§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

On recent developments of Markov Processes and Applications

Andreas Kyprianou Based on joint work with V. Rivero and W. Satitkanitkul

A more thorough set of lecture notes can be found here: https://arxiv.org/abs/1707.04343 Other related material found here https://arxiv.org/abs/1511.06356 https://arxiv.org/abs/1706.09924

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

CONTENTS

- §1. Quick review of Lévy processes
- ▶ §2. Self-similar Markov processes
- ▶ §3. Lamperti Transform
- §4. Positive self-similar Markov processes
- ▶ §5. Entrance Laws
- ▶ §6. Real valued self-similar Markov processes
- ▶ §7. Isotropic stable processes in dimension $d \ge 2$ seen as Lévy processes
- \blacktriangleright §8. Isotropic stable processes in dimension $d \geq 2$ seen as a self-similar Markov process

- コン・4回シュ ヨシュ ヨン・9 くの

- §9. Riesz–Bogdan–Żak transform
- ▶ §10. Hitting spheres
- §11. Spherical hitting distribution
- ▶ §12. Spherical entrance/exit distribution
- ▶ §13. Radial excursion theory

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§1. Quick review of Lévy processes

(KILLED) LÉVY PROCESS

- ► $(\xi_t, t \ge 0)$ is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula [Exercise! Show that the exponent must factorise]:

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta\cdot\xi_t}] = \mathrm{e}^{-\Psi(\theta)t}, \qquad \theta \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{ia} \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A}\theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i}\theta \cdot x} + \mathrm{i}(\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d}x),$$

where $a \in \mathbb{R}$, **A** is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$. Think of Π as the intensity of jumps in the sense of

 $\mathbb{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

$$\mathbb{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

(KILLED) LÉVY PROCESS

- ► (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula [Exercise! Show that the exponent must factorise]:

$$\mathbb{E}[\mathbf{e}^{\mathbf{i}\boldsymbol{\theta}\cdot\boldsymbol{\xi}_t}] = \mathbf{e}^{-\Psi(\boldsymbol{\theta})t}, \qquad \boldsymbol{\theta} \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i} \mathbf{a} \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A} \theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i} \theta \cdot x} + \mathrm{i} (\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d} x),$$

where $a \in \mathbb{R}$, **A** is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$. Think of Π as the intensity of jumps in the sense of

 $\mathbb{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

$$\mathbb{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

$$\Phi(\lambda) = q + \delta\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

$$4/12$$

(KILLED) LÉVY PROCESS

- ► (ξ_t, t ≥ 0) is a (killed) Lévy process if it has stationary and independents with RCLL paths (and is sent to a cemetery state after and independent and exponentially distributed time).
- Process is entirely characterised by its one-dimensional transitions, which are coded by the Lévy–Khinchine formula [Exercise! Show that the exponent must factorise]:

$$\mathbb{E}[\mathbf{e}^{\mathbf{i}\boldsymbol{\theta}\cdot\boldsymbol{\xi}_t}] = \mathbf{e}^{-\Psi(\boldsymbol{\theta})t}, \qquad \boldsymbol{\theta} \in \mathbb{R}^d,$$

where,

$$\Psi(\theta) = q + \mathrm{i} \mathbf{a} \cdot \theta + \frac{1}{2} \theta \cdot \mathbf{A} \theta + \int_{\mathbb{R}^d} (1 - \mathrm{e}^{\mathrm{i} \theta \cdot x} + \mathrm{i} (\theta \cdot x) \mathbf{1}_{(|x| < 1)}) \Pi(\mathrm{d} x),$$

where $a \in \mathbb{R}$, **A** is a $d \times d$ Gaussian covariance matrix and Π is a measure satisfying $\int_{\mathbb{R}^d} (1 \wedge |x|^2) \Pi(dx) < \infty$. Think of Π as the intensity of jumps in the sense of

