−y, h3(y) = y, and h4 = 1

y
.

The vertical arrows in Figure 1 are the result of a Doobh-transform with theh-function indicated
in each direction, and the parameters α and α−1 are the index of self-similarity on the PSSMP
Lamperti representation.

ξ
PSSMP Lamperti
←−−→ (X†,Px)

CSB Lamperti
←−−→ (Y,Px)

PSSMP Lamperti
←−−→ ξ

↑ h2
|
|
↓ h1

α

h4 ↑
|
|

h3 ↓

↑ h4
|
|
↓ h3

α − 1

h2 ↑
|
|

h1 ↓

ξ∗
PSSMP Lamperti
←−−→ (X,P↑x )

CSB Lamperti
←−−→ (Y,P↑x )

PSSMP Lamperti
←−−→ ξ∗

Figure 1.
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4. Some path properties of α-stable CSBPs and α-stable CSBPs with immigration

In this section we state the remainder of our main results, leaving the proofs to the next
section. Throughout, we shall always assume that X is a spectrally positive α-stable process
unless otherwise stated.

4.1. Entrance laws

We begin by introducing
σx = sup{t > 0 : Xt ≤ x},

the last passage time of X below x ∈ R, for Theorem 1, below, which gives us self-similarity
of the α-stable CSBP when time reversed from extinction. Recall the notation P̂

↑
for the law

of X̂ conditioned to stay positive. We remark that, under P̂
↑

, the canonical process X drifts
towards∞ and also that Xt > 0 for t > 0.

Theorem 1. For each x > 0,

{(Y(T0−t)− : t < T0),Px} d= {(Xθ(t), 0 ≤ t < Aσx ), P̂
↑}, (9)

where ‘
d=’denotes equality in law or distribution. Moreover, the process Xθ := (Xθ(t), t ≥ 0)

under P̂
↑

is a PSSMP with indexα−1, starting from 0, with the same semigroup as the processes
(Xθ , P̂

↑
y ) for y > 0, and with entrance law given by

Ê
↑(f (Xθ(t))) = cα

m

∫ ∞
0

f (t1/(α−1)x)xα−1 exp{−cαx} dx, (10)

where cα = (c+(α − 1))−1/(α−1), t > 0, and f is a positive measurable function.

Remark 1. It is important to note that, when α = 2, the process (Xθ(t), t ≥ 0) under P̂
↑

is in
fact the CSBP with immigration. This follows from the remark made in Subsection 3.1 that in
this particular case we have ξ̂ = ξ∗.
Remark 2. As we shall see in the next section when we prove this theorem, the identity in law
(9) is in fact true for any CSBP (not just α-stable CSBPs) which becomes extinct almost surely
(and, thus, the conditions in (6) are in force).

In the case of an α-stable CSBP with immigration we have thus far only discussed the case
in which it is issued from x > 0. The following theorem tells us that the α-stable CSBP
with immigration is still well defined as a self-similar process when issued from the origin.
Moreover, the theorem also specifies the entrance law.

Theorem 2. The process (Y,P↑x ) converges weakly with respect to the Skorokhod topology as
x tends to 0 towards (Y,P↑), a PSSMP starting from 0 with the same semigroup as (Y,P↑x ) for
x > 0, and with entrance law given by

E
↑(exp{−λYt }) = (1+ c+(α − 1)tλα−1)−α/(α−1). (11)

4.2. Asymptotic results

Theorems 3, 4, and 5, below, each study the asymptotic behaviour for the α-stable CSBP
towards its moment of extinction. We start by stating the integral test for the lower envelope of
(Y(T0−t)− , 0 ≤ t ≤ T0) under Px at 0.
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Theorem 3. Let f be an increasing function such that limt→0 f (t)/t = 0. Then, for every
x > 0,

Px(Y(T0−t)− < f 1/(α−1)(t) infinitely often (i.o.) as t → 0) = 0 or 1

according respectively to whether∫
0+
f 1/(α−1)(t)t−α/(α−1) dt

is finite or infinite. In particular,

lim inf
t→0

Y(T0−t)−
tκ

=
{

0 if κ < 1/(α − 1),

+∞ if κ ≥ 1/(α − 1),
Px -almost surely (Px -a.s.).

