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Abstract

In this article we consider a toy example of an optimal stopping problem driven by fragmentation
processes. We show that one can work with the concept of stopping lines to formulate the notion of
an optimal stopping problem and moreover, to reduce it to a classical optimal stopping problem for a
generalized Ornstein–Uhlenbeck process associated with Bertoin’s tagged fragment. We go on to solve the
latter using a classical verification technique thanks to the application of aspects of the modern theory of
integrated exponential Lévy processes.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Homogenous fragmentation processes

Fragmentation processes have been the subject of an increasing body of literature and the
culmination of this activity has recently been summarised in the recent book of Bertoin [3]. Some
of the mathematical roots of fragmentation processes lay with older families of spatial branching
processes that have also seen periods of extensive interest such as branching random walks and
Crump-Mode–Jagers processes. Irrespective of modern or classical perspectives, such models
exemplify the phenomena of random splitting according to systematic rules and, as stochastic
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processes, they may be seen as modeling the growth of special types of multi-particle systems.
The aim of this paper is not to shed light on the already well understood intrinsic probabilistic
structure of fragmentation processes. Instead we wish to address a previously never treated issue
of how a homogenous fragmentation process may be used to drive optimal stopping problems.
We give here a toy example and show how the theory of so-called stopping lines allows us to
both formulate and solve it by first converting it to a classical optimal stopping problem for an
associated generalized Ornstein–Uhlenbeck process.

In order to give a precise statement of our optimal stopping problem, we shall first devote time
to recalling some important properties of homogenous fragmentation processes.

We are interested in the Markov process X := {X(t) : t ≥ 0}, where X(t) = (X1(t),
X2(t), . . .), that takes values in

S :=


s = (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,
∞

i=1

si = 1


,

that is to say, the infinite simplex of decreasing numerical sequences with sum equal to 1. The
process X possesses the fragmentation property, to be understood as follows. Let t, u ≥ 0. Given
that X(t) = (s1, s2, . . .), we have that X(t + u) has the same law as the variable obtained by
ranking in decreasing order the collective elements of the sequences X(1)(u),X(2)(u), . . . where
the latter are independent, random mass partitions with values in S having the same distribution
as s1X(u), s2X(u), . . . , respectively.

It is known that homogenous fragmentation processes can be characterized by a σ -finite
dislocation measure ν on S such that ν({(1, 0, . . .)}) = 0 and

S
(1− s1)ν(ds) <∞.

The general theory of fragmentation also allows one to include the possibility of continuous
erosion of mass, however, this feature will be excluded in this article. Roughly speaking, the
dislocation measure specifies the rate at which blocks split so that a block of mass x dislocates
into a mass partition xs, where s ∈ S, at rate ν(ds). To be more precise, let P be the space
of partitions of the natural numbers. Here a partition of N is a sequence π = (π1, π2, . . .) of
disjoint sets, called blocks, such that


i πi = N. The blocks of a partition are enumerated in

the increasing order of their least element; that is to say minπi ≤ minπ j when i ≤ j (with the
convention that min∅ = ∞). Now consider the measure on P ,

µ(dπ) =

S
ϱs(dπ)ν(ds), (1.1)

where ϱs is the law of Kingman’s paint-box based on s (cf. Chapter 2 of Bertoin [3]). It is known
that µ is an exchangeable partition measure, meaning that it is invariant under the action of finite
permutations on P . It is also known (cf. Chapter 3 of Bertoin [3]) that it is possible to construct
a fragmentation process on the space of partitions P with the help of a Poisson point process
on (P \ N) × N, say {(π(t), k(t)) : t ≥ 0}, which has intensity measure µ ⊗ ♯, where ♯ is
the counting measure. The aforementioned P-valued fragmentation process is a Markov process
which we denote by Π = {Π (t) : t ≥ 0} such that at all times t ≥ 0 for which an atom
(π(t), k(t)) occurs in the Poisson point process, Π (t) is obtained from Π (t−) by partitioning
the k(t)-th block into the sub-blocks (Πk(t)(t−)∩π j (t) : j = 1, 2, . . .). Thanks to the properties
of the exchangeable partition measure µ it can be shown that, for each t ≥ 0, the distribution
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of Π (t) is exchangeable and moreover, blocks of Π (t) have asymptotic frequencies in the sense
that for each i ∈ N and t ≥ 0,

|Πi (t)| := lim
n↑∞

1
n
♯{Πi (t) ∩ {1, . . . , n}}

exists almost surely. Further, these asymptotic frequencies, when ranked in decreasing order, say
|Π (t)|↓ = (|Π (t)|↓1 , |Π (t)|

↓

2 , . . .), t ≥ 0, form a homogenous mass fragmentation process with
dislocation measure ν. In this sense the process X and the process |Π |↓ := (|Π (t)|↓ : t ≥ 0)
have the same law.