 $\mathbb{P}(X \text{ has jump at time } t \text{ of size } dx) = \Pi(dx)dt + o(dt).$

In one dimension the path of a Lévy process can be monotone, in which case it is called a *subordinator* and we work with the Laplace exponent

$$\mathbb{E}[\mathrm{e}^{-\lambda\xi_t}] = \mathrm{e}^{-\Phi(\lambda)t}, \qquad t \ge 0$$

where

$$\Phi(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

Two examples in one dimension:

► **Stable subordinator** $(\xi_t, t \ge 0)$ is a subordinator which satisfies the additional scaling property: For c > 0

under \mathbb{P} , the law of $(c\xi_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P} ,

where $\alpha \in (0, 1)$. We have

$$\Phi(\lambda) = \lambda^{\alpha}, \qquad \lambda \ge 0, \qquad \text{and} \qquad \Pi(dx) = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx, \qquad x > 0.$$

▶ Hypgergeometric Lévy process: For $\beta \leq 1, \gamma \in (0,1), \hat{\beta} \geq 0, \hat{\gamma} \in (0,1)$

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}.$$

The Lévy measure has a density with respect to Lebesgue measure which is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1+\gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1+\hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$

Two examples in one dimension:

► **Stable subordinator** $(\xi_t, t \ge 0)$ is a subordinator which satisfies the additional scaling property: For c > 0

under \mathbb{P} , the law of $(c\xi_{c^{-\alpha}t}, t \ge 0)$ is equal to \mathbb{P} ,

where $\alpha \in (0, 1)$. We have

$$\Phi(\lambda) = \lambda^{\alpha}, \qquad \lambda \ge 0, \qquad \text{and} \qquad \Pi(dx) = \frac{\alpha}{\Gamma(1-\alpha)} \frac{1}{x^{1+\alpha}} dx, \qquad x > 0.$$

▶ Hypgergeometric Lévy process: For $\beta \leq 1, \gamma \in (0,1), \hat{\beta} \geq 0, \hat{\gamma} \in (0,1)$

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}.$$

The Lévy measure has a density with respect to Lebesgue measure which is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta - \hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1 + \gamma, \eta; \eta - \hat{\gamma}; e^{-x}\right), & \text{if } x > 0, \\ -\frac{\Gamma(\eta)}{\Gamma(\eta - \gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta} + \hat{\gamma})x} {}_2F_1\left(1 + \hat{\gamma}, \eta; \eta - \gamma; e^x\right), & \text{if } x < 0, \end{cases}$$

where $\eta := 1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}$.

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(dx), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ -subordinator agrees with the range of $\sup_{s < t} \xi_s$, $t \ge 0$
- range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s \le t} \xi_s, t \ge 0$.
- ▶ Note if $\delta > 0$, then $\mathbb{P}(\xi_{\tau_x^+} = x) > 0$, where $\tau_x^+ = \inf\{t > 0 : \xi_t = x\}, x > 0$.
- We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - i\theta)}{\Gamma(1 - \beta - i\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + i\theta)}{\Gamma(\hat{\beta} + i\theta)} \qquad \theta \in \mathbb{R}$$

6/125 《 □ ▷ 《 🗗 ▷ 《 볼 ▷ 《 볼 ▷ 》 즉 ()

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ-subordinator agrees with the range of sup_{s<t} ξ_s, t ≥ 0
- ▶ range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s < t} \xi_{s,t} t \ge 0$.
- Note if $\delta > 0$, then $\mathbb{P}(\xi_{\tau^+} = x) > 0$, where $\tau^+_x = \inf\{t > 0 : \xi_t = x\}, x > 0$.
- We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}$$

6/125 <□▶<률▶<≣▶<≣▶ ≣ - ∽੧<?

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ-subordinator agrees with the range of sup_{s≤t} ξ_s, t ≥ 0
- ▶ range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s < t} \xi_{s,t}$ $t \ge 0$.
- Note if $\delta > 0$, then $\mathbb{P}(\xi_{\tau_x^+} = x) > 0$, where $\tau_x^+ = \inf\{t > 0 : \xi_t = x\}, x > 0$.