Next, introduce H0, the class of increasing functions f : (0,+∞) �→ [0,+∞) such that

(i) f (0) = 0 and

(ii) there exists a β ∈ (0, 1) such that supt<β t/f (t) <∞.

We also denote by Y t the infimum of the CSBP (Y,Px) over [0, t]. The upper envelope of the
process (Y (T0−t)− , 0 ≤ t ≤ T0) under Px at 0 is described by the integral test in the following
theorem.

Theorem 4. Let f ∈ H0. Then the following statements hold.

(i) If ∫
0+

exp

{
−

(
c+(α − 1)t

f (t)

)−1/(α−1)}dt

t
<∞

then, for all ε, x > 0,

Px(Y (T0−t)− > (1+ ε)f 1/(α−1)(t) i.o. as t → 0) = 0.

(ii) If ∫
0+

exp

{
−

(
c+(α − 1)t

f (t)

)−1/(α−1)}dt

t
= ∞

then, for all ε, x > 0,

Px(Y (T0−t)− > (1− ε)f 1/α−1(t) i.o. as t → 0) = 1.

In particular, we have the following LIL:

lim sup
t→0

Y (T0−t)−
t1/(α−1)(log log(1/t))1−α

= (c+(α − 1))1/(α−1) Px -a.s.

Finally, still within the framework ofα-stable CSBPs, the following result describes the upper
envelope of the time-reversed processes (Y(T0−t)− , 0 ≤ t ≤ T0) and ((Y − Y )(T0−t)− , 0 ≤ t ≤
T0), in the form of a LIL.
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Theorem 5. For every x > 0, we have

lim sup
t→0

Y(T0−t)−
t1/(α−1)(log log(1/t))1−α

= (c+(α − 1))1/(α−1) Px -a.s. (12)

and

lim sup
t→0

(Y − Y )(T0−t)−
t1/(α−1)(log log(1/t))1−α

= (c+(α − 1))1/(α−1) Px -a.s. (13)

We should note that, whenα = 2, the upper envelope of the time-reversed process {(Y(T0−t)− ,
0 ≤ t ≤ T0),Px} is described by the Kolmogorov–Dvoretsky–Erdős integral test, since the
latter process has the same law as the square of a Bessel process of dimension d = 3 killed at
its last passage time below the level x > 0. (See, for instance, [13].)

Next we turn to the integral test which describes the lower envelope at 0 and at∞ of the
α-stable CSBP with immigration.

Theorem 6. Let f be an increasing function such that limt→0 f (t)/t = 0. Then

P↑(Yt < f 1/(α−1)(t) i.o. as t → 0) = 0 or 1

according respectively to whether∫
0+
f 1/(α−1)(t)t−α/(α−1) dt

is finite or infinite. In particular,

lim inf
t→0

Yt

tκ
=

{
0 if κ < 1/(α − 1),

+∞ if κ ≥ 1/(α − 1),
P↑ -a.s.

Let g be an increasing function such that limn→∞ g(t)/t = 0. Then, for all x ≥ 0,

P↑x (Yt < g1/(α−1)(t) i.o. as t →∞) = 0 or 1

according respectively to whether∫ ∞
g1/(α−1)(t)t−α/(α−1) dt

is finite or infinite. In particular, for any x ≥ 0,

lim inf
t→∞

Yt

tκ
=

{
0 if κ ≥ 1/(α − 1),

+∞ if κ < 1/(α − 1),
Px -a.s.

4.3. Fluctuation identities at last passage

Define the last passage time above x of ξ by

Dx = sup{t ≥ 0 : ξt ≥ x}.
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Theorem 7. Suppose that the Lévy process (X,P) does not drift towards+∞. Then, for every
x > 0 and 0 < y ≤ x,

Px
(

inf
0≤t≤Uy

Yt ≥ z
)
= W(y − z)

W(y)
1{z≤y},

where Uy = sup{t > 0 : Yt ≥ y} and the scale function W satisfies (3). In particular, in the
case in which X is a spectrally positive α-stable process with α ∈ (1, 2],

Px
(

inf
0≤t≤Uy

Yt ≥ z
)
= Pr

(
inf

0≤t≤Du
ξt ≥ v

)
= (1− ev−u)α−1,

where v = log(z/x), u = log(y/x), and z ≤ y.

