
Adv. Appl. Prob. 40, 1072-1103 (2008) 
Printed in Northern Ireland 

? Applied Probability Trust 2008 

ANALYSIS OF STOCHASTIC FLUID QUEUES 
DRIVEN BY LOCAL-TIME PROCESSES 

TAKIS KONSTANTOPOULOS,* Heriot-Watt University 

ANDREAS E. KYPRIANOU,** University of Bath 

PAAVO SALMINEN *** **** AND 

MARINA SIRVIO,*** Abo Akademi University 

Abstract 

We consider a stochastic fluid queue served by a constant rate server and driven by a 
process which is the local time of a reflected Levy process. Such a stochastic system can 
be used as a model in a priority service system, especially when the time scales involved 
are fast. The input (local time) in our model is typically (but not necessarily) singular 
with respect to the Lebesgue measure, a situation which, in view of the nonsmooth or 
bursty nature of several types of Internet traffic, is nowadays quite realistic. We first 
discuss how to rigorously construct the (necessarily) unique stationary version of the 
system under some natural stability conditions. We then consider the distribution of 
performance steady-state characteristics, namely, the buffer content, the idle period, and 
the busy period. These derivations are much based on the fact that the inverse of the local 
time of a Markov process is a Levy process (a subordinator), hence making the theory 
of Levy processes applicable. Another important ingredient in our approach is the use of 
Palm calculus for stationary random point processes and measures. 
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1. Introduction 

This paper extends the results of Mannersalo et al. [20] who introduced a fluid queue (or 
storage process) driven by the local time at 0 of a reflected Brownian motion and served 

by a deterministic server with constant rate. The motivation provided in [20] was that the 
system provides a macroscopic view of a priority queue with two priority classes. Indeed, 
in such a system, the highest priority class (class 1) goes through as if the lowest one does 
not exist, whereas the lowest priority class (class 2) gets served whenever no item of the 
highest priority is present. In telecommunications terminology, class 2 receives only whatever 
bandwidth remains after class 1 is served. As argued in [20], if the highest priority queue is, 
macroscopically, approximated by a reflected Brownian motion, the lowest priority queue is 
driven by the cumulative idle time of the first one, which is approximated by the local time of 
the reflected Brownian motion at 0. 
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Analysis of stochasticfluid queues 1073 

One motivation for the study of our stochastic model is due to the so-called Internet neutrality 
issue. Internet neutrality is the principle that all content transmitted over a network be treated 
equally and without preference. However, because of many factors involved (such as the fact that 
more than 40% of Internet traffic is due to peer-to-peer networks, and, mostly, BitTorrent [6]), 
it is quite likely that flow classification and differential classes of service will be introduced. In 
view of this, understanding a two-queue priority service system at a macroscopic level such as 
ours is important. 

From a mathematical point of view, the model is a rare example of a nontrivial fluid 
queue whose performance characteristics (such as steady-state distribution) can be computed 
explicitly. If, in addition, we take into account the heavy-tailed nature of traffic on the Internet, 
it seems reasonable to consider a Levy process as a model for class 1 queues. This provides 
the motivation for studying a queue whose input is the local time of a reflected Levy process. 

More generally, let X be a Markov process and let L be its local time at a specific point. The 
fluid queue driven by X refers to the stochastic system defined by 

Qt = Qo + Lt-t + It, t>0 (1) 

where Qt > 0 for all t > 0 and I is a nondecreasing process, starting from 0, such that 

00 

J1(Qs > 0) d =0. (2) 

It is known (see [15]) that (1) and (2) imply that I is given by 

It=- inf {(Qo+L5-s)A 0}. 
O<s<t 

We say that Q is obtained by Skorokhod reflection. By considering, instead of 0, an arbitrary 
initial time, we can define a proper stochastic dynamical system (see Appendix A for details) 

which, under natural conditions, admits a unique stationary version. We refer frequently to this 
throughout the paper. 

We also remark that in Kozlova and Salminen [17] the situation in which X is a general one 
dimensional diffusion is analysed. Moreover, Sirvio (nee Kozlova) [23] studied the case where 
L is constructed as the inverse of a general subordinator (without specialising the underlying 
process X). Also, there are papers in the literature where reflections of drifted local-time 
processes have been considered, rather implicitly; for example, in a network of fluid queues, 
the content of one queue is influenced by the reflector (which coincides in some cases with our 
notion of local time) of an upstream queue. See, e.g. [13] for such a case: the process I2 of [13, 
Equation (2.8)] is closely related to our process Q, but in that paper, the process 12 is not the 
per se object of study. (See also [11] for a tandem fluid network case and, of course, the rather 
rich literature of Brownian fluid networks; see, e.g. [8] and the references therein.) 

In this paper we follow ideas which were developed in [23] in the context of reflection of 
the inverse of a subordinator. However, (i) we connect the abstract framework with the case 

where the subordinator is the local time of a reflected Levy process (motivated by applications 
in priority processing systems), (ii) we use, as much as possible, a framework based on Palm 
probabilities (see, in particular, Theorem 3 and Lemma 2), and (iii) we explicitly discuss the 
possible types of sample path behaviour of the process of interest (Q); for an illustration, see 
Figures 1, 2, and 3. Figure 1 concerns the case where Q has continuous sample paths but with 
parts which are singular with respect to the Lebesgue measure. Figure 2 concerns the case where 
Q has paths with isolated discontinuities (positive jumps) and linear decrease between them. 
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1074 T. KONSTANTOPOULOS ETAL. 

Figure 3 concerns the case where Q has absolutely continuous paths. The cases are exhaustive. 
Despite the wide variety of sample paths (depending on the type of underlying Levy process 
Y), the mathematical framework and formulae derived have a uniform appearance. 

The paper is organised as follows. In Section 2 we construct the stationary version of the 
underlying (background) Markov process X. In Section 3 we construct the stationary version 
of the stochastic fluid queue with input taken as the local time of X, based on the stationary 
version of X. In Section 4 we derive the stationary distribution of the buffer content and present 
a number of examples. In Section 5 we examine the idle and busy periods, and, in particular, 
characterise the distributions of their starting and ending times. The analysis is carried out first 
under the condition that the time at which the system is observed is a typical point of an idle or 
busy period. Finally, the distributions of typical idle and busy periods are derived. 

2. The background Markov process and its local time 

We first construct the underlying Markov process X which models the highest priority class. 
This process will be taken to be the stationary reflection of a spectrally one-sided Levy process 

Y = (Yt, t e IR) 

with two-sided time and Yo = 0 (see Appendix B, where Y is defined on an appropriate 
probability space (Q, F, P) together with a family of shifts (0t, t E R) which will be used 
throughout the paper). A Levy process is called spectrally negative if its Levy measure HI 
satisfies 

H((-oo, 0)) > 0 and I I((O, +oo)) = 0, 

and spectrally positive if 

o((-co, 0)) = 0 and rl ((O, +oo)) > 0. 

Clearly, if Y is spectrally positive then -Y is spectrally negative, and vice versa. To avoid 
trivialities, we shall assume throughout that 

Y does not have monotone paths, 

which rules out the cases that Y is an increasing or decreasing subordinator. 
We also discuss the characteristics of its local time at 0. In Appendix A we summarise 

the notation and results on the Skorokhod reflection problem and its stationary solution. In 
Appendix B we summarise some facts on Levy processes, indexed by R, with one-sided jumps. 
We will denote throughout by P a probability measure which is invariant under time shifts, and 
we shall let 

Px():=P(. I Xo =X), 

i.e. the conditional probability P given Xo, evaluated at Xo = x. We define the Laplace exponent 
of a spectrally one-sided Levy process as a function 4lry: R+ -* R given, for 0 > 0, by 

*, (0) logE[exp{0(Yt+i - Yt)1] if Y is spectrally negative, 

log E[exp{-0(Yt+l 
- Yt)}] if Y is spectrally positive. 

Thus, we insist that Vf/y be defined on R+, and we define its right inverse by 

Oy(q) := sup{0 > 0: fry(0) = q}, q > 0. (3) 
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Analysis of stochastic fluid queues 1075 

We use also the notation 

Yt := sup Ys and Yt = inf YS t > 0, 
O<s<t ~ 

-t 
O<s<t 

and recall the duality lemma for Levy processes (see, e.g. [2, p. 45]): 

{Yt - Y(tS)_: 
0 < s < ti 

D 
{Ys: 0 < s < t}, (4) 

where '=' means equality in distribution. Hence, 

sup (Yt - Y(t-s)>) = Yt, 
O<s<t 

which is equivalent to 

yt -yt Yt 

In this paper we shall mainly study the Levy process Y with the time parameter taking values 
in the whole of IR (see Appendix B). The Skorokhod reflection mapping associated with 
{Yt: t E R} is defined (see Lemma 8 in Appendix A) via 

Xt := RtY:= sup (Yt-Ys), t ER. 
-00<s <t 

In the remaining part of this section we give conditions for the existence of the stationary process 
R Y = (RRtY, t E R), compute its marginal distribution, and define the local-time process L 
of R Y at 0 which will be used for the construction of the fluid queue. (That this stationary 
process is Markov is easy to see due to the independence of the increments of Y.) A few words 
about the definition of L are in order. We adopt the point of view that L is a stationary random 
measure on (IR, 2), i.e. 