We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - \mathrm{i}\theta)}{\Gamma(1 - \beta - \mathrm{i}\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + \mathrm{i}\theta)}{\Gamma(\hat{\beta} + \mathrm{i}\theta)} \qquad \theta \in \mathbb{R}$$

6/125 ◆□▶**◆圕▶**◆볼▶◆볼▶ 볼 ∽)੧...

• If ξ has a characteristic exponent Ψ then necessarily

$$\Psi(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R}.$$

where κ and $\hat{\kappa}$ are Bernstein functions, e.g.

$$\kappa(\lambda) = q + \delta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda x}) \Upsilon(\mathrm{d} x), \qquad \lambda \ge 0.$$

The factorisation has a physical interpretation:

- range of the κ-subordinator agrees with the range of sup_{s≤t} ξ_s, t ≥ 0
- ▶ range $\hat{\kappa}$ -subordinator agrees with the range of $-\inf_{s < t} \xi_{s, t} \ge 0$.
- ▶ Note if $\delta > 0$, then $\mathbb{P}(\xi_{\tau_x^+} = x) > 0$, where $\tau_x^+ = \inf\{t > 0 : \xi_t = x\}, x > 0$.
- We have already seen the hypergeometric example

$$\Psi(\theta) = \frac{\Gamma(1 - \beta + \gamma - i\theta)}{\Gamma(1 - \beta - i\theta)} \qquad \times \qquad \frac{\Gamma(\hat{\beta} + \hat{\gamma} + i\theta)}{\Gamma(\hat{\beta} + i\theta)} \qquad \theta \in \mathbb{R}$$

6/125

HITTING POINTS

• We say that ξ *can hit a point* $x \in \mathbb{R}$ if

 $\mathbb{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$

Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$, providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z$$

for some $c \in \mathbb{R}$.

7/125

HITTING POINTS

• We say that ξ *can hit a point* $x \in \mathbb{R}$ if

 $\mathbb{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$

Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$, providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z$$

for some $c \in \mathbb{R}$.

7/125

HITTING POINTS

• We say that ξ *can hit a point* $x \in \mathbb{R}$ if

 $\mathbb{P}(\xi_t = x \text{ for at least one } t > 0) > 0.$

Creeping is one way to hit a point, but not the only way

Theorem (Kesten (1969)/Bretagnolle (1971))

Suppose that ξ is not a compound Poisson process. Then ξ can hit points if and only if

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d} z < \infty.$$

If the Kesten-Bretagnolle integral test is satisfied, then

$$\mathbb{P}(\tau^{\{x\}} < \infty) = \frac{u(x)}{u(0)},$$

where $\tau^{\{x\}} = \inf\{t > 0 : \xi_t = x\}$, providing we can compute the inversion

$$u(x) = \int_{c+i\mathbb{R}} \frac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z$$

for some $c \in \mathbb{R}$.

7/125 《 ロ ト 《 团 ト 《 트 ト 《 트 ト 《 트 · · · 이 익 안

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§2. Self-similar Markov processes

Self-similar Markov processes (SSMP)

Definition

A regular strong Markov process $(Z_t : t \ge 0)$ on \mathbb{R}^d , with probabilities \mathbb{P}_x , $x \in \mathbb{R}^d$, is a rssMp if there exists an index $\alpha \in (0, \infty)$ such that for all c > 0 and $x \in \mathbb{R}^d$,

 $(cZ_{tc^{-\alpha}}: t \ge 0)$ under \mathbb{P}_x is equal in law to $(Z_t: t \ge 0)$ under \mathbb{P}_{cx} .