Next we establish a similar result, but for the supremum at last passage for the CSBP with
immigration (Y,P↑). For this, we define

U−y = sup{t ≥ 0 : Yt ≤ y}.
Theorem 8. Let z ≥ y > 0. Then

P↑
(

sup
0≤s<U−y

Ys ≤ z
)
= 1− y

m∗z
,

where m∗ is the mean of ξ∗1 .

Now we define the following exponential functional of ξ∗:

I ∗ :=
∫ ∞

0
exp{−αξ∗s } ds.

The exponential functional I ∗ was studied by Chaumont et al. [9]. In particular, Chaumont et
al. [9] found that

Pr

(
1

I ∗
∈ dy

)
= αm∗q1(y) dy,

where q1 is the density of the entrance law of the excursion measure under P of the reflected
process, (Xt −Xt, t ≥ 0), away from 0.

The time-reversal property of (Y,P↑) at its last passage time (see Proposition 1 of [8])
combined with the CSB Lamperti representation and the PSSMP Lamperti representation gives
us the following result for the total progeny of the self-similar CSBP with immigration.

Proposition 3. For y > 0, the total progeny of (Y,P↑) up to time U−y ,
∫ U−y

0 Ys ds, and the last
passage time of (X,P↑) below y, σy , are both equal in law to �αI ∗, where � = YU−y − and is

independent of I ∗.

5. Proofs

5.1. Proofs of Theorems 1 and 2

We start by establishing some preliminary results needed for the proof of Theorem 1.

Proposition 4. Suppose that X is any spectrally positive Lévy process. If the conditions in (6)
are satisfied then, for every y > 0,

{(Y(T0−t)−, 0 ≤ t < T0),Py} d= {(Xθ(t), 0 ≤ t < Aσy ), P̂
↑}.
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Proof. We first prove that the CSB Lamperti representation is well defined for the process
(X, P̂

↑
). In order to do this, it is enough to prove that the map s �→ 1/Xs is P̂

↑
-a.s. integrable

in a neighbourhood of 0. To this end, recall that (6) implies that Py(τ0 <∞) = 1 for all y ≥ 0.
Hence, by Theorem VII.18 of [1], we know that, for y > 0,

{(Xt , 0 ≤ t < σy), P̂
↑} d= {(X(τ0−t)−, 0 ≤ t < τ0),Py}, (14)

which in turn can be used to deduce that∫ σy

0

1

Xs
ds under P̂

↑
is equal in law to

∫ τ0

0

1

Xs
ds under Py . (15)

However, the latter integral is equal to T0, which is Py-a.s. finite given the assumptions in (6).
Next, from the definition of Y , under Py , we have

(Y(T0−t)−, 0 ≤ t < T0) = (Xθ(Aτ0−t)−, 0 ≤ t < Aτ0). (16)

Define

θ ′(t) = inf{s > 0 : Bs > t} where Bs =
∫ s

0

1

Xτ0−u
du.

Setting t = Bs , we have

Aτ0 − Bs =
∫ τ0

0

1

Xu
du−

∫ s

0

1

Xτ0−u
du =

∫ τ0−s

0

1

Xu
du

and, hence,
Xθ(Aτ0−t)− = Xθ(Aτ0−s )− = X(τ0−s)− = X(τ0−θ ′(t))−.

As noted earlier, T0 = Aτ0 = Bτ0 . Now it follows, from (14), (15), and (16), that

{(Y(T0−t)−, 0 ≤ t < T0),Py} d= {(Xθ(t), 0 ≤ t < Aσy ), P̂
↑},

as required.

We now need the following auxiliary lemma which says in particular that the distribution
of I∞((α − 1)ξ) = ∫∞

0 exp{(α − 1)ξt } dt has a Fréchet distribution and, moreover, that the
Fréchet distribution is self-decomposable.

Lemma 1. The distribution of I := I∞((α − 1)ξ) is given by

Pr(I ≤ t) = exp{−(c+(α − 1)t)−1/(α−1)}. (17)

Moreover, I is self-decomposable and, thus, has a completely monotone density with respect
to the Lebesgue measure.