For future reference we also note from Proposition 2.8 of Bertoin [3] that the ordered
asymptotic frequencies of π sampled under ϱs, written |π |↓, satisfy |π |↓ = s almost surely
and |π1| is a size-biased sample of s almost surely. Here ‘size-biased sample’ means that
ϱs(|π1| = si ) = si for i = 1, 2, . . . .

Let us introduce the constant

p := inf


p ∈ R :


S

1− ∞
i=1

s1+p
i

 ν(ds) <∞


which is necessarily in (−1, 0]. It is well known that

Φ(p) :=

S


1−

∞
i=1

s1+p
i


ν(ds)

is strictly increasing and concave for p ∈ (p,∞). Let us assume the following.

(A1): If p = 0 then

Φ′(0+) =

S


∞

i=1

si log


1
si


ν(ds) <∞.

The function Φ has a special meaning in the context of the growth of what is commonly
referred to as Bertoin’s tagged fragment. If one considers the process ξ = {ξt : t ≥ 0}, where for
all t ≥ 0,

ξt := − log |Π1(t)|,

then the underlying Poissonian structure implies that ξ is a subordinator. Moreover Φ turns out
to be its Laplace exponent, meaning that

Φ(p) = −t−1 log E(e−pξt )

for all t, p ≥ 0. Further, when p < 0, ξ has finite mean, that is to say Φ′(0+) < ∞, and the
same is true when p = 0 thanks to (A1). Note that the Lévy measure, m, associated to ξ is given
through the dislocation measure ν via the formula

m(dx) = e−x
∞

i=1

ν(− log si ∈ dx)

for x > 0 and, in particular, it necessarily satisfies

(0,∞)(1 ∧ x)m(dx) <∞.

On account of the fact that Π (t) is an exchangeable partition, it also follows that, given
|Π (t)|↓, the distribution of |Π1(t)| is that of a size-biased pick. This observation gives us the
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so-called Many-to-one Principle that for all positive, bounded measurable f ,

E


n≥1

f (|Πn(t)|)|Πn(t)|


= E[ f (e−ξt )]. (1.2)

The above formula, or rather a slightly more elaborate version of it, turns out to be a key
ingredient in formulating optimal stopping problems for fragmentation processes.

2. Stopping lines

The concept of a stopping line was introduced by Bertoin [3], and used extensively in [2], in
the context of fragmentation processes, capturing in its definition the essence of earlier ideas
on stopping lines for various classes of spatial branching processes coming from the work
of Neveu [14], Jagers [11], Chauvin [6] and Biggins and Kyprianou [4]. Roughly speaking
a stopping line plays the analogous role to that of a stopping time for single particle Markov
processes. We give below a more concise definition.

Recall that for each integer i ∈ N and s ∈ R+ we denote by Bi (s) the block of Π (s) which
contains i , with the convention that Bi (∞) = {i}. For comparison, recall that Πi (t) is the i th
block by order of least element. We write

Gi (t) = σ(Bi (s), s ≤ t)

for the sigma-field generated by the history of the block containing i up to time t .

Definition 1. We call a stopping line a family ℓ = (ℓ(i), i ∈ N) of random variables with values
in [0,∞] such that for each i ∈ N,

(i) ℓ(i) is a (Gi (t))-stopping time.
(ii) ℓ(i) = ℓ( j) for every j ∈ Bi (ℓ(i)).

For instance, first passage times such as ℓ(i) = inf{t ≥ 0 : |Bi (t)| ≤ a} for a fixed level
a ∈ (0, 1) define a stopping line.

The key point is that it can be checked that the collection of blocks Π (ℓ) = {Bi (ℓ(i))}i∈N is a
partition of N which we denote by Π (ℓ) = (Π1(ℓ),Π2(ℓ), . . .), where as usual the enumeration
is by order of least element.

Observe that because Bi (ℓ(i)) = B j (ℓ( j)) when j ∈ Bi (ℓ(i)), the set {Bi (ℓ(i))}i∈N has
repetitions. Hence (Π1(ℓ),Π2(ℓ), . . .) is simply a way of enumerating each element only once
by order of discovery. In the same way the ℓ( j)’s can be enumerated as ℓi , i = 1, . . . such that
for each i, ℓi corresponds to the stopping time of Πi (ℓ). Note that ℓ(1) = ℓ1. For convenience,
for each t ≥ 0, we may write {←−Π i (s) : s ≤ t} to mean ancestral evolution of the block Πi (t).

The following lemma, which in moral essence is lifted from [2], gives us a generalization
of (1.2).