L(s,s + t] = L(O, t] o0s, t > 0, s E R, 

where Os is the shift on the canonical space (see Appendix B) and L regenerates together with 
X at each point t at which Xt = 0. It is known (see, e.g. [4, pp. 61, 216] and [18, p. 144]) 
that L is almost surely (a.s.) continuous if and only if the point x = 0 is regular for the closed 
interval (-oo, 0] for the process X, and this is equivalent to inf It > 0: Yt < 0 = 0, Po-a.s. 
Furthermore, L is a.s. absolutely continuous if and only if, in addition to the above, the point 
x = 0 is irregular for the open interval (0, oo) for the process X, and this is equivalent to 
inf{t > 0: Yt > 0 > 0, Po-a.s. If L is a.s. continuous then it is not difficult to attach a 
physical meaning to it as a cumulative input process to a secondary queue. For mathematical 
completeness, we shall also consider the case where L is not a.s. continuous, in which case it can 
be shown to have a discrete support. In the continuous case, L can be defined uniquely modulo 
a multiplicative constant. We shall make the normalisation precise later. In the discontinuous 
case, there is more freedom; however, insisting that its inverse be a subordinator, we are left 
with only one choice. The discontinuous case appears only once below and the construction 
of L is discussed there. In all cases, the support of the measure L is the closure of the set 

it I R: Xt 
= 01. 

Associated to the measure (L (B), B E 2) we can define a cumulative local-time process, 
denoted (abusing notation) by the same letter and given by 

JL(0,t], t>0, 
Lt.- -L(t, 0] t <0. 
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1076 T. KONSTANTOPOULOS ETAL. 

The right-continuous inverse process is 

L-1 Jinf{t > 0: L(O,t] > x}, x > ,(5) 
x tsup{t < 0: L(t, 0] < x}, x < 0. 

In case L is P-a.s. continuous, the process (Lx- 1, x E R) has, under Po, independent increments 
and a.s. increasing paths (i.e. it is a, possibly killed, subordinator). This is an additional 
requirement that needs to be imposed when L is not P-a.s. continuous. 

2.1. Stationary reflection of a spectrally negative Le'vy process 

Suppose that the process Y is a spectrally negative Levy process with nonmonotone paths; 
see (50), below. 

Proposition 1. Let Y = {Yt: t E RI be a spectrally negative Levy process with two-sided time. 
Assume that its Laplace exponent Vfy (0) = log E[exp{O Y1 }], 0 > 0, is such that Vif (0+) < 0. 
Then 

X ={Xt := RtY: t E R} 

is the unique stationary solution of the Skorokhod dynamical system (SDS (see Appendix A)) 
driven by Y. The marginal distribution of X is exponential with mean 1/ bI y (0). 

Proof. Since E[Yt+l - Yt = *r (0+) < 0, existence and uniqueness of the stationary 
solution is guaranteed by Corollary 2 in Appendix A. That bPy (0) > 0 is a direct consequence 
of the definition of by (see (3)). To derive the marginal distribution of X, consider, for ,B > 0, 

E[exp{-,dXo}] = lim Eo[exp{-13(Yt - Yt))] = lim Eo[exp{-/Yt1]. 

Since Y is spectrally negative, its overall supremum, sups>0 Ys, is exponentially distributed 
with mean 1/by(O) (see, e.g. [2, p. 190] or [18, p. 85]). This completes the proof. 

In view of Proposition 1 we assume that 

*' (0+) E [-oo, 0), 

which is equivalent to 

PY(0) > 0. 

It is easily seen that, for a nonmonotone spectrally negative Y, a necessary and sufficient 
condition for continuity of L is that Y has unbounded variation paths. This is further equivalent 
toc a> Oorf0 lylll(dy) = oo. 

In the alternative case, when the paths of Y are of bounded variation, the number of visits 
of Y to its running infimum forms a discrete set. So 

n(s, t]:= 1(XU = 0) (6) 
s<u<t 

is finite for all -oc < s < t < oc. Let nt := n(O,t] if t > 0and nt := -n(t,0] if t < 0, 
and let (ej, j E 2) be a collection of independent and identically distributed exponentials with 
mean 1, independent of Y. We adopt the following construction for L (which requires replacing 
the probability space (Q, X, P) by an obvious enlargement of it): 

L(s, t] = Y, i, -oo < s < t < oo. (7) 

ns<Hi<nt 
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Analysis of stochastic fluid queues 1077 

In both cases, the process (L-1, x E R) is a subordinator under Po, with LO1 = 0, PO-a.s. 
If L is continuous, this property is immediate from the definition of L. If L is discontinuous, 
L-' has independent increments due to our choice of the exponential jumps of L. Since 

*fr(0+) < 0, we have Yt t-* oo as t -- ?oo, P-a.s., and this implies that Lt -+ ?00 as 
t >* ?oo, P-a.s. Thus, it is not possible for L-1 to explode for finite x. 

Regardless of the continuity of the paths of L, we always have the following proposition. 

Proposition 2. Let X and Y be as in Proposition 1, and let L be the local time at 0 of X. Then 
the local time L can be normalised to satisfy 

Eo[exp{-qL-I}] = expi 
xq q , q > 0, (8) X 

(D ~cIy (q)j 

and, moreover; 

Eo[Lx-l X, ('x ERX, E[Lt] = t(Dy(O)q t E R.(9 

Proof For the Laplace exponent of L-1 in (8), we refer the reader to [3, p. 731] (a result due 
to Fristedt [7]), [18], and [19]. The 'ladder process' ((L-1, Xl-l), x > 0) is a Levy process 
with values in ]R+ and Laplace exponent 

K (a, 6) = log Eo[exp{-atLl -a XL-1}] = 

obtained by Wiener-Hopf factorisation for a spectrally negative process; see [2, p. 191, Theo 
rem 4]. Setting ,B = 0 we obtain Eo[exp{-Lj a }] = expI- a/cy(a,)I, as claimed. From this 
we obtain Eo[L'] - x/ cIy (0), by differentiation. Using the strong law of large numbers, we 
have limrx, L-1/x - 1/ by(O), Po-a.s., and, given that (L-1, x > O) is the right-continuous 
inverse function of (Lt, t > 0) (see (5)), we have limt,,OO Lt/t = by(O), Po-a.s., and P-a.s. 
Since L is a stationary random measure, we have E[Lt] = Ct for some constant C. Hence, we 
immediately have C = b?y (0), and this proves (9). 

We shall later need the P-distribution of the random variable 

D := inf{t > 0: Xt = 0?. 

Since Xo is exponential with rate by(0), we have P(Xo > 0) = 1. So, if 0 < t < D, we have 

Xt = Xo + Yt, P-a.s. Therefore, 

D = inf{t > 0: Yt <-Xo}, P-a.s. 

Let 
T-X :=inf{t > 0: Yt < -x). 

Therefore, 

E[e-OD] j P(Xo E dx) E[expt-Or_x1] 

- f Dy(O)0exp{-cy(O)x}(Z(o)(x) - 
(D(0) W(0)(x)) dx 

(D (O) VfY((fY(O))cIY(O) - O(Y(0) 
by (0) byy(O) [>y(O) y(O)) - 0] 

b$ y(O) (10) 

cIy(0) ( 
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1078 T. KONSTANTOPOULOS ETAL. 

where the first passage time formula, (55), given in Appendix B (see also [3, p. 732]), and 
the Laplace transforms for the scale functions W(O) and Z(O), (52) and (53), also given in 

Appendix B, have been used. 

2.2. Stationary reflection of a spectrally positive Le'vy process 

We can repeat the construction in the subsection above for a spectrally positive Levy process 
Y with nonmonotone paths. We shall be using the formulae of Appendix B with - Y in place 
of Y. 

Proposition 3. Let Y = {Yt: t E RI be a spectrally positive Levy process with two-sided time 
and Laplace exponent if y. Assume that its Laplace exponent y (0) = log E[exp{-0 YI }] is 
such that /r (0+) > 0. Then the process {Xt := J?t Y: t E RI is the unique stationary solution 
to the SDS driven by Y. The stationary distribution of X is given, for /3 > 0, by 

E[exp{-,8Xo}] = lim Eo[exp{-fi(Yt - Yt)}] = lim Eo[exp{-PYtj] = ifr(0+) 

(1 1) 

Proof. Note that in this case, by the assumption on Vfy, 

E[Yt+l - Yt] = -4r (O+) < , 

and, hence, Y drifts to -oo. Let Z :=-Y. Clearly, Z is spectrally negative, 

Xt = Yt-Yt = Zt- zt, 

and Z drifts to +oo. The classical result due to Zolotarev [25] (see also [3, Proposition 5]) says 
that the stationary distribution of X is as given in (1 1). 

We shall therefore assume that 

ifrI(0+) E (0, n). 

Hence, bPy = frf 1 and so 
Y~~~~~~~~~~~~ 

(DI '0+) = ,v,, (O+) E (0, 00). Y If I0+) = 

It is easily seen that, starting from 0, the process Y hits (-no, 0] immediately, P-a.s., and 
this ensures continuity of the local time L. Moreover, we may and do normalise L so that 

L(s, t] =- inf Y(s, u]. (12) 
s<u<t 

The continuity of L implies that 

{L-': x > 0} = {T_x X > 0}, (13) 

where -Xr := inf{t > 0: Yt < -x} = inf{t > 0: Zt > x}. Note that (L-1, x E R) is a 
subordinator under Po, with L-1 = 0, Po-a.s. Furthermore, since Yt drifts to too as t -* ?oo, 
L1 is proper (not killed). 

Let us briefly comment on the special case where, starting from Xo = 0, the interval (0, oo) 
will be first visited by X at an a.s. positive time. It is known [2, Chapter 7] that this occurs if 
and only if Y has bounded variation, i.e. 