▶ Write $\mathcal{N}_d(\mathbf{0}, \mathbf{\Sigma})$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^d$ and correlation (matrix) $\mathbf{\Sigma}$. The moment generating function of $X_t \sim \mathcal{N}_d(\mathbf{0}, \mathbf{\Sigma}t)$ satisfies, for $\theta \in \mathbb{R}^d$,

$$E[\mathbf{e}^{\theta \cdot X_t}] = \mathbf{e}^{t\theta^{\mathsf{T}} \boldsymbol{\Sigma} \theta/2} = \mathbf{e}^{(c^{-2}t)(c\theta)^{\mathsf{T}} \boldsymbol{\Sigma} (c\theta)/2} = E[\mathbf{e}^{\theta \cdot cX_c - 2_t}].$$

Thinking about the stationary and independent increments of Brownian motion, this can be used to show that \mathbb{R}^d -**Brownian motion**: is a ssMp with $\alpha = 2$.

▶ Write $\mathcal{N}_d(\mathbf{0}, \mathbf{\Sigma})$ for the Normal distribution with mean $\mathbf{0} \in \mathbb{R}^d$ and correlation (matrix) $\mathbf{\Sigma}$. The moment generating function of $X_t \sim \mathcal{N}_d(\mathbf{0}, \mathbf{\Sigma}t)$ satisfies, for $\theta \in \mathbb{R}^d$,

$$E[\mathbf{e}^{\theta \cdot X_t}] = \mathbf{e}^{t\theta^{\mathrm{T}} \boldsymbol{\Sigma} \theta/2} = \mathbf{e}^{(c^{-2}t)(c\theta)^{\mathrm{T}} \boldsymbol{\Sigma} (c\theta)/2} = E[\mathbf{e}^{\theta \cdot cX_{c^{-2}t}}].$$

► Thinking about the stationary and independent increments of Brownian motion, this can be used to show that \mathbb{R}^d -Brownian motion: is a ssMp with $\alpha = 2$.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \le t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.
- For c > 0 and $\alpha = 2$

$$\binom{c\underline{X}_{c-\alpha_{t}}}{cX_{c-\alpha_{t}}} = \binom{c\inf_{s \leq c-\alpha_{t}} X_{s}}{c\overline{X}_{c-\alpha_{t}}} = \binom{\inf_{u \leq t} c\overline{X}_{c-\alpha_{u}}}{c\overline{X}_{c-\alpha_{t}}}, \quad t \geq 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

- ▶ [Exercise!] ⇒ Markov process $Z_t := X_t (-x \land X_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.
- ▶ [Exercise!] \Rightarrow Z_t := $X_t \mathbf{1}_{(X_t > 0)}$, $t \ge 0$ is also a ssMp, again on $[0, \infty)$.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \le t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.
- For c > 0 and α = 2,

$$\binom{c\underline{X}_{c-\alpha_t}}{cX_{c-\alpha_t}} = \binom{c\inf_{s \le c^{-\alpha_t}} X_s}{cX_{c-\alpha_t}} = \binom{\inf_{u \le t} cX_{c-\alpha_u}}{cX_{c-\alpha_t}}, \quad t \ge 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

▶ [Exercise!] ⇒ Markov process $Z_t := X_t - (-x \land X_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.

- コン・4回シュ ヨシュ ヨン・9 くの

• [Exercise!] $\Rightarrow Z_t := X_t \mathbf{1}_{(X_t > 0)}, t \ge 0$ is also a ssMp, again on $[0, \infty)$.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \le t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.
- For c > 0 and α = 2,

$$\binom{c\underline{X}_{c-\alpha_t}}{cX_{c-\alpha_t}} = \binom{c\inf_{s \le c-\alpha_t} X_s}{cX_{c-\alpha_t}} = \binom{\inf_{u \le t} cX_{c-\alpha_u}}{cX_{c-\alpha_t}}, \quad t \ge 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

▶ [Exercise!] ⇒ Markov process $Z_t := X_t - (-x \land \underline{X}_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.