Lemma 1 (Many-to-One Principle). Let ℓ be a stopping line. Then, for any non-negative,
bounded measurable f and family of random variables (Ai (ℓ) : i ≥ 1) such that for each
i, Ai (ℓ) = F({←−Π i (s) : s ≤ ℓi }), where F is a non-negative measurable function of {←−Π i (s) :
s ≤ ℓi }. Then

E


i

|Πi (ℓ)| f (Ai (ℓ), ℓi )


= E( f (A1(ℓ), ℓ1)1{ℓ1<∞}). (2.1)
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Proof. The proof is essentially the same as the proof of (1.2); cf. Lemma 2 of [2]. Indeed, since
Π (ℓ) is an exchangeable partition, the sum on the left hand side can be understood to indicate that
the pair (A1(ℓ), ℓ1) is a size-biased pick from the sequence ((Ai (ℓ), ℓi ), i ≥ 1). The indicator
function in the right-hand side comes from the possibility that there is some dust in Π (ℓ); that is
to say, blocks, for example singletons, which have zero asymptotic frequency. �

3. An optimal stopping problem

The main objective of this paper is to solve the following toy optimal stopping problem for
the homogenous fragmentation process described above. We want to find both the value and an
optimizing strategy for the following quantity

V (c) = sup
ℓ

E


n≥1

 ℓn

0
e−γ θs

|
←−Π n(s)|−γ ds+ c


|Πn(ℓ)|

1+γ e−qℓn


, (3.1)

where γ, θ > 0, q ≥ 0 and the supremum is taken over all stopping lines ℓ.
To give a meaning to the above optimal stopping problem we can think of the following

interpretation. A commodity is crushed and sold. For the sake of argument we may consider this
commodity to be rock. Buyers of the rock may order it crushed according to any of the strategies
ℓ (one may think of this as ordering gravel from the original rock source which has been crushed
to a particular specification). The seller of the crushed ensemble Π (ℓ) prices as follows. For
every fragment Πn(ℓ) in the crushed ensemble Π (ℓ), the buyer must pay a premium which is the
sum of c monetary units and a cost which depends on the process of how the individual fragment
Πn(ℓ) was formed; that is

 ℓn
0 e−γ θ |←−Π n(s)|−γ ds. Note that fragments which are crushed to a

very fine degree in a short amount of time will attract a large premium. At the same time, the
seller discounts the premium on individual fragments according to their size through the factor
|Πn(ℓ)|

1+γ . The smaller a block is, the larger the discount is offered to offset the large crushing
premium. Finally, as the pricing mechanism depends on the evolution of the crushing process
through time, an exponential discounting is imposed at rate q to accommodate for the net present
monetary value.

The first and most important observation in handling (3.1) is that, with the help of the
Many-to-one Principle, we are able to convert this optimal stopping problem for fragmentation
processes into an optimal stopping problem for a single particle Markov process, which, in this
case, turns out to be a generalized Ornstein–Uhlenbeck process. The relevant definition of this
process is as follows.

Suppose that Y = {Yt : t ≥ 0} is a spectrally positive Lévy process with Laplace exponent
given by

ψ(u) = log E(e−uY1) = θu − Φ(u)

for u ≥ 0. That is to say, Y is equal in law to the difference of the subordinator describing
Bertoin’s tagged fragment and a linear drift with rate θ . (Note that in particular, Y is a process
with bounded variation paths and Y0 = 0.) Then, for each c > 0 define the stochastic process
Z (c) = {Z (c)t : t ≥ 0} by

Z (c)t = e−γYt

 t

0
eγYs ds + c


, t ≥ 0. (3.2)
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On account of the fact that Y is spectrally positive, it follows that Z (c) experiences only
negative jumps in its path. It is also easy to see that Z (c) is a Markov process. Indeed, for fixed
t ≥ 0, write Ys = Yt+s − Yt so that Y = {Yu : u ≥ 0} is independent of {Z (c)u : u ≤ t} and has
the same law as Y , we have

Z (c)t+s = e−γYs e−γYt

 t

0
eγYs ds + c + eγYt

 s

0
eγYu du


= e−γYs


e−γYt

 t

0
eγYs ds + c


+

 s

0
eγYu du


= Z (Z (c)t )

s

where, for each c > 0,Z (c) is independent of {Z (c)u : u ≤ t} and has the same law as Z (c).
The process Z (c) is known as a generalized Ornstein–Uhlenbeck (OU) process on account of

its definition, (3.2), resembling that of the classical OU process driven by Brownian motion.
Henceforth let us assume that

(A2): θ > Φ′(0+),

from which it follows that E(Y1) = −θ + Φ′(0+) < 0 and hence limt↑∞ Yt = −∞ almost
surely. In that case it is known (cf. [13]) that

∞

0
eγYt dt <∞,

which implies that limt↑∞ Z (c)t exists and is equal to +∞ almost surely.
The next lemma shows how we may reformulate (3.1) in terms of the process Z (c).