Y(s, t] = dy(t - s) + f j yzq(du, dy), (14) 
{n lt{] _80 
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Analysis of stochastic fluid queues 1079 

where r1 is defined as a Poisson random measure on JR x IR+ with intensity as in (49) of 
Appendix B, dy is the drift, and fo0 y FH(dy) < oo. Since we exclude the case where Y is 
monotone, we must have dy < 0. In this case, with (12) as the definition of L, it is known that, 
for all s < t, 

L(s,t] = IdyI] 1(Xu =0)du. (15) 

A rewording of the first part of Lemma 10 in Appendix B gives the first part of the following 
proposition. 

Proposition 4. Let Y be as in Proposition 3, and let L be the local time at 0 of X. Then 

Eo[exp{-qL-11] = exp{-cdy(q)x}, q > 0. (16) 

Moreover, 

Eo[LX l] = xcI4(0+), x > 0, E[Lt] = t * (0+), t > 0. (17) 

Proof Equation (16) follows from (13) and the well-known characterisation of the distri 
bution of the first hitting time T+; see (54), below. By differentiating (16), we obtain the first 
part of (17), and using an ergodic argument (as in the proof of the second part of (9)), we obtain 
the second part of (17). 

We now compute the P-distribution of D = inf{t > 0: Xt = 0} by arguing as earlier: we 
have D = inf{t > 0: - Yt > Xo}, and, since -Y is spectrally negative, we use the hitting 
time formula (54) in Appendix B to obtain 

E[eOD] = E[exp{-CPy(0)Xo}] = 4f (0+) ifry (0+) (O), (18) 

where we also used (1 1) and the fact that cIy o Vfy is the identity function. 

3. Construction of (the stationary version of) the fluid queue with local-time input 

We wish to construct a fluid queue driven by 

L(s, t] = L(s, t] - (t -s), 

where L is the local time at 0 of the Markov process X. The process X is a stationary Markov 
process which is the reflection of a spectrally negative (Subsection 2.1) or a spectrally positive 
(Subsection 2.2) Levy process. In either case, L is a stationary random measure with rate (see 
(9) and (17)) 

E= BL(s, + 1] - J cy(O) if Y is spectrally negative, (19) 
Vf y' (0+) if Y is spectrally positive. 

The fluid queue started from level x at time 0 is, as explained in Appendix A, the process 

F C l 2 AtrLn(x), t > 0). 

From Corollary 2 in Appendix A we immediately have the following theorem. 
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1080 T. KONSTANTOPOULOS ETAL. 

Theorem 1. If ,u < 1, there is a unique stationary version of the fluid queue driven by L and 
it is given by 

Qt = RtL= sup (Lt-Lu), t E R. (20) 
-00 <U <t 

Thus, the following assumptions will be made throughout the paper: 

(A1) it < 1, 

(A2) if Y is spectrally positive and of bounded variation then dy < -1. 

Assumption (Al) arises so that we can construct a stationary version of Q (as in Theorem 1). 
If Y is spectrally positive, having nonmonotone paths of bounded variation, then its drift dy 
must be negative. If, however, Idy l < 1 then (see (15)) L(s, t] < t - s for all s < t and so Q 
will be identically equal to 0. 

Physically, we think of Q as a stationary fluid queue whose cumulative input between times 
s and t is L(s, t] and whose maximum potential output is t - s. Unlike X, the process Q is 
not Markovian. However, since Q has been built on the probability space supporting X, it 
makes sense to consider, for each x > 0, the probability measure Px defined as P conditional 
on {Xo = x}. 

Since L is a stationary random measure with intensity ,A, we can define the Palm distribution 
with respect to it by 

PL(A) =iY' E[J 1A oOtL(dt)]e A E F. 

We refer the reader to [9, Chapter 10] and [10, Chapter 11] for these notions. For a spectrally 
positive Levy process Y, the random measure L is continuous. For a spectrally negative Levy 
process, L is either continuous or discrete. Hence, L is never a mixed measure. 

If L is a continuous random measure then it is known that PL expresses conditioning with 
respect to the event that t = 0 is a point of increase of L. But L is the local time of X at 0. 
Therefore, the support of L is the set of Os of X and so PL = PO 

Now suppose that L is a discrete random measure, as in (7). Let n be the point process defined 
by (6) which is supported on the support of L. It is immediate that Po is the Palm probability 
with respect to n. It can also be seen that PL is related to Po by 'size-biased averaging'. 

Theorem 2. If Y is a spectrally positive Levy process or is spectrally negative with unbounded 
variation paths then the Palm probability PL coincides with Po. If Y is spectrally negative with 
bounded variation paths then (with L defined as in (7)) 

PL (A) = EO [eo 1A], 

where eo is an independent rate-i exponential. 

This result follows straightforwardly from the Neveu exchange formula (see (26), below) 
between the Palm probabilities PL and Po, and allows us to use the formulae of Appendix A 

involving Palm probabilities. 

4. Stationary distribution of the fluid queue 

We are interested in computing P(Qt E .), a probability measure which is the same for all 
t. We will use three properties of L. First, duality, i.e. that Y has the same distribution when 
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time is reversed, see (4), implies that 

(L(0, t], t >0) = (L-t, 0), t > 0) under P and under PL. 

Second, the process 

LX1 =inf{t >0: L(O,t] >x}, x >0 x 

is a subordinator under Po. Third, the Palm measure PL coincides with Po. 
Recall that ,/iy (0) has been defined as log E[exp{0 (Yt+l - Yt)}] when Y is spectrally negative 

and as log E[exp{-0 (Yt+i-Yt )}] when Y is spectrally positive. The reason is that it is customary 
and convenient to have 0 > Gin both cases. Recall also that 'I?y (q) = sup 0 > 0: ifry (0) = q}. 
The stationary distribution of Q will be expressed in terms of 4y. For earlier works on this 
problem, we refer the reader to [22] for diffusion local times and [23] for the inverse of a 
general subordinator. The present formulation in Theorem 3, below, is in particular tailored for 
the local time of X. The proof method, making use of Palm probabilities, is new. 

First, since we allow discontinuous local times, the following simple lemma is needed. We 
omit the proof. 

Lemma 1. Let R := R U {+oo, -oo}. If h: JR -> JR is right continuous and nondecreasing 
then h-1(x) := inf{t: h(t) > x}, x E IR, is right continuous and nondecreasing, h: IR -+ JR, 
and,for allt e R, 

h-'(h(t-)-) < h-'(h(t)-) < t < h-'(h(t-)) < h-1(h(t)). 

Furthermore, (h-')-l = h. 

Theorem 3. (i) If X is the reflection of a spectrally negative Levy process Y with i/4 (0+) < 0 
and Vf y (1) > 0 then 

Po(Qo > a) - exp{-fy(1)a}, P(Qo > a) = by(O)exp{-V4y(1)a}, a > 0. 

(ii) If X is the reflection of a spectrally positive Levy process Y with 0 < if I (0+) < 1, and 
dy <-1 in the case of bounded variation, then 

Po(Qo > a) = e-Oa, P(Qo > a) = Vf5(0+)e-oa, a > 0, 

where 0* > 0 is defined by Vy(0*) = 0*. 

Proof By the construction of Q and duality, we have 

P(Qo < a) = P(sup(Lu - u) < a). 
u>0 

Note that our assumptions imply that the process {Lt - t: t > 0) does not have monotone 
paths; nevertheless, the event {sup{t o> (Lt - t) < a} can be expressed in terms of L-1: 

{sup(Lt - t) <a} = {sup(x - L-1) < a. 
t>o X>o 

To justify this (recall that in case (i) L is not necessarily continuous), we first assume that 

Lt < t + a for all t > 0. Hence, LL-1 < L-1 + a for all x > 0. Since (Lemma 1) 

LL- I >X, X > 0, 
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1082 T. KONSTANTOPOULOS ETAL. 

we have x < L-1 + a for all x > 0 and, thus, supx>o(x - 1) < a. Next assume that 
x-L-1 <aforallx > 0. Then L! >xx-E-aforallx > E > 0. LettingEr O0we 
obtain 1- > x -a for all x > 0. Therefore, L17 > Lt-a for all t > O. Since (by 

Lemma 1 again) 
<_ t, t > 0, 

we obtain L1 > t - a for all t > 0 and this gives supt>o(Lt - t) < a. We first compute 
the Po-distribution of Qo: 

Po(Qo > a) = Po(sup(x - LX) > a) a > 0. 

Under Po, the process 

{AX := X- L1 x > 0) 

is a spectrally negative Levy process with bounded variation paths. Letting 

ia := inf{x: AX > al, 

and applying Lemma 10 in Appendix B, we have 

Po(Qo > a) = Po(cia < c) 

= limrEo[exp{-qcra}] 

= lim exp{-(A (q)a I 
q4,0 

= exp{-cIA(0)aJ. 

The function (A (q) is given by 

(DA (q)= sup{0 > 0: VA(0) = q}, q > 0 

(see (51)), where 

VlJA(O) = logEo[exp{0Aj)] = 0 + logEo[exp{-0L7 R}]. 

If Y is spectrally negative then we use Proposition 2 for an expression for log Eo[expt-0L7 11I. 
If Y is spectrally positive, we use Proposition 4. We obtain 

VA(O) = S-, - 0 if Y is spectrally negative, (21) 

0- (Dy(O) if Y is spectrally positive. 

In both cases, Qo is exponential under Po with parameter (DA (0), which has a different value 
in each case. 