- コン・4回シュ ヨシュ ヨン・9 くの

▶ [Exercise!] \Rightarrow $Z_t := X_t \mathbf{1}_{(X_t > 0)}, t \ge 0$ is also a ssMp, again on $[0, \infty)$.

Some of your best friends are ssMp

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R} -Brownian motion:

- ▶ Write $\underline{X}_t := \inf_{s \le t} X_s$. Then (X_t, \underline{X}_t) , $t \ge 0$ is a Markov process.
- For *c* > 0 and *α* = 2,

$$\binom{c\underline{X}_{c-\alpha_t}}{cX_{c-\alpha_t}} = \binom{c\inf_{s \le c-\alpha_t} X_s}{cX_{c-\alpha_t}} = \binom{\inf_{u \le t} cX_{c-\alpha_u}}{cX_{c-\alpha_t}}, \quad t \ge 0,$$

and the latter is equal in law to (X, \underline{X}) , because of the scaling property of X.

- ▶ [Exercise!] \Rightarrow Markov process $Z_t := X_t (-x \land \underline{X}_t), t \ge 0$ is also a ssMp on $[0, \infty)$ issued from x > 0 with index 2.
- ► [Exercise!] $\Rightarrow Z_t := X_t \mathbf{1}_{(\underline{X}_t > 0)}, t \ge 0$ is also a ssMp, again on $[0, \infty)$.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- ▶ Consider $Z_t := |X_t|, t \ge 0$. Because of rotational invariance, it is a Markov process. [Exercise!]
- ▶ Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|. Note again, this is a ssMp on [0,∞). [Exercise!]
- Note that $|X_t|$, $t \ge 0$ is a Bessel-*d* process. It turns out that all Bessel processes, *and* all squared Bessel processes are self-similar on $[0, \infty)$. Once can check this by e.g. considering scaling properties of their transition semi-groups.

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

- ▶ Consider $Z_t := |X_t|, t \ge 0$. Because of rotational invariance, it is a Markov process. [Exercise!]
- ► Again the self-similarity (index 2) of Brownian motion, transfers to the case of |X|. Note again, this is a ssMp on [0, ∞). [Exercise!]
- ▶ Note that $|X_t|$, $t \ge 0$ is a Bessel-*d* process. It turns out that all Bessel processes, *and* all squared Bessel processes are self-similar on $[0, \infty)$. Once can check this by e.g. considering scaling properties of their transition semi-groups.

Some of your best friends are ssMp

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

▶ Note when d = 3, $|X_t|$, $t \ge 0$ is also equal in law to a Brownian motion conditioned to stay positive: i.e if we define, for a 1-*d* Brownian motion ($B_t : t \ge 0$),

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{B}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{B_{t}}{x} \mathbf{1}_{(\underline{B}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

where $A \in \sigma\{B_t : u \leq t\}$, then

 $(|X_t|, t \ge 0)$ with $|X_0| = x$ is equal in law to $(B, \mathbb{P}_x^{\uparrow})$.

[Exercise!] Prove that

$$\frac{B_t}{x}\mathbf{1}_{(\underline{B}_t>0)}, \qquad t \ge 0,$$

is a martingale.

Some of your best friends are $\mathrm{ss}\mathrm{Mp}$

Suppose that $(X_t : t \ge 0)$ is an \mathbb{R}^d -Brownian motion:

▶ Note when d = 3, $|X_t|$, $t \ge 0$ is also equal in law to a Brownian motion conditioned to stay positive: i.e if we define, for a 1-*d* Brownian motion ($B_t : t \ge 0$),

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{B}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{B_{t}}{x} \mathbf{1}_{(\underline{B}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

where $A \in \sigma\{B_t : u \leq t\}$, then

 $(|X_t|, t \ge 0)$ with $|X_0| = x$ is equal in law to $(B, \mathbb{P}_x^{\uparrow})$.