Proof. From the PSSMP Lamperti representation of (Y,Px) and Proposition 4, we deduce
that T0 = xα−1I . From [3], it is known that

Px(T0 ≤ t) = exp{−xut (∞)},
where ut (∞) solves ∫ ∞

ut (∞)
1

c+vα
dv = t.
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Therefore, ut (∞) = (c+(α − 1)t)−1/(α−1) and, hence,

Px(T0 ≤ t) = Pr

(
I ≤ t

xα−1

)
= exp{−x[c+(α − 1)t]−1/(α−1)},

which implies (17).
Let a < 0. Then

I =
∫ ∞

0
exp{(α − 1)ξu} du =

∫ Sa

0
exp{(α − 1)ξu} du+ e(α−1)a

∫ ∞
0

exp{(α − 1)ξ ′u} du,

where ξ ′ = (ξSa+t − a, t ≥ 0) and Sa = inf{t ≥ 0 : ξt ≤ a}. Then self-decomposability fol-
lows from the independence of (ξt , 0 ≤ t ≤ τa) and ξ ′. Self-decomposable distributions on
R+ are unimodal (see, for instance, Chapter 10 of [27]), i.e. they have a completely monotone
density on (0,∞), with respect to the Lebesgue measure.

Proof of Theorem 1. The time-reversal property, (9), follows from Proposition 4. The
PSSMP Lamperti representation of the process (Xθ(t), t ≥ 0) under P̂

↑
y when issued from

y > 0 follows from Proposition 2, noting in particular that (X, P̂
↑
y ) is a spectrally positive

stable process conditioned to stay positive, which is a positive, self-similar process with index
α.

The Lévy process ξ̂ is not arithmetic, and recall that E(ξ̂1) = m > 0, which means that ξ̂
satisfies the conditions of Theorems 1 and 2 of [5]. Hence, the family of processes (Xθ(t), t ≥ 0)
under P̂

↑
y for y > 0 converges weakly with respect to the Skorokhod topology as y ↓ 0 towards

a PSSMP starting from 0, which is (Xθ(t), t ≥ 0) under P̂
↑

. Moreover, according to the
aforementioned results, the latter process has the same semigroup as (Xθ , P̂

↑
y ) for y > 0.

From Theorem 1 of [2], the entrance law of (Xθ , P̂
↑
) is given by

Ê
↑(f (Xθ(t))) = 1

(α − 1)m
E(I−1f ((tI−1)1/(α−1)))

for every t > 0 and every f positive and measurable. Therefore, from the distribution of I
given in Lemma 1 and some basic calculations, we obtain (10).

Proof of Theorem 2. The entrance law of the process (Y,P↑) can again be constructed from
general considerations found in Theorem 1 of [5]. However, we give a more direct construction
appealing to properties of the CSBP with immigration.

The PSSMP Lamperti representation follows from Proposition 2, where now the underlying
Lévy process is ξ∗. Now, note that the Lévy process ξ∗ satisfies the conditions of Theorems 1
and 2 of [5], i.e. that ξ is not arithmetic and m∗ = E(ξ∗1 ) > 0. Hence, the family of processes
{(Yt , t ≥ 0),P↑x } for x > 0 converges weakly with respect to the Skorokhod topology as x goes
to 0 towards a PSSMP starting from 0, which is (Y,P↑). It is well known (see, for instance,
[16]) that its entrance law is of the form

E
↑(exp{−λYt }) = exp

{
−

∫ t

0
φ(us(λ)) ds

}
.

Solving (5) explicitly we find that

ut (λ) = (c+(α − 1)t + λ−(α−1))−1/(α−1).

We obtain (11) from straightforward calculations, recalling that φ(λ) = c+αλα−1; thus,
completing the proof.
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Remark 3. Referring again to Proposition 3 of [5], which says in our particular case that

E
↑(exp{−λY1}) = 1

m∗(α − 1)
E(exp{−λ(I ′)−1}(I ′)−1) for λ ≥ 0,

where I ′ is the exponential functional of (α − 1)ξ∗ and is given by

I ′ :=
∫ ∞

0
exp{−(α − 1)ξ∗s } ds,

it follows that we may characterise the law of I ′ via the relation

E(exp{−λ(I ′)−1}(I ′)−1) = m∗(α − 1)(1+ c+(α − 1)λα−1)−α/(α−1) for λ ≥ 0.