Let At be the rate of L (see (19)). Using (48), below, we have, for any measurable function 
g: R+ -> +, 

[fQo g (x) dx1 

E[g(Qo)] = (1 - lt)g(0) + iL EL[ Qo - Qo (22) 

where the last fraction is defined to be g(Qo) on the event {Qo = Qo-} 
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Analysis of stochastic fluid queues 1083 

First suppose that Y is spectrally negative with unbounded variation paths or spectrally 
positive. Then L is continuous. Therefore, Q has continuous sample paths, so Qo = Qo- a.s. 
By Theorem 2, we have PL = Po. Therefore, 

E[g(Qo)] = (1 - A)g(O) + ,ttEo[g(Qo)]. 

Let a > 0, and consider the function g(x) := 1(x > a), x > 0. We then have 

P(Qo > a) = utPo(Qo > a) = [texp{-'zA(O)a}. (23) 

Next suppose that Y is spectrally negative with bounded variation paths. Then L is discrete, 
given by (7). In this case, 

Qo = Qo- + co, Po-a.s., 

where co is rate-I exponential and independent of Qo_ both under P and Po. Therefore, 

Eo[exp{-0Qo}] = Eo[exp{-0Qo}] Eo[exp{-Oeo)]. 

But Eo[exp{-Oeo}] = 1/(O + 1) and Eo[exp{-OQol] = (DA(O)/(O + (tA(O))- SO 

Eo[exp{-OQo-4] = 0O ? A (0) 

Now consider (22). Here, Qo - Qo- = co > 0, PL-a.s. Also, by Theorem 2, EL [Z] = Eo[Zeo] 
for any (say, positive) random variable Z. Hence, 

Fr Qo-+eo 
E[g(Qo)] = (1- jt)g(0) + it Eo g g(x) dx 

U Q 
Apply this with the function g(x) := e-Ox: 

E[exp{-OQo)] = (1 - ,t) + - Eo[exp{-OQo-}(1 - exp{-Oeo})] 0 

= (1 - ) + -Eo[exp{-0Qo-1] Eo[l - exp{-Oco}] 0 

(1 M + 11 (O + 1)A(O) (- 1 

0 - tt) v(11A 
(?) 

0 + ,A(O) 

which again implies that (23) holds. 
The proof will be complete once we show that 

O (0) =V 
y (1) if Y is spectrally negative, 

0* if Y is spectrally positive. 

Note that (A (0) is the positive solution of VfA (0) = 0. If Y is spectrally negative, we see from 
(21) that VA (0) = 0 if and only if Iy (0) = 1 and, by the definition of bIy, the latter is true if 
and only if 0 = 4ry(1). Thus, cIA(O) = 4Y (1). If Y is spectrally positive, *ArA(0) = 0 if and 
only if bI y(0) = 0 if and only if 0 = 1fJy(0). See Table 1. 
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TABLE 1: Table showing the basic characteristics of the system in both cases. 

Y spectrally negative Y spectrally positive 

OJ (0)W (J y() 

0 14JO) 1 ) *(0) 0~~~~~~~~~~~ 0 
0 FDY(0)l 

0 0* 

Eo[exp{-qL-1}] - exp {-,yq)} Eo[exp{-qL11}] = exp{-x4y(q)} 

,u = rate of L = Py(0) ,u = rate of L = r(VO+) 

Po(Qo > a) = e-*a Po(Qo > a) =e-Oa 

0* - V/y(l) 
0* = VY(o*) 

P(Qo = 0) = 1 - 11)y(O) P(Qo=0)= 1-Vy(0) 

'Py (0) -~~~~~~~~~V IK,(0+) 0 
E[exp{-OXo}] = 0 (y) E[exp{-0Xo}] = 

0 + (PY(O) *y~~~~~~~~V y(O) 

Ere D1= _ y(O) E[e-0 D] - 4y(O?)'ty (0) 

4.1. Example 1: fluid queue driven by the local time of a reflected Brownian motion 

Consider Y to be a Brownian motion with drift (see also [17], [20], and [22]): 

Yt:=aBt-JLt, teR, 

where a > 0 and ,u > 0. Here B = (Bt, t c R) is a standard Brownian motion with two 
sided time. In other words, (Bt, t > 0) and (B-t, t > 0) are independent standard Brownian 
motions with Bo = 0 (although specification of Bo does not affect the results below). The Levy 
measure here is 0. Consider Y as in Subsection 2.2, and let 

iy (0) = log E[exp{-OY I] = 1 c202 +0 > 0. 

Define 
Xt=fRtY= sup (ao(Bt-B,)-A(t-s)), te R. 

-00 <S <t 

Lemma 3, below, gives the distribution of Xo under P (see also [5, p. 129]): 

E[expl-/3Xo}] = Vi(0+) Viy(8) = 2B12 + /tL' 
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Analysis of stochastic fluid queues 1085 

i.e. exponential with rate 2kL/ff2. Let L be the local time at 0 of X. The rate of L (see (19)) is 

ifry(0+) = ,u. Assume that it < 1. Let L(s, t] = L(s, t] - (t - s), and let Q be defined by 

Qt = RtL, t ER. 

Theorem 3 gives the distribution of Qo under P: 

P(Qo > a) = 4r(0+)e- a = 
2 

exp 
- 

_ 2 )a a 0. 

Here, 0* was found from l,fy(O*) = 0*. Thus, Qo is a mixture of an exponential with rate 

2(1 -_ )/r2 and the constant 0, which is assumed with probability it. 

4.2. Example 2: fluid queue driven by the local time of a compound Poisson process 
with drift 

Suppose that, for a > 0, 

Yt = St- at, t E , 

where S is a compound Poisson process with only positive jumps, jump rate i, and jump size 
distribution F. For simplicity, we take F to be exponential with rate a > 0, i.e. F(dx) = 
be-8x dx. Then 

4fy(O) = logE[exp{-0(Yt+l -Yt)} 

aO -j (1 e-ox)F(dx) 

x0 
-aO - I+ 0 >0. 

The assumption 0 < Vf'(0+) < 1 implies that 1 + X/8 > a > A/8. Moreover, the assumption 
Idy I > 1 additionally implies that a > 1. We can define the background stationary Markov 

process by 

Xt = RtY= sup (St-SS- a(t-s)), t ER. 
-xO<s <t 

We have 
a - Xm 

E[expt-PXO] 
=a Xf, 

-X [0) ((1 - e-x)/I )F(dx) 

Unlike the previous example, here P(Xo = 0) = limpjO E[exp{-f3Xo}] = a - / is positive. 
The local time L of X at 0 has rate (cf. (17)) 

t= f4(0+) = a 

The assumptions on a imply that L,t < 1 and, hence, we can construct the stationary process Q 
by Qt = ,2tL, where L(s, t] = L(s, t] - (t -s). We have 

P(Qo > x) = IOe-*x, 

where 0* = fy(0*) = ,(a - 1)-1 - S. Note that the latter is positive since a > 1 and 
1 +X/8 > a. 
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1086 T. KONSTANTOPOULOS ETAL. 

4.3. Example 3: fluid queue driven by the local time of a risk-type process 

Let 
Yt = bt -St, t E R, 

where b > 0, S is an a-stable subordinator, 0 < a < 1, with 

E[exp{-O(St+l - St)J] = exp{-cOa}, 0 > 0, 

and c is a positive constant. Thus, S is a (1 /a)-self-similar process, i.e. (SKt, t E R) (K 1/ct 
t E IR). We here have E[St] = +oo for t > 0 and St -> oc faster than linearly, so Yt -* -oc 
as t -*0o a.s. Similarly, St -oo as t -oo -0 a.s. So the stationary reflection of Y, 

Xt = ,9tY = sup (b(t-s)-(St -Ss)), t E R, 
-OO<S <t 

exists uniquely, due to Lemma 8 in Appendix A. Physically, Xt is the content of a queue with 
linear input (arriving at rate b) and jump-type service represented by S. Alternatively, X is a 
so-called risk process in the theory of risk. We have 

4ry(O) = logE[exp{-0(Yt+l - Yt))] = bO - cOc, 0 > 0. 

We refer the reader to Subsection 2.1 and, specifically, Lemma 1, for the distribution of Xo, 
which is exponential with rate it > 0, where ,t satisfies ifiy (,a) = 0, i.e. 

= bJ 

The local time L of X at 0 is such that t F-* L(0, t] is a.s. right continuous (but not continuous) 
with rate it. Assuming that It < 1, or c < b, we can further let L(s, t] = L(s, t] - (t - s) and 
let Q be defined by 

Qt = RtL, t E R 

(see Lemma 1). Theorem 3 gives the distribution of Qo under Po and under P. We have 

\ 1/(1-a) 

Po(Qo > x) = e-(b-c)x P(Qo > x) = c)/l e-(b-c)x x > 0. 
bJ 

4.4. Example 4: fluid queue driven by the local time of a risk-type process with a 
Brownian component 

Take 

Yt = 3bt + a Bt-St, 

where S is the inverse local time of an independent Brownian motion, i.e. a i -stable subordinator. 
Assume that o2 > 0. We have 

Vfy(O) = logE[exp{0(YI - Yo)}] = 3b0 + -U202 - 2c0I/2, 0 > 0, 

where c is a scaling parameter. Since limt,? Yt = -oo a.s., Lemma 8 in Appendix A allows 
us to construct Xt = /Ft Y. Here, Y is spectrally negative, and so, as shown in Lemma 1, 

P(Xo > x) = e-X, x > 0, 
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Analysis of stochastic fluid queues 1087 

where ,t > 0 and 

4Y(W) = 0. 