[Exercise!] Prove that

$$\frac{B_t}{x}\mathbf{1}_{(\underline{B}_t>0)}, \qquad t \ge 0,$$

is a martingale.

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

14/125

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

14/125

(日)

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

14/125

- All of the previous examples have in common that their paths are continuous. Is this a necessary condition?
- We want to find more exotic examples as most of the previous examples have been extensively studied through existing theories (of Brownian motion and continuous semi-martingales).
- All of the previous examples are functional transforms of Brownian motion and have made use of the scaling and Markov properties and (in some cases) isotropic distributional invariance.
- If we replace Brownain motion by an α-stable process, a Lévy process that has scale invariance, then all of the functional transforms still produce new examples of self-similar Markov processes.

14/125

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

α -STABLE PROCESS

Definition A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

Assume jumps in both directions ($0 < \alpha \rho, \alpha \hat{\rho} < 1$), so that the Lévy **density** takes the form

$$\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho) \mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho}) \mathbf{1}_{\{x<0\}} \right)$$

15/125 《 □ ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ 의 역 @

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
α	-STABL	E PR	OCES	S									

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

► Assume jumps in both directions ($0 < \alpha \rho, \alpha \hat{\rho} < 1$), so that the Lévy **density** takes the form

$$\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho) \mathbb{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho}) \mathbb{1}_{\{x<0\}} \right)$$

15/125 《 □ ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ ⑦ � (☉

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
α	-STABL	E PR	OCES	S									

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- ► The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

Assume jumps in both directions ($0 < \alpha \rho, \alpha \hat{\rho} < 1$), so that the Lévy **density** takes the form

$$\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho) \mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho}) \mathbf{1}_{\{x<0\}} \right)$$

 15/125

 < □ > < 금 > < 흔 > < 흔 > < 흔 > < 흔 < ○ < ○</td>

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
α	-STABL	E PR	OCES	S									

Definition

A Lévy process X is called (strictly) α -stable if it is also a self-similar Markov process.

- ▶ Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow BM$, exclude this.]
- The characteristic exponent $\Psi(\theta) := -t^{-1} \log \mathbb{E}(e^{i\theta X_t})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

where $\rho = P_0(X_t \ge 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$

Assume jumps in both directions ($0 < \alpha \rho, \alpha \hat{\rho} < 1$), so that the Lévy **density** takes the form

$$\frac{\Gamma(1+\alpha)}{\pi} \frac{1}{|x|^{1+\alpha}} \left(\sin(\pi\alpha\rho) \mathbf{1}_{\{x>0\}} + \sin(\pi\alpha\hat{\rho}) \mathbf{1}_{\{x<0\}} \right)$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}$$

• Note that, for c > 0, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,

- which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,
- ▶ or equivalently is equivalent to saying $(cX_{c-\alpha_t}^{(x)}, t \ge 0) =^d (X_t^{(cx)}, t \ge 0)$, where we have indicated the point of issue as an additional index.

16/125

イロト イロト イヨト イヨト ヨー のへぐ
§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

$\alpha\textsc{-stable process}$

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}.$$

- Note that, for c > 0, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,
- which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,
- ▶ or equivalently is equivalent to saying $(cX_{c-\alpha_t}^{(x)}, t \ge 0) =^d (X_t^{(cx)}, t \ge 0)$, where we have indicated the point of issue as an additional index.

16/125

・ロト・日本・モート モー うへの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}$$

- Note that, for c > 0, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,
- which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,
- ▶ or equivalently is equivalent to saying $(cX_{c-\alpha_{t}}^{(x)}, t \ge 0) = d(X_{t}^{(\alpha)}, t \ge 0)$, where we have indicated the point of issue as an additional index.