5.2. Proofs of Theorems 3, 4, 5, and 6

Proof of Theorem 3. Fix x > 0. From Theorem 1 we deduce that

Px(Y(T0−t)− < f 1/(α−1)(t) i.o. as t → 0) = P̂
↑
(Xθ(t) < f 1/(α−1)(t) i.o. as t → 0).

Since (Xθ , P̂
↑
) is a PSSMP with index α − 1 starting from 0, it is clear that the process

(Xα−1
θ , P̂

↑
) is a PSSMP with index 1. Then, from Theorem 3 of [8], the above probability is

equal to 0 or 1 according respectively to whether∫
0+

Pr

(
I >

t

f (t)

)
dt

t

is finite or infinite. In order to get our result, it is enough to show that

Pr(I > t) ∼ (c+(α − 1)t)−1/(α−1) as t →+∞. (18)

From Lemma 1 and with the change of variable h = (c+(α − 1)t)−1/(α−1), we have

lim
t→+∞

Pr(I > t)

(c+(α − 1)t)−1/(α−1)
= lim
h→0

1− e−h

h
= 1,

which establishes (18) and, hence, completes the proof.

Proof of Theorem 4. Here, we shall apply Theorem 1 of [22] to the process (Xα−1
θ , P̂

↑
).

First, we note again that from Theorem 1 we have the following equality:

Px(Y(T0−t)− > (1+ ε)f 1/(α−1)(t) i.o. as t → 0)

= P̂
↑
(Xθ(t) > (1+ ε)f 1/(α−1)(t) i.o. as t → 0).

Hence, according to Theorem 1(i) of [22] and noting that the process (Xθ , P̂
↑
) has no positive

jumps, the right-hand side of the above equality is equal to 0 for all ε > 0 if∫
0+

exp

{
−

(
c+(α − 1)t

f (t)

)−1/(α−1)}dt

t
<∞.

In order to prove part (ii), we note that from Theorem 1 we have

Px(Y(T0−t)− > (1− ε)f 1/(α−1)(t) i.o. as t → 0)

= P̂
↑
(Xθ(t) > (1− ε)f 1/(α−1)(t) i.o. as t → 0).
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Hence, applying Theorem 1(ii) of [22], we find that the above probability is equal to 1 for all
ε > 0 if ∫

0+
exp

{
−

(
c+(α − 1)t

f (t)

)−1/(α−1)}dt

t
= ∞.

This completes the proof.

Proof of Theorem 5. From Lemma 1 we have

− log Pr(I ≤ t) = (c+(α − 1)t)−1/(α−1).

This fulfills condition (6.19) of Theorem 6 of [23] and, hence, directly applying the aforemen-
tioned result we deduce the LIL (12). Now, the time-reversed process (Y(T0−t)− , 0 ≤ t ≤ T0)

under Px is a PSSMP starting from 0 with no positive jumps and its upper envelope is described
by (12); then, from Theorem 8 of [23], the reflected process ((Y −Y )(T0−t)− , 0 ≤ t ≤ T0) also
satisfies the same LIL (13).

The following result is crucial for the proof of Theorem 6 and can be seen as a corollary of
Proposition 1. Recall the definition

I ′ :=
∫ ∞

0
exp{−(α − 1)ξ∗s } ds.

Corollary 2. There is a positive constant C which depends only on α such that

Pr(I ′ > t) ∼ Ct−1/(α−1) as t →∞.
Proof. According to Lemma 4 of [25], if η is a nonarithmetic Lévy process which drifts

towards −∞ and satisfies Cramér’s condition for some θ > 0, i.e. E(exp{θη1}) = 1, then, for
β > 0,

Pr

(∫ ∞
0

exp{βηs} ds > t

)
∼ Kt−θ/β as t →∞,

where K is a nonnegative constant which depends on β. Hence, recalling Proposition 1, we
may apply Lemma 4 of [25] for the process −ξ∗ and obtain

Pr(I ′ > t) ∼ Ct−1/(α−1) as t →∞,
where C is a nonnegative constant which depends on α.