Lemma 2. For all γ, θ, c > 0 and q ≥ 0,

V (c) = sup
τ

E[e−(q+θγ )τ Z (c)τ ] (3.3)

where the supremum is taken over the family of stopping times for the stochastic process Y .

Proof. A standard argument using the Many-to-one Principle shows us that for a given stopping
line ℓ we have

E


n≥1

 ℓn

0
e−γ θs

|
←−Π n(s)|−γ ds+ c


|Πn(ℓ)|

1+γ e−qℓn



= E
 ℓ1

0
e−γ θeγ ξs ds+ c


e−γ ξℓ1 e−qℓ11{ℓ1<∞}


= E

 ℓ1

0
eγYs ds+ c


e−γYℓ1 e−(q+θγ )ℓ11{ℓ1<∞}


= E


Zℓ1e−(q+θγ )ℓ11{ℓ1<∞}


where we recall that ξ = {ξt : t ≥ 0} plays the role of the tagged fragment and left hand and
right hand sides of this series of equalities are understood to be infinite in value at the same time.
The indicator can be removed in the final equality as soon as we can show that

lim
t↑∞

e−(q+θγ )t Z (c)t = 0.
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This is easily shown however by writing λ = q + θγ and observing that

e−λt Z (c)t = e−κ(λ)Yt−λt e−(γ−κ(λ))Yt


∞

0
eγYs ds + c


,

where κ(λ) is the largest solution of the equation ψ(u) = λ. Note that ψ is convex, zero at
zero, tending to infinity at infinity (cf. Chapter 8 of [12]). Moreover, under the assumption (A2),
ψ ′(0+) > 0 so that ψ is increasing. It follows that κ(λ) is finite. Recall that the integral on
the right hand side is almost surely convergent. Moreover since exp{−κ(λ)Yt − λt} is a positive
martingale, and hence almost surely convergent, and since, by the definition of λ and the fact that
ψ is increasing, κ(λ) > γ , it follows that limt↑∞ e−λt Z (c)t = 0 almost surely. �

We remark that a family of optimal stopping problems for generalized Ornstein–Uhlenbeck
similar to (3.3) has been considered by Gapeev [9] for compound Poisson processes with
exponential jumps and by Cissé et al. [7] for spectrally negative Lévy processes. Another related,
but again different, optimal stopping problem can be found in [1].

4. Solution of the optimal stopping problem

It turns out that, like many optimal stopping problems, the optimal strategy in (3.1) boils down
to first passage over a threshold of an auxiliary process. In our case, when considering our optimal
stopping problem in the form (3.3) it will turn out to be optimal to stop when the generalized
OU process Z (c) crosses an appropriately chosen level b∗ from below. The intuition is roughly
as follows. One sees that for a fixed stopping time τ , taking account of (3.2), the expectation
E[e−λτ Z (c)τ ], where λ = q + θγ , is increasing and convex in c. Monotonicity and convexity are
preserved when taking a supremum over all admissible τ . Moreover, by considering the stopping
time τ = 0, it is easily seen that the value function V (c) in (3.1) is bounded below by c. As a
rule of thumb (without engaging with specific assumptions), it is known that the solution to many
types of Markovian optimal stopping problems, consists of stopping as soon as the underlying
Markov process enters the domain at which the value function agrees with the gain function; in
this case {c ≥ 0 : V (c) = c}. Taking account of the aforementioned facts that V (c) is increasing,
convex and bounded below by c as well as the fact that limt↑∞ e−λt Z (c)t = 0 almost surely, there
is strong evidence that the domain {c : V (c) = c} will take the form of a half line [b,∞) for
some b ≥ 0. In particular, the optimal time to stop will coincide with the first passage of Z c

above the level b.
Define for b ≥ c,

τ c
(b,∞) = inf{t > 0 : Z (c)t > b}.

Note in particular that, thanks to the fact that Z (c) is skip-free upwards, we have that Z (c)τ(b,∞) = b
on the event {τ(b,∞) < ∞} which, in turn, occurs with probability 1 thanks to the assumption
(A2). Hence, for any λ > 0,

E(e−λτ
c
(b,∞) Z (c)

τ c
(b,∞)

) = bE(e−λτ
c
(b,∞)).

Note that, whilst in the previous section we had λ = q + γ θ , throughout this section, unless
otherwise stated, we will simply take λ as a strictly positive valued number.
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Recall that, for λ ≥ 0, κ(λ) is the largest solution of the equation ψ(u) = λ. Define, for all
t ≥ 0,Ft = σ(Ys : s ≤ t) and consider the exponential change of measure

dPκ(λ)

dP

Ft

= e−κ(λ)Yt−λt , for λ ≥ 0. (4.1)

Under Pκ(λ), the process Y is still a spectrally positive and its Laplace exponent, ψκ(λ) satisfies
the relation

ψκ(λ)(u) = ψ(κ(λ)+ u)− λ, for u ≥ 0.