16/125

・ロト・日本・モート モー うへの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

α -STABLE PROCESS

$$\Psi(\theta) = |\theta|^{\alpha} (\mathrm{e}^{\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta > 0)} + \mathrm{e}^{-\pi \mathrm{i} \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{(\theta < 0)}), \qquad \theta \in \mathbb{R}$$

- Note that, for c > 0, $c^{-\alpha}\Psi(c\theta) = \Psi(\theta)$,
- which is equivalent to saying that $cX_{c-\alpha_t} =^d X_t$,
- ▶ which by stationary and independent increments is equivalent to saying $(cX_{c-\alpha_t}, t \ge 0) =^d (X_t, t \ge 0)$ when $X_0 = 0$,
- ▶ or equivalently is equivalent to saying (cX^(x)_{c^{-αt}}, t ≥ 0) =^d (X^(cx)_t, t ≥ 0), where we have indicated the point of issue as an additional index.

16/125

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
Yc) UR N	EW F	RIEN	DS									

イロト イロト イヨト イヨト ヨー のへぐ

Suppose $X = (X_t : t \ge 0)$ is within the assumed class of α -stable processes in one-dimension and let $\underline{X}_t = \inf_{s \le t} X_s$.

Your new friends are:

- \blacktriangleright Z = X
- ► $Z = X (-x \wedge \underline{X}), x > 0.$
- ► $Z = X \mathbf{1}_{(X>0)}$
- ► Z = |X| providing $\rho = 1/2$
- ▶ [Exercise!] Verify these cases!
- ▶ What about *Z* = "*X* conditioned to stay positive"?

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
Yc) UR N	EW F	RIEN	DS									

イロト イロト イヨト イヨト ヨー のへぐ

Suppose $X = (X_t : t \ge 0)$ is within the assumed class of α -stable processes in one-dimension and let $\underline{X}_t = \inf_{s \le t} X_s$.

Your new friends are:

- \blacktriangleright Z = X
- ► $Z = X (-x \land \underline{X}), x > 0.$
- ► $Z = X \mathbf{1}_{(X>0)}$
- ► Z = |X| providing $\rho = 1/2$
- ▶ [Exercise!] Verify these cases!
- ▶ What about *Z* = "*X* conditioned to stay positive"?

▶ Recall that each Lévy processes, $\xi = \{\xi_t : t \ge 0\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta) := t^{-1} \log \mathbb{E}[e^{i\theta\xi_t}]$ respects the factorisation

$$\Psi_{\xi}(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R},$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$\kappa(\lambda) = q + a\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x})\nu(dx), \qquad \lambda \ge 0$$

where ν is a measure satisfying $\int_{(0,\infty)} (1 \wedge x) \nu(dx) < \infty$.

- The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of *ξ* and of -*ξ* respectively.
- In the case of α -stable processes, up to a multiplicative constant,

$$\kappa(\lambda) = \lambda^{\alpha \rho} \text{ and } \hat{\kappa}(\lambda) = \lambda^{\alpha \hat{\rho}}, \qquad \lambda \ge 0.$$

18/125

▶ Recall that each Lévy processes, $\xi = \{\xi_t : t \ge 0\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta) := t^{-1} \log \mathbb{E}[e^{i\theta\xi_t}]$ respects the factorisation

$$\Psi_{\xi}(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R},$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$\kappa(\lambda) = q + a\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x})\nu(dx), \qquad \lambda \ge 0$$

where ν is a measure satisfying $\int_{(0,\infty)} (1 \wedge x) \nu(dx) < \infty$.

- The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of *ξ* and of -*ξ* respectively.
- In the case of α -stable processes, up to a multiplicative constant,

$$\kappa(\lambda) = \lambda^{\alpha \rho} \text{ and } \hat{\kappa}(\lambda) = \lambda^{\alpha \hat{\rho}}, \qquad \lambda \ge 0.$$