Letting 
8 = 1 + b3 

2-2 

we find that 
c 02/3 (,+ 1)1/3 + (86 - 1)1/3 

a= 2 2 

Here, P(Xo = 0) = 0. As in Proposition 2, this /,t is the rate of the local time L of X. Note 
that, since Y has unbounded variation paths, the local time L is a.s. continuous. Assuming that 

,t < 1, which is equivalent to 

Vy(l) = b + b U2 _ c > 0 

we construct Q as before: Qt = X tL, t E R. From Theorem 3 we have 

P(Qo > x) = ,u exp{-(b + ?C2 _ c)x}, x > 0. 

5. Idle and busy periods 

In this section we study idle and busy periods of the fluid queue process { Qt: t E I1i}, as 
defined in (20). We work under the assumptions that Y is either spectrally negative or spectrally 
positive and that 0 < it < 1, where it is the rate of L; see (19). Under these assumptions, the 
interior of the set {t E IR: Qt = 0} is the union of disjoint open intervals (g(n), d(n)), n E Z. 

We need a convention for the enumeration of the endpoints of these intervals, and here is the 
one we adopt. 

First, 
*< g(-l) < g(O) < O < g(l) < g(2) < * 

Second, 
g(n) < d(n) < g(n + 1), n E E. 

Figures 1, 2, and 3 exemplify how one should visualize idle and busy periods of sample paths 
of Q for three different examples of driving Levy processes. Let N1 and N2 be the random 
measures (point processes) that put mass 1 to each of the points g(n) and d(n), respectively. 
Note that the point processes N1 and N2 are jointly stationary. 

The intervals (g(n), d (n)) are called idle periods, while the intervals (d (n), g(n + 1)) are 
called busy periods. An observed idle period is, by definition, equal in distribution to an idle 
period, given that the idle period contains a fixed time t of observation. By stationarity, we 
may take the time of observation to be t = 0. In other words, 

observed idle period := ((g(0), d(O)) I Qo = 0) = ((g(0), d(0)) I g(0) < 0 < d(0)). 

Here, = denotes equality in distribution under measure P. Similarly, 

observed busy period := ((d(0), g(1)) I Qo > 0) ((d(0), g(1)) I d(0) < 0 < g(1)). (24) 

In this section we identify the distribution of observed idle (and busy) periods (see Proposi 
tions 5 and 6, below). In both cases we shall appeal to the result of Lemma 2, below, a short 
proof of which is provided. Note that (25), below, and related facts are also proved in [17, 
Section 5] and [23]. 
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Lemma 2. Let (Q, 3, P) be a probability space endowed with a P-preserving flow (0t, t E R) 
(see Appendix A). Let N1 and N2 be jointly stationary simple random point processes 
(Ni o Ot(B) = Ni(B + t), t E R, B E 23(R), i = 1, 2) with points {ti(n), n E E1, i = 1, 2, 
such that 

<- <tj(- 1) < ti () < O<t, (l) < tj(2) < ... 

and 
tj (n) < t2(n) < ti (n + 1) for all n E 2. 

Let M be the random measure which is defined through its derivative with respect to the 
Lebesgue measure as 

Mdt) 
= (t I (n) < t < t2 (n)). Mdt) nE 

Assume that N1 hasfinite intensity. Let PM be the Palm probability with respect to M. Then 

a M[exp{-ca2 (0) )] - IEM [exp{-13t2 (0) }] 
EM[exp{-ctt2(0) + 6tl((0)] = ,Eep O2(E > 0. 

(25) 

Proof. It is easy to see that M is also stationary, i.e. M o O, (B) = M(B + t). Let PN, be the 
Palm probability with respect to Ni, i = 1, 2, and let X be the intensity of NI (which is, due to 
the law of large numbers, the same as the intensity of N2). It follows easily from Campbell's 
formula that M has finite intensity: AM = A ENI [t2(0) - t1 (0)] < oo. The Palm exchange 
formula between PM and PN1 yields 

FftI(1) 1 -rt2(0) 
XM EM[Y] = X ENI y Y o OtM(dt) = XENIJ Y o Ot dt (26) 

LtI () Lt0) 

for any bounded random variable Y. (In [1, p. 21], the formula is given and proved for 
point processes, but the generalisation for arbitrary jointly stationary random measures is 

Sample path of Q 

-d - g g) d )>) gd 

Sample patb bf X 

g(0) g(l) 

FIGURE 1: Typical behaviour of Q and the background Markov process X when the underlying Levy 
process Y has unbounded variation paths. By convention, the origin of time is contained between g(O) 

and d(O). Note that excursions of X away from 0 correspond to intervals over which Q decreases. 
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Sample path of Q 

d( 1) g(0) d(0) g (1) 

Sampte path of Y 

FIGURE 2: Typical behaviour of Q and the background L6vy process Y for the case in which Y is spectrally 
negative with bounded variation paths. 

Sample path of Q 

d(I-y g (0) d (0) g(1 

Sat le path of Y 

FIGURE 3: Typical behaviour of Q and the background Le'vy process Y for the case in which Y is spectrally 

positive with bounded variation paths. Here, only the case where the jump part of Y is compound Poisson 

is depicted. When Q t > 0 and Xt 0, we see that Q t increases at rate Idy I 1, where dy < -1 is the 

drift of Y. 

straightforward.) Apply (26) with Y = exp{-cvt2(0) + ,8t1(0)}. Since tl (0) = sup{t < 

0: N1({t3) = 11, t2(0) = inf{t > tl(0): N2({t}) = 1}, andPNI(tl(0) = 0 < t2(0)) = 1, we 
have t(0) aO = -t and t2(0) O = t2(0) - t, PNI-a.s. 

on {t(0) < t < t2 (0)1. Therefore, 

Y oOt = exp{Ut2(0)1e( )t, PNI -as. on Itl(0) <t <t2(0)}, and so 

X.m Emr[exp{ -at2 (0) + /3t1(0)] 21 EN, Lexpl-13t2 (0) 1] EN, IIexpVIaut2 (0) 1] (27) 

Arguing in a similar manner, through the exchange formula between M and N2, we obtain 

M M[xp-/t2 (0) + tl(0)1] EN2[exp{t1m] 
- 

EN2[exp{Q1(0)}] ,m Eplexpatf Y28 

, 
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Setting /3 = 0, and then a = 0, in (27) we obtain 

AM EM[exp{-oat2(0)] =X 
- 
ENI [exp,-at2(0)}] (29) a, 

AM EM[exp{/3t,(0)1] = -EN [exp-t2(0)}] (30) 

On the other hand, with a = 0 in (28), we have 

M EM [expi-Pt2 (0)J ]=I1 -EN2 [exp{tl (0) 1] (31) 

The exchange formula between N1 and N2 shows that the right-hand sides of (30) and (3 1) are 

equal. Substituting these and (29) into (27) we obtain the result. 

5.1. Observed idle periods 

We are interested in the distribution of the idle period (g(0), d(0)), given that Qo = 0. The 

rationale used for this computation is as follows. We can always assume that Xo > 0, since 

this is an event with probability 1. If Qo = 0 then Qt will remain 0 at least until X hits 0, since 

Q cannot increase unless there is an accumulation of local time L, and this can happen only 

when X is 0. Recall that the first hitting time of 0 by X is denoted by D = inf {t > 0: Xt = 01. 
If Qo = 0, the first time that Q becomes positive has been denoted by d(O). Our claim is as 
follows. 

Lemma 3. Given that Qo = 0, the ending time of the idle period is a.s. equal to D, i.e. 

P(d(O) = D I Qo = 0) = 1. 

Proof. From the argument above we have D < d(O) a.s. on {Qo = 0}. Suppose that there is 

Qo C Q with P(Qo) > 0 such that Qo = 0 and D < d(O) a.s. on Q0. If Qo = 0 and D < d(O) 
then 

Qt = sup {L(u, t]-(t-u) _= 0 for all t E (D, d(O)). 
D<u<t 

This implies that 

L(u,t] <t -u forallD <u <t <d(0), 

which means that, for c E Qo, L(co, -) is absolutely continuous on some right neighbourhood 

of D. If Y is spectrally negative or if Y is spectrally positive but not of bounded variation, 

then L is a.s. singular on any right neighbourhood of D, and we obtain a contradiction. If Y is 

spectrally positive with bounded variation paths then L is absolutely continuous and is given by 

(15). In this case, Q increases at rate 1dy I - 1 > 0 whenever it is positive, and this immediately 

shows that here, too, D = d(0) a.s. on {Qo = 01. 

Remark 1. The result in Lemma 3 can alternatively be expressed by saying that the process 

(Lt - t: t > 0) is under Po initially increasing. In [20, Proposition 6.3] this was proved for 

the case in which X is a reflecting Brownian motion, and the proof therein could have been 

modified to cover the present case. However, we found that it motivated us to give the above 

proof which highlights other aspects not given in [20]. 
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Using Lemma 2, we shall reduce the problem to that of finding the distribution of D = 
inf{t > 0: Xt = 0} given that Qo = 0. Let N1 and N2 be the point processes with points 
{g(n)} and {d(n)}, respectively. Then M(dt)/dt = 1(Qt = 0), and so 

PM = P( I Qo = 0). 

Equation (25), together with Lemma 3, then gives 

E[e-ad(O)+Pg(O) I Qo - 0] = aE[eD I Qo = 0] -p E[efD QO ] (32) 

To compute the distribution of D given Qo = 0, we need the following two lemmas. 

Lemma 4. Let 
G := sup{t < 0: Xt = 01. 