See for example Chapter 8 of [12] for further details on the above remarks. Note in particular
that it is easy to verify that ψ ′κ(λ)(0+) > 0 and hence the process Y under Pκ(λ) drifts to −∞.
According to earlier discussion, this guarantees that also under Pκ(λ), the process Z (c) also drifts
to +∞.

Lemma 3. Suppose that λ ≥ 0 and that κ(λ) > γ , then for all b ≥ c,

E(e−λτ
c
(b,∞)) =

Eκ(λ)

(c + I∞)

κ(λ)
γ


Eκ(λ)


(b + I∞)

κ(λ)
γ

 ,
where

I∞ =

∞

0
eγYs ds.

Proof. The proof of this Lemma follows similar arguments to those used in [8]. Define the
random variable

It =

 t

0
eγYs ds

for γ > 0 and t ≥ 0. Thanks to the fact that Z (c) is skip free upwards, we have, in the event that
{τ c
(b,∞) <∞}, that

b = e
−γYτc

(b,∞)


c +

 τ b
(b,∞)

0
eγYs ds


.

Hence

c + I∞ = c +
 τ b

(b,∞)

0
eγYs ds + e

γYτc
(b,∞)


∞

0
e
γ (Yτc

(b,∞)
−Yτc

(b,∞)
)
ds = e

γYτc
(b,∞) (b + I ′∞),

where I ′∞ is an independent copy of I∞.
Next note from the discussion preceding the statement of Lemma 3 that Pκ(λ)(τ c

(b,∞) <∞) =

1 and hence, choosing γ = κ(λ),

Eκ(λ)[(b + I∞)s]Eκ(λ)[e
κ(λ)Yτc

(b,∞) ] = Eκ(λ)[(c + I∞)s] for any s ∈ R, (4.2)

where we understand both sides of the equality to be infinite simultaneously.
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In order to complete the proof, we need to show that for s = κ(λ)
γ

and a > 0, the quantity
Eκ(λ)[(a + I∞)s] is finite. In that case, it follows from (4.1) and (4.2) that for λ ≥ 0

E[e−λτ
c
(b,∞) ] = Eκ(λ)(e

κ(λ)Yτc
(b,∞) )

=

Eκ(λ)

(c + I∞)

κ(λ)
γ


Eκ(λ)


(b + I∞)

κ(λ)
γ

 (4.3)

as required.
Since, for s ≥ 1

Eκ(λ)[(a + I∞)s] ≤ 2s−1(as
+ Eκ(λ)[I s

∞]),

it suffices to investigate the finiteness of Eκ(λ)[I s
∞]. According to Lemma 2.1 in [13] the

expectation Eκ(λ)[I s
∞] is finite for all s ≥ 0 such that −ψκ(λ)(−γ s) > 0. Since ψκ(λ)(−γ s) is

well defined for κ(λ)−γ s ≥ 0, then a straightforward computation gives us that Eκ(λ)[I s
∞] <∞

for s ∈ [0, κ(λ)
γ
]. �

The next lemma concerns how we can choose the optimal threshold, b∗.

Lemma 4. Suppose that κ(λ) > γ and define the function

f (b) =
1
b

Eκ(λ)

(b + I∞)

κ(λ)
γ


Eκ(λ)


(b + I∞)

κ(λ)
γ
−1
 . (4.4)

Then f is continuous, strictly monotone decreasing, satisfies f (0+) = ∞ and f (∞) = 1 and
there exists a unique solution, denoted by b∗, to the equation

f (b) =
κ(λ)

γ
.

Proof. It is clear from the definition of f that f (0+) = ∞ and f (∞) = 1. Let b < a and note
that monotonicity of f follows on account of the fact that

f (a) =
1
a

Eκ(λ)

(a + I∞)

κ(λ)
γ


Eκ(λ)


(a + I∞)

κ(λ)
γ
−1
 Eκ(λ)


(b + I∞)

κ(λ)
γ


Eκ(λ)


(b + I∞)

κ(λ)
γ



=
1
a

1

E[e−λτ
b
(a,∞) ]

Eκ(λ)

(b + I∞)

κ(λ)
γ


Eκ(λ)


(a + I∞)

κ(λ)
γ
−1


=
b
a

f (b)

E[e−λτ
b
(a,∞) ]

Eκ(λ)

(b + I∞)

κ(λ)
γ
−1


Eκ(λ)

(a + I∞)

κ(λ)
γ
−1

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=
b
a

f (b)

E[e−λτ
b
(a,∞) ]

E[e
−λτ b

(a,∞)−γY
τb
(a,∞) ]

≤ f (b). (4.5)