Proof of Theorem 6. From Theorem 3 of [8] we have

P↑(Yt < f 1/(α−1)(t) i.o. as t → 0) = 0 or 1

according respectively to whether ∫
0+

Pr

(
I ′ > t

f (t)

)
dt

t

is finite or infinite. Hence, from Corollary 2, we obtain the desired result.
The integral test at +∞ is proven similarly.
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5.3. Proofs of Theorems 7 and 8

Proof of Theorem 7. From Theorem 1 and since X has no negative jumps, it is clear that

{(Y(T0−t)−, T0 − Uy ≤ t ≤ T0),Px)} d= {(Xθ(t), Aτ+y ≤ t < Aσx ), P̂
↑}, (19)

where τ+y = inf{t > 0 : Xt > y}. On the other hand, by Theorem 1 of [7] we have, for z ≤ y,

P̂
↑
y

(
inf
t≥0
Xt ≥ z

)
= P̂
↑
y

(
inf

0≤t≤σx
Xt ≥ z

)
= W(y − z)

W(y)
.

Hence, from (19), the above formula, and the Markov property of (X, P̂
↑
), the first statement

of the theorem follows.
Next we remark that, for spectrally negative stable processes of index α ∈ (1, 2], it is known

that the scale function W(x) is proportional to xα−1. Secondly, let Uy = sup{t ≥ 0 : Yt ≥ y},
and note, again using the PSSMP Lamperti representation of (Y,Px), that

Pr
(

inf
0≤t≤Du

ξt ≥ v
)
= Px

(
inf

0≤t≤Uy
Yt ≥ z

)
,

where v = log(z/x), u = log(y/x), and z ≤ y. Hence, from Corollary 1 we have

Pr
(

inf
0≤t≤Du

ξt ≥ v
)
= (1− ev−u)α−1,

which establishes the conclusion.

Proof of Theorem 8. We start by defining the family of PSSMPs X̂(x) whose PSSMP Lam-
perti representation is given by

X̂(x) =
(
x exp

{
ξ̂∗
ζ̂ ∗(t/xα−1)

}
, 0 ≤ t ≤ xα−1I ′

)
, x > 0,

where ξ̂∗ = −ξ∗ and

ζ̂ ∗(t) = inf

{
t :

∫ s

0
exp{(α − 1)ξ̂∗u} du > t

}
.

Note that the random variable xα−1I ′ corresponds to the first time at which the process X̂(x)

hits 0; moreover, for each x > 0, the process X̂(x) hits 0 continuously.
We now set

U−y = sup{t ≥ 0 : Yt ≤ y} and � = YU−y −.
According to Proposition 1 of [8], the law of the process X̂(x) killed when hitting 0 is a
regular version of the law of the process {(Y(U−y −t)− , 0 ≤ t ≤ U−y ),P↑} conditionally on
{� = x}, x ∈ [0, y]. Hence, the latter process is equal in law to(

� exp
{
ξ̂∗
ζ̂ ∗(t/�α−1)

}
, 0 ≤ t ≤ �α−1I ′

)
,

and ξ̂∗ is independent of �. We deduce that

P↑
(

sup
0≤s<U−y

Ys ≤ z
)
= Pr

(
sup
s≥0

ξ̂∗s ≤ log

(
z

�

))
.
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On the one hand, it is a well-established fact that the all-time supremum of a spectrally negative
Lévy process which drifts to−∞ is exponentially distributed with parameter equal to the largest
root of its Laplace exponent. In particular, for x ≥ 0,

Pr
(

sup
s≥0

ξ̂∗s ≤ x
)
= 1− e−x.

Note that, by inspection of �∗(θ), the largest root is clearly θ = 1 (there are at most two,
and one of them is always θ = 0). On the other hand, from the above discussion, the random
variables ξ̂∗ and � are independent. Hence,

P↑
(

sup
0≤s≤U−y

Ys ≤ z
)
= E

(
1− �

z

)
.

Therefore, in order to complete the proof, it is enough to show that E(�) = y/m∗.
We thus momentarily turn our attention to describing the law of �. Let H = (Ht , t ≥ 0)

be the ascending ladder height process associated to ξ∗ (see Chapter VI of [1] for a formal
definition), and denote by ν its Lévy measure. According to Lemma 1 of [8], the law of � is
characterised as follows:

log(y−1�)
d= −UZ,

where U and Z are independent random variables, U is uniformly distributed over [0, 1], and
the law of Z is given by

Pr(Z > u) = E(H1)
−1

∫
(u,∞)

sν(ds), u ≥ 0.