Then it holds that 

{Qo =? = {QG + G O0}. 

Proof Since Xt > 0 for all t E (G, D), we have 

L(s,t]=0, G<s<t<D. 

Recall that 

Qt = fRSs,tL(Qs) = sup L(u, t] V (Q5 + L(s, t]). 
s<u<t 

So,ifG < s < t < D,wehaveL(s,t] :=L(s,t]-(t-s) =-(t-s),i.e. 

Qt = (Qs-(tS))?, G < s < t < D. 

If we assume that Qo = 0, we have G < g(O) and so 

0 = Qg(O) = (QG - (g(0) - G))+, 

which implies that QG + G = g(0) < 0. 

Lemma 5. (i) Conditional on Xo, the random variables QG, G, and D are independent 
(under P). 

(ii) For all x > 0 and t > 0, 

P(QG > t) = PX(QG > t) = Po(Qo > t) = e t 

where 0* = *y(1) if Y is spectrally negative or is equal to the unique positive solution of 
0* = f y (0*) if Y is spectrally positive. 

(iii) QG is independent of (G, D) (under P). 

Proof (i) The independence follows from the strong Markov property at G (at which time 
XG = 0) and the Markov property at 0. Indeed, first observe that G is a stoppin, time 
with respect to the filtration {Jt := a(X-,, 0 < s < t), t > 01. Second, QG = RGL = 

SuPs<G L (s, G] = sups<G (L (s, G] -(G - s)) and so QG 1(G < t) is measurable with respect 
to !t/ := ca(X-s, s > t) for all t. This proves independence between QG and G. Third, D is 

measurable with respect to S0' = a (Xs, s > 0). So, conditionally on Xo, the random variable 
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1092 T. KONSTANTOPOULOS ETAL. 

D is independent of the pair (QG, G). (ii) The distribution statement about QG follows from 

the strong Markov property at G. Let, as usual, Y-G = {A E a (Xs, s > 0): A n {-G < 

t} e 1> ). Since QG = QO0OG, 

P(QG > t) =P(QO OHG > t) 

=E[P(QO ? OG > t I T-G)] 

= E[PXG (QO > t)] 

= Po(Qo > t) 

= e-*t 

where the latter follows from Theorem 3. (iii) This is immediate from (i) and (ii). 

Proposition 5. (Distribution of the observed idle period.) Fix a, /3> 0, a, 7 /. 

(i) When Y is spectrally negative, we have 

E[e -ad()+~g() I Qo = 0] 

cI y(O) Vy(l) ( a by(a)-l_ - I p d(}) -1 

I - y(OY() ot - h a - *yMl y(DY() - *y(l by( 

(ii) When Y is spectrally positive, we have 

E[e-d(O)+?g(O) I Qo = 0] - l 
I 
(0+) - 

* 
( -a (I) _ -b1 )) 

I - y l(0+)o-B a-0* -0* J 

where 9* > O is defined by /y(0*)= 0* 

Proof. From Lemma 5, D and QG are conditionally independent given Xo and G. Hence, 

E[e-OD I(QG + G < 0) I Xo, G] = E[e-D I Xo, G] P(QG <-G I Xo, G). 

=E[e IXo,G](l-e G) 
= E[e-OD e-OD+O*G I XO, G], 

where the second line was obtained from the facts (all consequences of Lemma 5) that (i) D and 

G are conditionally independent given Xo, (ii) QG and G are also conditionally independent 

given Xo, and (iii) QG is independent of Xo and exponentially distributed with parameter 

= Jl (l) if Y is spectrally negative, (33) 
l fy (0) if Y is spectrally positive. 

Taking expectations we obtain 

E[e OD I(QG + G < 0)] = E[e OD _ e OD+G G] 

and, using Lemma 4, 

OD Qo = 0] = E[eODl] - E[e-OD+O*G ] 

P(Q0 =0) 
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Analysis of stochastic fluid queues 1093 

We now use a version of Lemma 2, formulated for excursions of general stationary processes; 
see Pitman [21, p. 298] and the references therein. The random measures N1 and N2 correspond 
to the beginnings and ends of excursions of the stationary process (Xt, t E R), and, since there 
is never an interval of time over which X is 0, the random measure M coincides with the 

Lebesgue measure, while PM = P. Applying Pitman's result (an analogue of (25)) gives 

E[e aD+PG] = a E[e-'D] - Ei El[e-D3] 

The joint Laplace transform of D and G is thus expressible in terms of the Laplace transform 

of D. Combining the last two displays we obtain 

-OD 1 o=0 
0* 

ODO E[e- I Qo = 0] =P(Q0 = 0) 0 - 0*(E[e D] E[eOD]). 

Using this in (32) results in 

E[e-ad(?)+Pg() I Qo = 0] 

1 0* 

P(Qo=0)a-8 

(a ~ EreO*D] -E[aD]) - (E[e'PD] 
( (x E e-O - E[e- D ] 

-l Ee ]- E[e ])) 

So far, the arguments are general and hold for both spectrally negative and positive Levy 
processes Y, as long as 0* is taken as in (33). Next, substituting the expression for the Laplace 
transform of D from (10) and (18) for the spectrally negative, respectively, positive cases, we 
obtain the result. 

5.2. Observed busy periods 
In this section we follow the ideas of [23]. We are interested in the distribution of the 

observed busy period, as defined in (24). On the conditioning event { Qo > 01, we have, by our 
enumeration convention, 

g(0) < d(O) < 0 < g(l), P-a.s. 

Using Lemma 2 with N1 or N2, the point process with points {d(n)} or, respectively, {g(n}), 
we have 

E[e-0(1)+Pd(?) I Qo > 0] 

a, E[e`9(0) I Qo > 0] - P E[e-f9(l) I Qo > 0] 

Recall the evolution equation for Q: 

Qt = Qs +L(s,t]-(t-s)- inf {Qs +L(s,u]-(u-s)}. (36) s<u<t 

Let s = 0, and assume that Qo > 0. Since Xo > 0, P-a.s., we have L(O, t] = 0 for all 
0 < t < D = inf{r > 0: Xr = 01, and so, 

Qt = Qo-t- inf {Qo-u} = Qo-t a.s.on{Qo > 0, t < D), o<u <t 
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which implies that 

g(l) 
= Qo a.s. on 10 < Qo < D}, (37) 

jg(l) o OD a.s. on {Qo > DI. 

Now, if Qo > D, we have QD- = Qo - D, so from (36), Q evolves as 

QD+t = Qo-D + L[D, D + t]-t t > 0, 

as long as QD+t > 0. This implies that, a.s. on IQo > DI, 

g()Mo0D-D=inf{t>0: Qo-D+L[D,D+t]-t=01. 

Therefore, (37) becomes 

g(l) 
Qo a.s. on 10 < Qo < DI, (38) 
D+inf{t >0: Qo-D+L[D,D+t]-t=0} a.s.on{Qo > D}. 

Now consider the inverse local-time process, with the origin of time placed at D, i.e. 

LDX 
:= inf{t > 0: L[D, D + t] > x}, x > 0. 

By the strong Markov property for X at the stopping time D we find that the P-distribution of 

(L1 XIx > 0) is the same as the Po-distribution of (L' 1, x > 0), which has been identified 

in Propositions 2 and 4. Thus, (LD1_, x > 0) is a (proper) subordinator. Next consider the 

