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Abstract 

In this short note we show how new fluctuation identities and their associated asymptotics, 

given in Vigon (2002), Kl?ppelberg et al. (2004) and Doney and Kyprianou (2006), 
provide the basis for establishing, in an elementary way, asymptotic overshoot and 

undershoot distribitions for a general class of Levy insurance risk processes. The results 

bring the earlier conclusions of Asmussen and Kl?ppelberg (1996) for the Cram?r 

Lundberg process into greater generality. 
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1. Levy processes and the structure of insurance claims 

Recall that the Cram?r-Lundberg model corresponds to a Levy process 

XCL = 
{xfL : t > 0} 

with characteristic exponent given by 

VCL(0) = - log f ?0x PiXfL e dx) = -icO + ? f il- ?dx)Fidx), 

for? g R such that li??iifoo XfL 
= oo. In other words, XCL is a compound Poisson process with 

arrival rate ? > 0 and negative jumps, corresponding to claims, having common distribution 
function F with finite mean /x, as well as a drift c > 0, corresponding to a steady income due 
to premiums, which necessarily satisfies c ? 

X?jl > 0. Suppose instead that we work with a 

general spectrally negative Levy process, that is, a Levy process 

XSN = 
{X?N:i>0} 

that drifts to infinity with Levy measure n satisfying 11(0, oo) = 0. Such processes have been 
considered recently by Huzak et al. (2004a), (2004b) and Kl?ppelberg et al. (2004) in the context 
of insurance risk models. In this case, the L?vy-It? decomposition offers an interpretation for 
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Levy insurance risk processes 595 

large-scale insurance companies as follows. The characteristic exponent may be written in the 
form 

*SN(0) = -log [ eWxP(XfN e dx) 
Jr 

= {W02) + \-i0c+ [ (l-e^)n(djc)) I J(-oo,-l) J 

+ (/ (l-ei?x+i0jc)n(djc)[, (1) 
U(-i,0) J 

for 6 e R; necessarily a2 > 0 and the Levy measure, n, satisfies f,^ 0)(1 
a jc2)I~I(djc) < oo. 

The requirement that X drifts to infinity implies that c ? 
J,^ _X\ \x\Y\(dx) > 0. Note that 

when n(?oo, 0) = oo the process XSN enjoys a countably infinite number of jumps over each 
finite time horizon. We may understand the third bracket in (1) as a Levy process representing 
a countably infinite number of arbitrarily small claims compensated by a deterministic positive 
drift (which may be infinite in the case that f,{ 0) |jc|FI(djc) = oo) corresponding to the 
accumulation of premiums over an infinite number of contracts. Roughly speaking, the way 
in which claims occur is such that, in any arbitrarily small period of time dt, a claim of size 

|jc| is made independently with probability I"I(djc)df + o(dt). The insurance company thus 
counterbalances such claims by ensuring that it collects premiums in such a way that, in any dt, 
|jc|n(djc)dr of its income is devoted to the compensation of claims of size |jc|. We may 

understand the second bracket in (1) as coming from large claims which occur occasionally and 
are compensated against by a steady income at rate c > 0 as in the Cram?r-Lundberg model. 

Here iarge' is taken to mean claims of size one or more. Finally, we may see the first bracket 
in (1) as a stochastic pertubation of the system of claims and premium income. 

Since the first and third brackets in ( 1 ) correspond to martingales, the company may guarantee 
that its revenues drift to infinity over an infinite time horizon by assuming that the latter behaviour 

applies to the compensated process of large claims corresponding to the second bracket in (1). 

2. Extreme ruinous behaviour 

In this short note our objective is to show that, thanks to the recent results of Vigon (2002), 
Kliippelberg et al (2004), and Doney and Kyprianou (2006), conclusions to be found in 
Asmussen and Kliippelberg (1996) concerning the extreme ruinous behaviour under assump 
tions of subexponentiality in the jump distribution of the classic Cram?r-Lundberg model can 
be extended effortlessly to the case of a general spectrally negative process. In the usual way we 
turn the problem around and consider the first passage of the dual process above a fixed barrier. 
In that case we deal with the process X = {Xt : t > 0} such that, under P, X has the same law 
as ?XSN. Note in particular that now lim^oo Xt = ? oo and, hence, from the discussion in 

Section 1 we necessarily have ?oo < E(Xi) < 0. We shall denote the Levy measure of X by 
nx. 

Recall that a distribution function F supported on [0, oo) is subexponential if F(x) := 
1 ? 

F(x) > 0 for each jc > 0 and, furthermore, the tail of the two-fold convolution satisfies 

F*2(jc) lim _ V ' = 2. 
xfoo F(x) 

The definition of subexponentiality can be extended to any measure with positive support 
which is finite on (jcn, oo) for some xq > 0 (for example a Levy measure) by normalizing it to 
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596 C. KL?PPELBERG AND A. E. KYPRIANOU 

a probability measure. There is a very broad literature concerning subexponential distributions 

and their applications. We refer to Embrechts et al. (1997, Chapter 1 and Appendix A3) or 
Goldie and Kl?ppelberg (1998) for overviews. 

A classic result due to Embrechts et al. (1979) shows that if F is an infinitely divisible 
distribution on [0, oo), then F is subexponential if and only if Yip is subexponential, where 
Yip is the Levy measure appearing in the L?vy-Khinchin decomposition associated with F. 
Furthermore, in that case, Tlpix) ^ Fix) as x ? oo. 