We may now compute

E(�) = y
∫
(0,∞)

∫ 1

0
e−uz duPr(Z ∈ dz)

= y
∫
(0,∞)

1

z
(1− e−z)Pr(Z ∈ dz)

= y

E(H1)

∫
(0,∞)

(1− e−z)ν(dz). (20)

Next note that, since �∗(θ) has its largest root at θ = 1, the Wiener–Hopf factorisation for the
process ξ̂∗ must necessarily take the form �∗(θ) = (θ − 1)φ(θ) for θ ≥ 0, where φ(θ) is the
Laplace exponent of the descending ladder height process of ξ̂∗. Note that φ has no killing
term (i.e. φ(0) = 0) as ξ̂∗ drifts to −∞. Moreover, φ has no drift term as ξ̂∗ has no Gaussian
component (cf. [9, p. 175]). The latter two observations imply that∫

(0,∞)
(1− e−z)ν(dz) = φ(1) = �(θ − 1+ α)

(θ − 1)�(θ − 1)�(α)

∣∣∣∣
θ=1
= 1.

Note also that −m∗ = E(ξ̂∗1 ) = �∗′(0+) = −φ′(0+) = −E(H1). Putting the pieces together
in (20) completes the proof.
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6. Concluding remarks on quasistationarity

We conclude this paper with some brief remarks on a different kind of conditioning of
CSBPs to (7) which results in a so-called quasistationary distribution for the special case of the
self-similar CSBP. Specifically, we are interested in establishing the existence of normalisation
constants {ct : t ≥ 0} such that the weak limit

lim
t↑∞Px

(
Yt

ct
∈ dz

∣∣∣∣ T0 > t

)
exists for x > 0 and z ≥ 0.

Results of this kind have been established in [17] for CSBPs for which the underlying
spectrally positive Lévy process has a second moment; see also [20]. In the more general
setting, Pakes [21] formulated conditions for the existence of such a limit and characterised the
resulting quasistationary distribution. The result below shows that in the self-similar case we
consider in this paper, an explicit formulation of the normalisation sequence {ct : t ≥ 0} and
the limiting distribution is possible.

Lemma 2. Fix α ∈ (1, 2]. For all x ≥ 0, with ct = (c+(α − 1)t)1/(α−1),

lim
t↑∞Ex

(
exp

{
−λYt
ct

} ∣∣∣∣ T0 > t

)
= 1− 1

(1+ λ−(α−1))1/(α−1)
.

Proof. The proof pursues a similar line of reasoning to the aforementioned references [17],
[20], [21]. From (4), it is straightforward to deduce that

lim
t↑∞Ex

(
1− exp

{
−λYt
ct

} ∣∣∣∣ T0 > t

)
= lim
t↑∞

ut (λ/ct )

ut (∞) ,

if the limit on the right-hand side exists. However, since ψ(λ) = λα , it is easily deduced from
(5) that

ut (λ) = (c+(α − 1)t + λ−(α−1))−1/(α−1),

and the result follows after a straightforward calculation.

Although quasistationarity in the sense of ‘conditioning to stay positive’does not make sense
in the case of the CSBP with immigration, (Y,P↑x ), it appears that the normalising constants
{ct : t ≥ 0} serve a purpose to obtain the convergence in distribution below. A similar result
is obtained of [17] for CSBPs with immigration whose underlying Lévy process has finite
variance.

Lemma 3. Fix α ∈ (1, 2]. For all x ≥ 0, with ct = (c+(α − 1)t)1/(α−1),

lim
t↑∞E

↑
x

(
exp

{
−λYt
ct

})
= 1

(λ(α−1) + 1)α/(α−1)
.

Proof. We follow the ideas of [17], in which it was shown that (Y,P↑x )may also be obtained
as the Doob h-transform of the process (Y,P) with h(x) = x. That is to say,

E
↑
x (exp{−λYt }) = Ex

(
Yt

x
exp{−λYt }

)
.
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Differentiating (4) implies that

E
↑
x (exp{−λYt }) = exp{−xut (λ)}ψ(ut (λ))

ψ(λ)
.

Substituting in the necessary expressions for ψ and ut (λ), as well as replacing λ by λ/ct in the
previous formula, the result follows directly.
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