spectrally negative Levy process 

AX := X-DXA X > 0. 

~~~~~ 1 

Ax:xL~~~;x xI 0 

Note that P(Ao = 0). The Laplace exponent of A is the function *A of (21). Define the hitting 
time of level -a by A: 

or(A; a) := inf{x > 0: Ax <-a}, a > 0, 

Equation (55), below, gives us the Laplace transform of a (A; a) in terms of the scale functions 
of A, defined in (52) and (53), below. Combining them we obtain 

f e-a E[e-qo(A;a)] da = VA (0) - q4( 0 A (0)) 
H 
(q)(O). (39) 

As can be easily seen from Lemma 1, for any a > 0, 

inf{t >0: t-L[D,D+t] > a) =inf{x >0: Ax <-a1+ a=cr(A;a)+a. 

Using this in (38), we obtain 

g(l) J Qo 
a.s. on {0 < Qo < 

DI, 

Qo + a(A; Qo-D) a.s. on {Qo > D}. 

It is useful to keep in mind that A is independent of Qo - D, by the strong Markov property of 

X at D. We are now ready to compute the Laplace transform appearing on the right-hand side 
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of (35): 

E[e-a(l); Qo > 0] = E[e-a(l); 0 < Qo < D] + E[e-ag(l); Qo > D] 

= E[exp{-aQo}; 0 < Qo < D] 

+ E[exp{ -a(Qo + u(A; Qo - D))); Qo > D] 

= E[exp{-aQo}; Qo > 0] 

- E[exp{-aQol(1 - exp{-wax(A; Qo - D)}); Qo > D]. (40) 

Recall that P(Qo > x) = te-0x, and so 

E[exp{-aQoj;Qo > 0]= . a* (41) 

To compute the second and third terms, we need some elementary properties of exponentially 
distributed random variables, which we state without proof. 

Lemma 6. Let T be an exponentially distributed random variable with parameter i, and let 
(X, Y), X > 0, Y > 0, be a two-dimensional random variable independent of T. Then X and 
T - X - Y are independent given T > X + Y. Moreover, 

E[e-a(T-X-Y) I T > X + Y] = 

E[e aX; T > X + Y] = E[e-(U+i)X-YI 

Use (36) once more with s = G = sup{t < 0: Xt = 0), and t = 0, taking into account the 
fact that L is not supported on (G, 0), to obtain Qo = QG + G a.s. on {Qo > 01. Since QG is 
exponentially distributed with parameter 0* and independent of (G, D) (from Lemma 5), we 
have, applying Lemma 6, the following result. 

Lemma 7. Given Qo > D, the random variables Qo - D and D are independent. Moreover, 

0* 
E[exp{-a(Qo - D)} I Qo > D] = 

* 

E[e D; Qo > D] = E[e-(a+O*)D+O*GI 

Using Lemma 7, we write the last term of (40) as follows: 

E[exp{-aQo}(1 - exp{-aac(A; Qo - D)}); Qo > D] 

= P(Qo > D) E[e-D exp{-ao(Qo - D)}(1 - exp{-ao(x(A; Qo - D)}) I Qo > D] 

=P(Qo > D)E[e-D I Qo > D] 

x E[exp{-a(QO - D)}(1 - exp{-aa(A; Qo - D)}) I Qo > D] 

= E[e (a+O*)D+O*G] E[eV (1 - e a(A; V))] (42) 

where, in the last term, we introduced a random variable V, exponentially distributed with 
parameter 0*, independent of everything else (due to the fact that Qo - D, conditionally on 
being positive, is exponential with parameter 0*, independent of A). The first term of (42) can 
be computed as in (34). We have, for all a, ,6 > 0, a :A P, 

E-euD+PG] - Y(0)(a ) 
a -B DY (a) 'bDY (P) 
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and, for the spectrally positive case, for all a, ,B > 0, a :A /, 

E[eaDD+G] = Vf/I (0+) Oy (a) Oy (/ ) 

Note that taking account of the definition of VA, (21), for both the spectrally negative and 
positive cases, and the fact that VfA(0*) = 0, we see that generically for both cases, for all 
a, > 0, 

E[e- (a+O*)D+O*G -( - =A(a + 0*))- (43) 

For the second term of (42), we have, using (39), 

E[e-a( 1- e U(AV))] + 0* , eOveav E[e-U(A;v)1 dv 

0* 
- _ _ V0 * *H(a) (a + 0*) 

a?0* 
0* 0* ) fA(A( + 0*) a 

Ol + 0* VrA(U + H*) -a a, + v0* (DA(a) 

0* a + O*-A(a) a(44) 
a + 0* (DA(a) VA(? + 0*) (44 

Multiplying (43) and (44) we obtain the following expression for (42): 

Ma0* Mao* 
E[exp{-aQo}(I - exp{-ac((A; Qo - D)}); Qo > D] = a*-- _ . 

a?+0* (DA (a) 

This, together with (40) and (41), yields 

0* 
E[e-0(1) I Qo > 0] = 

O>A (?g) 

Using (35), we finally come to rest at the following main result. 

Proposition 6. (Distribution of the observed busy period.) For a,, P > 0, a : /,, 

ELe-ag(')+~d() I Qo > 0] = ff ( eta) c ff), 

where (DA is the right inverse of 12A, which is given in (21), and (cf. Theorem 3) 

(i) 0* > 0 is defined by /y (1) in the case that Y is spectrally negative, 

(ii) 0* > 0 is defined by l/y (Q*) = 0* in the case that Y is spectrally positive. 

5.3. Typical idle and busy periods 

We now consider the problem of identifying the distribution of a typical idle and a typical 
busy period of Q. We place the origin of time at the beginning of such a period, by considering 
the appropriate Palm probability. Let Ng and Nd be the point processes with points {g(n)}, the 

beginnings of idle periods, and {d (n)), the beginnings of busy periods, respectively. Let Pg and 

Pd be the Palm probability with respect to Ng and, respectively, Nd. See Figure 4. 
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g (0) d(0) g (1) 

FIGURE 4. 

Using (29), we have 

a E[e d(O) I Qo = 0] = 1 -E [eod(0)] 

where ,t = P(Qo > 0) and X is the common rate of Ng and Nd. The right-hand side is precisely 

what we need. Everything on the left-hand side is known (see Proposition 5) except the rate X. 
First consider the case when Y is spectrally negative. Using Proposition 5(i) with fB = 0, we 

obtain 
1 -pt 4Dy(O) V () a OIy(a) 

-I=I-E9[-di 
X l _ IDYMo) ay(l) = 1M-Eg[ed(o)] 

Taking limits as a -( oo (and since 4y (a) -> oo) we find the value of X and, so, the Laplace 
transform Eg [e-ad(O)] of the typical idle period. The result is given in Proposition 7(i), below. 

We repeat the procedure for the spectrally positive case and, using Proposition 5(ii), we 

obtain 
1 - _ iry(0) 0a -ec_y = 1 - Eg[e-ad(o)]. 
X I1-4rft(0) a - 

0* 
Note thatlim0o Vfy (0)/0 = oo if Y is of unbounded variation, and so lima,O by (a)/a = 0. 

Thus, we can find X and Eg [e-d(O)]; see Proposition (7)(ii), below. 
But if Y is spectrally positive (with nonmonotone paths) and of bounded variation then L is 

absolutely continuous and has a drift dy; see (15). We can easily see, e.g. from (14), that 

P00 

tlry(O) = log E[exp{-0(YI - Yo)}] = IdylO - (1 - e0Y) Fl (dy), 

and, sincefoO(y A 1)fl(dy) < oo,weobtainlimOO,, Vy(O)/O = Idyl. Solima+, cIy(at)/a 
= 1/Idy . Again, we can find X and Eg [e-d(O)]; see Proposition (7)(iii), below. 

Proposition 7. (Distribution of the typical idle period.) Fix a > 0. Let Pg be the Palm 

probability with respect to the beginnings of the idle periods of Q. 

(i) When Y is spectrally negative, we have 

X = (I)y(0)4'y(l), Eg[e-ad(O)] = 1 - a 
by2)_ O_ _I 

cIy(a) a -iry(l 

(ii) When Y is spectrally positive and fo yY (dy) = oo, we have 

X = v4(0)O*, Eg[e-d(O)] = 1- 
- 

cPy(a) 

where 0* > 0 satisfies 0* = Vy(O*). 

(iii) When Y is spectrally positive and fo' y rl (dy) < oc, we have 

X = (0)0* I - I Eg[e-ad(O)] = I Idyl - y(a ) 
where >Oy dl =1 

Idyl i 1 4-( * 

where 0 *> 0 satisfies 0* = If y (O *) and dy is the drift defined in (]4)-(]5). 
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Remark 2. By Assumption (A2) (see Section 3) we have dy < -1 and so the constant above 
is positive. 

In the same vein, we obtain the Laplace transform Ed [e-9(1) ] of a typical busy period. Note 
that, under Pd, we have d(0) = 0, and so the first busy period to the right of the origin of time 
is the interval (d(0), g(l)). We have 

8 a E[e-1g() I Qo > 0] = 1 -Ed[e-(l)]. 

Using Proposition 6 with ,6 = 0, we have 

X1 - () = 1 -Ed[e 
(D A(a) 

From the expression for 4A(0), (21), we find that limo ,0 4fA(0)/0 = 1. So, 

a, 
lim = 1. 

aY?oO bA(a) 

Therefore, we have the following proposition. 

Proposition 8. (Distribution of the typical busy period.) Fix a > 0. Let Pd be the Palm 
probability with respect to the beginnings of the busy periods of Q. Let V/A be defined as in 
(21), and let OA be its right inversefunction. Then 

A = Ea9*, Ed[eag(l)] = 1 I 
A (a) 

where g = bly(O) and 0* = fy(1) if Y is spectrally negative, and 1t = f r(0) and 0* > 0 is 
defined through 0* = 4ty (9*) if Y is spectrally positive. 

Corollary 1. The mean duration of a typical idle period is (1 - it)/X, while the mean duration 
of a typical busy period is ,a /X, where 1L is given by (19) and X is given in Propositions 7 and 8. 

Remark 3. By the relation between P and the Palm probability Pd, it follows that the typical idle 
and busy periods are stochastically smaller than the observed idle and busy periods, respectively. 
This can be seen from Equation (1.4.2) of [1, p. 33]. In particular, the means of the former are 
shorter than the means of the latter. (This is usually referred to as the 'inspection paradox'.) 
This gives us several inequalities between different quantities associated with the Levy process 
Y. To give an example, we compare the mean durations of idle periods in the spectrally negative 
case. From Proposition 5 we have 

E[e-ad(?) I QO = 0] = IO ? YM*( l) (D (Y ((x)-1 
I 

1 - (y(O) ('y(a)(a - 

= 1: - 0) F(a). 
I - bDy(O) 

It follows that 

E[d(O) I Qo=0]=_ OY(O)y(l) F' (0). 

Since d(O) and -g(O) are identical in law, the mean duration of the observed idle period is 