In the above computation, the second equality follows from Lemma 3, the third equality follows
from (4.4), the fourth equality is the result of the identity

E[e
−λτ b

(a,∞)−γY
τb
(a,∞) ] =

Eκ(λ)

(b + I∞)

κ(λ)
γ
−1


Eκ(λ)

(a + I∞)

κ(λ)
γ
−1
 ,

which itself follows from a computation similar to (4.3) and finally, the inequality at the end of
(4.5) follows on account of the fact that

a = e
−γY

τb
(a,∞) (b + Iτ b

(a,∞)
)⇒

b
a

e
−γY

τb
(a,∞) < 1

which implies

b
a

E[e
−λτ b

(a,∞)−γY
τb
(a,∞) ] ≤ E[e−λτ

b
(a,∞) ],

providing the necessary justification. �

Define the pair (τ ∗, V ∗) such that τ ∗ = τ c
(b∗,∞) and

V ∗(c) = E(e−λτ
∗

Z (c)τ∗ ), (4.6)

for c > 0. Our main result giving the solution to our optimal stopping problem can now be stated
as follows.

Theorem 1. Suppose that q, γ > 0, write λ = q + θγ and recall that (A1) and (A2) are in
force (the latter of which implies in particular that κ(λ) > γ ). The value function V in (3.3) is
equal to V ∗ and this value is obtained by the optimal strategy τ ∗. In particular this implies that
an optimal stopping line strategy is given by ℓ∗ = (ℓ∗(n) : n ∈ N) where

ℓ∗(n) = inf


t > 0 :
 t

0
e−γ θs

|Bn(s)|−γ ds+ c

|Bn(t)|γ > b∗


,

for all n ∈ N.

5. Proof of Theorem 1

Note that, as ℓ∗ is necessarily an exchangeable partition, for all n ∈ N, the formula for ℓ∗(n)
is obtained for the formula for ℓ∗(1) by simply replacing the index 1 by n. At the same time we
have ℓ∗(1) = ℓ∗1 and hence the proof is complete as soon as we show that

ℓ∗1 = inf


t > 0 :
 t

0
e−γ θs

|B1(s)|−γ ds+ c

|B1(t)|γ > b∗


,

which is equivalent to showing the solution of (3.3) is given by the pair (τ ∗, V ∗).
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Following a classical verification technique, it suffices to show that

(i) the limit limt↑∞ e−λt Z (c)t exists almost surely and is finite,
(ii) V ∗(c) ≥ c for all c > 0 and

(iii) for all c > 0, {e−λt V ∗(Z (c)t ) : t ≥ 0} is a right continuous super-martingale.

See for example Lemma 9.1 in [12]. Note however that although this lemma is stated for Lévy
processes, it is straightforward to see that it equally holds for the process Z c.

The requirement (i) was demonstrated in the proof of Lemma 2. In order to show (ii) and (iii)
we need to introduce the following function,

V (c) = b∗
Eκ(λ)


(c + I∞)

κ(λ)
γ


Eκ(λ)


(b∗ + I∞)

κ(λ)
γ

 ,
defined for all c > 0. Recall that, since λ = q + γ θ and (A2) is assumed, κ(λ) > γ and hence,
with the help of Lemma 3, we have from the definition (4.6) that V ∗(c) = V (c) for all c ≤ b∗

and otherwise V ∗(c) = c for c > b∗. There is also continuity at b∗ in V ∗ thanks to regularity
of (b∗,∞) for Zb∗ , i.e. P(τ b∗

(b∗,∞) = 0) = 1. Moreover, on account of the fact that κ(λ)
γ

> 1,
we easily see that V is a convex, increasing, continuously differentiable function. In particular,
thanks to the definition of b∗, it is also clear that V ′(b∗) = 1 thus making c a tangent line to V (c),
touching it at b∗, and hence V (c) ≥ c for all c > 0. Specifically we note that there is smooth
pasting at b∗. It follows that V ∗ is convex, continuously differentiable with bounded derivatives
and V ∗(c) ≥ c. The latter is the requirement (ii).

It thus remains to show (iii). We do this through the following three lemmas.

Lemma 5. For all c > 0, {e−λtV (Z (c)t ) : t ≥ 0} is a martingale.