In our two main results below the conditions on X shall be sufficient to deduce that the Levy 
measure of the ascending ladder process, Tin, belongs to the subexponential class. In that case, 

Lemma 3.5 of Kl?ppelberg et al. (2004) shows that the probability of ruin has the asymptotic 
behaviour 

P(or+ < oo) 1 
lim ?z?- =-, (2) 

*too nHix) |E(Xi)| 

where a + = inf{i > 0: Xt > x} and ?h?x) = Unix, oo). 

2.1. Regularly varying tails 

Let ?R^ be the class of functions which are regularly varying with index a. That is, we say 
that / ?R^ if / is a measurable and positive function on (0, oo) and, for all ? > 0, 

xtoo fix) 

(cf. Embrechts et al. (1997, Appendix A3)). 

Theorem 1. Suppose that X is any spectrally positive Levy process which drifts to ? oo, and 
suppose that TLxi-) e ?R^~a~^ for some a e (0, oo). Then the following asymptotic bivariate 
law holds as x -> oo: 

'-X?+_ X?+-x" 
iVa,Ta) (3) 

aix) aix) 

in P(- | a+ < oo)-distribution in M x R+, where aix) = x/a and the pair iVa, Ta) are 

dependent Pareto random variables satisfying 

?iVa >x,Ta>y) = 
(l + ?-tl) , x,y> 0. 

Proof. Let Uidx) be the potential measure of the ascending ladder height process 
[Ht : t > 0}, where Ht ? 

XL-\ for t < L and {Lt : t > 0} is the Markov local time spent 
at zero of the process {supi<r Xs 

? 
Xt : t > 0}. Hence, Uidx) = 

E(/0?? l{Htedx) dt), where 

1{.} is the indicator function. We write Uix) = t/([0, x]). Then it is also known that ?/(jc) 
is the continuous function identifiable by its Laplace transform /0?? e~?xUix) dx = l/x/ri?) 
for ? > 0, where fi?) = logE(e^Xl). It is also known (cf. Kl?ppelberg et al. (2004, 

Remark 4.3)) that ?/(oo) = 1/| E(Xi)|. 
As a special case of the quintuple law given in Theorem 3 of Doney and Kyprianou (2006), 

we may now write, for u*,v* > 0, 

P(X+ 
- x > u*, x - 

X+_ > v*) fXUix-dy)f dz f Tlxidu + z). 
JO J[v*vy, oo) J[u*,oo) 
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Consequently, setting v* ? x + a(x)v and w* = a(x)u and taking into account the relation 
between Tin and Tlx established by Vigon (2002), namely 

(4) 
/ OO 

?H(u) = / nx(z)dz, w > o, 

we have 
X+-x -X 

> u,-?? > v I = U(x)YIh(x + a(x)(v + w)). 
?/(*) a(x) 

The assumption that Ylx(-) ?RS~x~a>> and the relation (4) imply (by Karamata's theorem; see 
Embrechts et al. (1997, Section A3)) that the integrated tail Ft//(jc) is in ?R(~a\ In particular, 
this means that FI// belongs to the subexponential class. We now have 

/Xa+-x -Xa+_ 
lim PI ?-- > u, 

x 

tfco \ a(x) a(x) aj~ 
< oo 

T\h(x + a(x)(v + u)) = lim \E(Xx)\U(x) 
Hy _ WV- (5) 
*t?o ri//(x) 

where we have appealed to (2) and regular variation in the first equality and second equality, 
respectively. This is consistent with the statement of the theorem. 

2.2. Maximum domain of attraction of the Gumbel distribution 

Recall that a distribution function F is in the maximal domain of attraction of the Gumbel 
distribution if and only if there exists a positive differentiable function a(-) satisfying af(x) -> 0 
such that _ 

F(x +a(x)u) _? 
hm -=-= e , 
xfoo F(x) 

for all u > 0 (see, e.g. Embrechts etal. (1997, Theorems 3.3.26 and 3.3.27)). A possible choice 
of a is _ '?? 

F(z) a(x) = 
j J X 

dz, x F(x) 
where a is unique only up to asymptotic equivalence. Recall that for F infinitely divisible with 

Levy measure Flfwe know that F(x) ~ Up (x) as x t oo. As any maximum domain of 
attraction is closed with respect to tail equivalence we may also say that Up is in the maximal 
domain of attraction of a Gumbel distribution. 

Theorem 2. Suppose that X is any spectrally positive Levy process which drifts to ? oo, and 

suppose that Ylx is in the maximum domain of attraction of the Gumbel distribution. Then the 

asymptotic bivariate law (3) holds as x -^ oo, where a(x) ^ 
fx nx (z) dz/Tlx (x) as x ?> oo 

and the pair (Va, Ta) are dependent exponential random variables satisfying 

P(Va > jc, Ta > y) 
= 

e"(jr+>), jc, y > 0. 

Proof. Following the previous proof, we pick up at (5). The assumption on Fix implies that 

a'(x) -> 0 as x ?> oo and 

Ux(x + a(x)(v + u)) -<v+u) 
nxW 
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The proof is complete once it is shown that a similar relation holds for n h ix) - 

To show that this is indeed the case, we use l'H?pital's rule: 

,. T?Hix+aix)iv + u)) ,. nxix+aix)iv + u))il+afix)) 
hm -=-= hm -= 

x^oo TIh?x) x^?? Tlxix) 

as a'ix) -> 0. 

3. Concluding remark 

Note that further results follow from the limiting bivariate law in Asmussen and Kl?ppelberg 
(1996) (for example their Corollary 1.5), which, given the conclusions of Theorems 1 and 2, 
have direct analogues within the current context, with identical proofs. 

-.fx nxiy)dy. 
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