E[d(O)-g(?) I Qo = 01 =-2 1- (0) F'(0). 
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Note that, using the function F, we may write, from Proposition 7, 

Eg [e-d()] = 1 -a F (a) 

and 

Eg [d(0)] = F(0). 

Now, by the 'inspection paradox', 

Eg[d(0)] < E[d(0) - g(?) I Qo = 0], 

which, after some manipulations, is equivalent to 

(1 - bDy(0))2 < 2(y y(0)2 - b)y(0) + P, (0)4y(l)). 

Example 5. (Continuation of Example 1.) Consider Yt = aBt - 1tt, and assume that 
0 < it < 1. Here the rate of beginnings of idle (or busy) periods is 

i= +(O)0* = 82g(I 
- 

l) 

The mean duration of a typical idle period of Q is a2/2js, while the mean duration of a typical 
busy period of Q is a2/2(1 - It). To find, for example, the distribution of a typical busy period, 
we use Proposition 8. We have, see (21), 

*A (q) = q -y (q), 

where b1y is the inverse function of i/iy, i.e. 

Oy(q) = t2 + 2u2q2 
- 
y 

and cA is the inverse function of 4A, i.e. 

:,(DA (1-,u) + 22? + (1_)2?4x2 

and so the Laplace transform of the typical busy period is 

Ed [e -g(1) I = (1-M) + /1t2+4fc 
(1- 
W + 

(1-p)+4a (1-,u) + 2u2a? +/(1-_ t)2?+4<x2c 

Appendix A. On Skorokhod reflection, fluid queues, and stationarity 

In this appendix we review some facts about the Skorokhod reflection of a process with 
stationary ergodic increments. We carefully define the system, give conditions for its stability, 
and recall some distributional relations based on Palm calculus; see [1, Lemma 3.1.1] and 
[15]. Although the setup is much more general than the one used in this paper for concrete 
calculations, it is nevertheless interesting to isolate those properties that are not based on specific 
distributional assumptions (such as the Markovian property or independent increments), but 
are consequences of the more general stationary framework. 
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Let (Q, ?, P) be a probability space together with a P-preserving flow (0t, t E R). That is, 

for each t E R, Ot: Q --* Q is measurable with measurable inverse, O0 is the identity function, 

ot ? 0, = 0s+t for all s, t E R, and P(OtA) = P(A) for all t E R, A E F. Consider a process 
W = (Wt, t E IR) satisfying (Wt -Ws) o u = Wt+u -W,+ for all s, t, u E JR and all co E Q. 
Then W has stationary increments. We let E denote the expectation with respect to P. 

Following [15], we define the SDS driven by W as a two-parameter stochastic flow: 

RstW(x) :=[x+Wt -Ws] - inf {(x+ Ws - Wu) A O 
s<u<t 

= sup (Wt-WU) v (x + Wt-WS), x > , S <t 
s<u<t 

Thus, for each s < t, we have a random element Rs,tW taking values in a space of continuous 
functions. The family (R-s,tW,-oc < s < t < oc) is a stochasticflow because the following 
composition rule (semigroup property) holds for each cl) E Q: 

e2SJW = C a2JW ? Rs?UW, s < u < t, 

eCRt,tW(X) =X, t ER, x > . 

It is a stationary stochastic flow because, for each x E IR+, we have 

RS,tW(x) ? OU = RS+U,t+UW(X), -00 < s < t < 00, u E JR. 

We say that the process Z = (Zt, t E ]R) constitutes a stationary solution of the SDS driven by 
W if Z is W-measurable and if 

Zt = tRs,tW(Zs), S <t Zt 0 Ou = Zt+u, t, U E R. 

Existence and uniqueness are guaranteed under some assumptions. Lemma 8 and its corollary, 
below (formulated as Lemma 1 in [15]), are proved in [12] (see also [14]). 

Lemma 8. Assume that sup_c<s<0 Ws < oc and that limt,, Wt < oo, P-a.s. Then there is 
a unique stationary solution to the SDS driven by W. This is given by 

Zt = sup (Wt - WU) =: RtW. (45) 
-o0<U<t 

Quite often, in addition to stationarity of the flow, we also assume ergodicity, namely, that 
each A E F that is invariant under Ot for all t has P(A) equal to 0 or 1. Owing to Birkhhoff's 
individual ergodic theorem, Lemma 8 immediately yields the following corollary. 

Corollary 2. Under the ergodicity assumption, and if E[W1] < 0, there is a unique stationary 
solution Z to the SDS driven by W. The process Z is given by (45) and Z is an ergodic process. 

For the purposes of this paper, assume that W is of the form 

wt -Ws = M(s, t] -p(t -s), s < t, (46) 

where M is a locally finite stationary random measure and 

0 < a := E[M(0, 1)] < P. (47) 

Let PM be the Palm probability (see [9] and [10, Chapter 11]) with respect to M: 

PM (C) = E [1 1CoOtM(dt)]. 

The following lemma is a consequence of Theorem 3 of [15]. 
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Lemma 9. (Distributional Little's law [ 15, Theorem 3].) Let Z be the unique stationary solution 
to the SDS driven by W of the form (46). Assume that (47) holds. Then, for any measurable 

function f: [O, oo) -- [0, oo), we have 

I aN aFot fZo_ifr(x)dx 1 
E[lfr(Zo)] 1 - )fr(O) + E M[0j - ] (48) 

with the understanding that the lastfraction on the right-hand side equals 4f (Zo) on the event 

{Zo = Zo-}. 

It should be noted that the decomposition of W, (46), is not unique; nevertheless, (48) holds, 
regardless of which decomposition of W we choose. 

Appendix B. Exit times for spectrally negative Levy processes 

In this section we consider a spectrally negative Levy process and some facts regarding the 
first time the process exits an unbounded interval. Let Y = (Yt, t E R) be a spectrally negative 
Levy process with Levy measure H. In other words, let B be a standard Brownian motion, let 
ij be an independent Poisson random measure on IR x 1R_ such that 

E[ij(dt, dy)] = dtH(dy), l1{0) = 0, f (y2 A 1)ll(dy) < oo, (49) 

let a E R, a > 0, and define, for -oo < s < t < oo, 

Y(s, t] = a(t-s) + ? (Bt -B) 

+ j j yi7(du, dy) + j f y(i7(du, dy) - duHl(dy)). (50) 
(S t] (-0,-1] ( S,t] (-l o) 

Note that we have thus defined only the increments of Y. (The reason that the increments are 
more fundamental than the process itself is amply explained in [24].) If we set 

Y J Y(O,t], t>0, tE R 
Y -Y(t,0], t<0, 

we have 
Y(s, t] = Yt - Ys, -oo < s < t < 00. 

The choice Yo = 0 is a convenient assumption (note that the stationary process Rkt Y of interest 
in this paper depends only the increments of Y). (In the case that f uly I H1 (dy) < oo and 
a = 0, the process Y has bounded variation paths and can also be represented as 

Y(s, t] = dy(t - s) + j yi(du, dy) 
(SAt (-00,0] 

for some constant dy known as the drift of Y.) 
To be more precise, especially for the construction of the stationary versions of processes in 

this paper, we introduce shifts. Assume that (B, j7) is defined on a probability space (Q, X, P) 
taken, without loss of generality, to be the canonical space Q = C(R) x cA(1R 2), where C(R) 
is the set of the continuous functions on IR and &(2R2) is the set of integer-valued measures 
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on R2. (The space ,K(R2) is endowed with the topology of weak convergence; see, e.g. [10, 
Chapter 15].) Let P be the product measure on the Borel sets of C(R) x ,K(R2) that makes B 
a standard Brownian motion and r a Poisson random measure with mean measure as in (49), 

and to each w) = ((p, ,t) E C(TR) x cN(IR2), let B(p, g) = q and q (q, Jk) = g. Consider also 
the natural shift (0t, t E R) on Q defined by 

Ot((p, /ii)(s, A) = (o(t + s), g(A + s)), s E R, A E S(R2) 

where A +s = I (t +s, y) E R2: (t, y) E A ). By construction, Y has cadlag paths (i.e. paths that 
are continuous from the right with left limits), and, under P, it has stationary (and independent) 
increments. Henceforth, we shall denote by P, the conditional probability of P given Yo = x 
and by Ex the expectation with respect to it. 

All of the following facts are standard results which can be found, for example, in [2, 

Chapter VI] and [18, Chapter 8]. See also [19] for a review which is more convenient for the 
setting at hand. Let 'Iy: R -> C denote the characteristic exponent of Y, i.e. 

E[exp{iOYI}] = exp{-Py(0)), 0 E R, 

and let tfiy: [0, oc) F-* IR denote the Laplace exponent of Y, i.e. 

ifry(f) = log E[exp{/3Yi }], / > 0. 

It is well known that ifry is infinitely differentiable, strictly convex, fr (0) = 0, limj-, i,fy (,8) = 

oo, and that 

*fr(0+) = E[Y1] = E[Yt+l -Y] YE R U {-oo}. 

For each q > 0, let 

by(q) = sup{f3 > 0: *y(,8) = q}. (51) 

Since Y drifts to oc, oscillates, and drifts to -oo according to whether *t', (0+) > 0, 4r, (0+) = 
0, and fy (0+) < 0, respectively, it follows that bPy (0) > 0 if and only if fr' (0+) < 0 and 
otherwise Iy (O) = 0. It is also easy to see that bI y(q) > 0 for all q > 0. 

Define also the scale functions W(q) (x) and Z(') (x) via their Laplace transforms 

00 1 

a e-& W(q) (x) dx- p , (52) 
Vfyd) 

- q 

(00 
_xZqfy (f3) 

e- Z (x) dx = 8S'f(/3) - (53) 

defined for all P > bI y (q). The functions by, W(q), and Z(q) appear in the expressions for the 

Laplace transform of the first passage times, 

TX+ :=inf{t > 0: Yt > x, 

T_X = inf{t > 0: Yt < -x}, 

as follows (cf. [18, Theorem 8.1, p. 214]). 

Lemma 10. For all q > O and x > 0, 

E[exp{-qrX+j)] = exp{-'y(q)x}, (54) 

E[exp{-q-c 1] = Z(q)(x)- q _W(q)(x). (55) -x 0~~~cP (q) 
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