Proof. Note that

E(e−λtV (Z (c)t )) = b∗E

e−λt
Eκ(λ)


(Z (c)t +

I∞) κ(λ)γ |Ft


Eκ(λ)


(b∗ + I∞)

κ(λ)
γ




= b∗E

e−λt e−κ(λ)Yt

Eκ(λ)


c +
 t

0 eγYs ds + eγYtI∞ κ(λ)γ |Ft



Eκ(λ)

(b∗ + I∞)

κ(λ)
γ




= b∗Eκ(λ)


Eκ(λ)


c +

 t
0 eγYs ds + eγYtI∞ κ(λ)γ |Ft



Eκ(λ)

(b∗ + I∞)

κ(λ)
γ




= b∗
Eκ(λ)


(c + I∞)

κ(λ)
γ


Eκ(λ)


(b∗ + I∞)

κ(λ)
γ


= V (c), (5.1)
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where I∞ is independent of Ft and has the same distribution as I∞. Now note by the Markov
property that

E(e−λ(t+s)V (Z (c)t+s)|Ft ) = e−λtE(e−λsV (Z (Z (c)t )
s )|Ft ) = e−λtV (Z (c)t ) (5.2)

where, given c > 0, {Z (c)t : t ≥ 0} is a copy of Z (c) which is independent of Ft . �

Next, note that it is straightforward to show that the process {Z (c)t : t ≥ 0} is described by the
stochastic differential equation

Z (c)t = c +
 t

0
(1+ γ θ Z (c)s−)ds −


0<s≤t

Z (c)s−(1− e−γ1ξs ),

where we recall that ξ = {ξt : t ≥ 0} is Bertoin’s tagged fragment and, for all t > 0,1ξt =

ξt − ξt−. Using standard calculus for bounded variation, right-continuous stochastic processes,
one deduces that for any C1(0,∞) function f with bounded derivatives,

e−λt f (Z (c)t )− f (c) =
 t

0
e−λs(L− λ) f (Z (c)s−)ds + M f

t , (5.3)

where c > 0, t ≥ 0,

L f (x) = (1+ γ θx) f ′(x)+

(0,∞)


f (e−γ y x)− f (x)


m(dy),

and the process {M f
t : t ≥ 0} is a martingale given by the compensated process

M f
t =


s≤t


f (e−γ1ξt Z (c)s−)− f (Z (c)s−)


−

 t

0


(0,∞)


f (e−γ y Z (c)s−)− f (Z (c)s−)


m(dy)ds

for t ≥ 0.

Lemma 6. For all x, λ > 0, the function (L− λ)V (x) = 0.

Proof. First note that we may take f = V in (5.3), noting that V ∈ C1(0,∞) and that its
derivatives are bounded since it is an increasing convex function. Since, for all c > 0,

e−λtV (Z (c)t )− V (c)− MV
t =

 t

0
e−λs(L− λ)V (Z (c)s−)ds, t ≥ 0

is a martingale, it must follow that, with probability one, (L − λ)V (Z (c)t ) = 0 for Lebesgue
almost every t ≥ 0. It is a straightforward exercise however to deduce that (L − λ)V (x) is a
continuous function on (0,∞). Hence, since Z (c)t is right continuous as a function of t , then so
is (L − λ)V (Z (c)t ). It follows that, with probability one, (L − λ)V (Z (c)t ) = 0 for all t ≥ 0. In
particular, for any θ ≥ c > 0, (L − λ)V (Z (c)

τ c
(θ,∞)

) = (L − λ)V (θ) = 0. This establishes the

result. �
Using the above lemma, we consider the behavior of (L−λ)V ∗(x) in the final step to proving

the supermartingale property.

Lemma 7. For all x > 0 we have (L − λ)V ∗(x) ≤ 0 and hence it follows from (5.3) that
{e−λt V ∗(Z (c)t ) : t ≥ 0} is a supermartingale.
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Proof. Note that for x > b∗ we have V ∗(x) = x . It follows that for x > b∗

(L− λ)V ∗(x) = (1− qx)+

(0,∞)


V ∗(e−γ y x)− x


m(dy)

where we have used that λ = q + γ θ . Note that for each x > b∗, for a given δ < x − b∗ there
exists an ϵ > 0 such that for all z ∈ (x − δ, x + δ)

(0,∞)


V ∗(e−γ yz)− z


m(dy) = −z


(0,ϵ)

(1− e−γ y)m(dy)

+


[ϵ,∞)


V ∗(e−γ yz)− z


m(dy).

Using the above representation together with the fact that, by convexity, V ∗′(x) ≤ 1, a
straightforward calculation shows that for all x > b∗

d
dx
(L− λ)V ∗(x) ≤ −q −


(0,∞)

(1− e−γ y)m(dy) < 0.

Note however that, thanks to the smooth pasting condition,

(L− λ)V ∗(b∗) = (L− λ)V (b∗) = 0

and hence it follows that (L− λ)V ∗(x) ≤ 0 for all x > b∗. Since (L− λ)V ∗(x) = (L− λ)V (x)
for x ≤ b∗ we have that

(L− λ)V ∗(x) ≤ 0 (5.4)

for all x > 0.
Now recalling that V ∗ is a continuously differentiable function with bounded derivatives,

using (5.3) with f = V ∗, we see, with the help of (5.4), that for all c > 0, {e−λt V ∗(Z (c)t ) : t ≥ 0}
is a supermartingale. Right continuity follows immediately by virtue of the fact that V ∗ is
continuous and that {Z (c)t : t ≥ 0} has right continuous paths. �

6. Example

In this section, we present an example for which f (b) and the optimal barrier b∗ can be
computed explicitly. We start by specifying the dislocation measure ν on S. Consider an i.i.d.
sequence of random variables which are uniformly distributed on [0, 1], denoted by {Un : n ≥ 1}.
Write (S1, S2, . . .) for the random element of S such that S1 := U1 and Sn = Un

n−1
k=1(1−Uk)

for all n ≥ 2. To see that (S1, S2, . . .) belongs to S, note that S1 is a uniform partition of the
interval [0, 1], S2 is a uniform partition of the interval [S1, 1], S3 is a uniform partition of the
interval [S2, 1], and so on. We shall take ν to be proportional to the distribution of (S1, S2, . . .)

with total mass θγ > 0. Note that in the terminology of Bertoin [3] the associated fragmentation
process is also called a fragmentation chain on account of the fact that each block waits an
independent and exponentially distributed amount of time before dislocating.

We claim that with this choice of ν, the Lévy measure of the tagged fragment now respects
m(dx) = θe−x dx for x > 0. Indeed, a straightforward transformation shows that, for
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z > 0,
(0,∞)

e−zx m(dx) =

(0,∞)

e−(z+1)x

n≥1

ν(− log sn ∈ dx)

=


n≥1

θγ

n−1
i=1

E((1−Ui )
1+z)E(U 1+z

n )

= θγ
E(U 1+z

1 )

1− E((1−U1)1+z)

= θγ
1

1+ z
.

It now follows that the spectrally positive Lévy process Y has Laplace exponent

ψ(u) = θu −

∞

0
(1− e−ux )θγ e−x dx,

where θ > 0 and γ < 1. It is clear that under this selection of parameters, the condition
θ > Φ′(0+) is satisfied. Moreover under Pκ(λ), we have

ψκ(λ)(u) = θu −

∞

0
(1− e−ux )θγ e−(κ(λ)+1)x dx .

In other words under Pκ(λ), γY is a spectrally positive Lévy process of bounded variation with
drift θγ and with Lévy measure given by

Π (dx) = θe−
(κ(λ)+1)

γ
x dx .

According to Proposition 2.1 in [5] the density of I∞ under Pκ(λ), denoted here by g, satisfies
the following integral equation

θγ x − 1

x
(κ(λ)+1)

γ g(x) =
θγ

κ(λ)+ 1

 x

1/θγ
u
(κ(λ)+1)

γ g(u)du.

Hence, we have

g(x) = c(θ, γ, κ(λ))x−
κ(λ)+1
γ


x −

1
θγ

 1
κ(λ)+1−1

for x >
1
θγ
,

where

c(θ, γ, κ(λ)) =

θγ
− κ(λ)+1

γ
+

1
κ(λ)+1

Γ

κ(λ)+1
γ


Γ

κ(λ)+1
γ
−

1
κ(λ)+1


Γ


1
κ(λ)+1

 .
From Eq. (3.197.2) in [10], we deduce

Eκ(λ)


b + I∞
s
= c(θ, γ, κ(λ))


∞

1/θγ
(b + x)s x−

κ(λ)+1
γ


x −

1
θγ

 1
κ(λ)+1−1

dx

= c(θ, γ, κ(λ))(θγ )
κ(λ)+1
γ

Γ

κ(λ)+1
γ
−

1
κ(λ)+1 − s


Γ


1
κ(λ)+1


Γ

κ(λ)+1
γ
− s


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×


b +

1
θγ

 1
κ(λ)+1+s

× 2 F1


κ(λ)+ 1

γ
,

1
κ(λ)+ 1

;
κ(λ)+ 1

γ
−

1
κ(λ)+ 1

;−bθγ

,

for 0 ≤ b < 1
θγ
, s < κ(λ)+1

γ
−

1
κ(λ)+1 , and where 2 F1 is the Gauss hypergeometric function.

Therefore for 0 ≤ b < 1
θγ

, we have

f (b) =
1
b

Eκ(λ)


b + I∞
 κ(λ)

γ


Eκ(λ)


b + I∞

 κ(λ)
γ
−1


=
1
b

Γ


1
γ
−

1
κ(λ)+1


Γ


1
γ
+ 1


Γ


1
γ
−

1
κ(λ)+1 + 1


Γ


1
γ

 b +
1
θγ



=
1
b


1

1− γ
κ(λ)+1


b +

1
θγ


,

and after some simple computations, we get

b∗ =
1
θ

κ(λ)+ 1
κ2(λ)+ (1− 2γ )κ(λ)− γ

.
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