18/125

イロト イロト イヨト イヨト 三日

▶ Recall that each Lévy processes, $\xi = \{\xi_t : t \ge 0\}$, enjoys the Wiener-Hopf factorisation i.e. up to a multiplicative constant, $\Psi_{\xi}(\theta) := t^{-1} \log \mathbb{E}[e^{i\theta\xi_t}]$ respects the factorisation

$$\Psi_{\xi}(\theta) = \kappa(-\mathrm{i}\theta)\hat{\kappa}(\mathrm{i}\theta), \qquad \theta \in \mathbb{R},$$

where κ and $\hat{\kappa}$ are Bernstein functions. That is e.g. κ takes the form

$$\kappa(\lambda) = q + a\lambda + \int_{(0,\infty)} (1 - e^{-\lambda x})\nu(dx), \qquad \lambda \ge 0$$

where ν is a measure satisfying $\int_{(0,\infty)} (1 \wedge x) \nu(dx) < \infty$.

- The probabilistic significance of these subordinators, is that their range corresponds precisely to the range of the running maximum of *ξ* and of -*ξ* respectively.
- In the case of α -stable processes, up to a multiplicative constant,

$$\kappa(\lambda) = \lambda^{\alpha \rho} \text{ and } \hat{\kappa}(\lambda) = \lambda^{\alpha \hat{\rho}}, \qquad \lambda \ge 0.$$

18/125

- コン・4回シュ ヨシュ ヨン・9 くの

• Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U} , which satisfies

$$\int_{[0,\infty)} e^{-\lambda x} \hat{U}(dx) = \frac{1}{\hat{\kappa}(\lambda)}, \qquad \lambda \ge 0.$$

▶ It can be shown that for a Lévy process which satisfies $\limsup_{t\to\infty} \xi_t = \infty$, for $A \in \sigma(\xi_u : u \le t)$,

$$\mathbb{P}_x^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_x(A | \underline{X}_{t+s} > 0) = \mathbb{E}_x \left[\frac{\hat{U}(X_t)}{\hat{U}(x)} \mathbf{1}_{(\underline{X}_t > 0)} \mathbf{1}_{(A)} \right]$$

▶ In the α -stable case $\hat{U}(x) \propto x^{\alpha \hat{\rho}}$ [Note in the excluded case that $\alpha = 2$ and $\rho = 1/2$, i.e. Brownian motion, $\hat{U}(x) = x$.]

• Associated to the descending ladder subordinator $\hat{\kappa}$ is its potential measure \hat{U} , which satisfies

$$\int_{[0,\infty)} e^{-\lambda x} \hat{U}(\mathrm{d}x) = \frac{1}{\hat{\kappa}(\lambda)}, \qquad \lambda \ge 0.$$

► It can be shown that for a Lévy process which satisfies $\limsup_{t\to\infty} \xi_t = \infty$, for $A \in \sigma(\xi_u : u \le t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{X}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{\hat{U}(X_{t})}{\hat{U}(x)} \mathbf{1}_{(\underline{X}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

▶ In the α -stable case $\hat{U}(x) \propto x^{\alpha \hat{\rho}}$ [Note in the excluded case that $\alpha = 2$ and $\rho = 1/2$, i.e. Brownian motion, $\hat{U}(x) = x$.]

> 19/125 《 □ ▷ 《 클 ▷ 《 클 ▷ 《 클 ▷ ③ � �

Associated to the descending ladder subordinator
 k is its potential measure
 Û,
 which satisfies

$$\int_{[0,\infty)} e^{-\lambda x} \hat{U}(\mathrm{d}x) = \frac{1}{\hat{\kappa}(\lambda)}, \qquad \lambda \ge 0.$$

▶ It can be shown that for a Lévy process which satisfies $\limsup_{t\to\infty} \xi_t = \infty$, for $A \in \sigma(\xi_u : u \le t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \lim_{s \to \infty} \mathbb{P}_{x}(A | \underline{X}_{t+s} > 0) = \mathbb{E}_{x} \left[\frac{\hat{U}(X_{t})}{\hat{U}(x)} \mathbf{1}_{(\underline{X}_{t} > 0)} \mathbf{1}_{(A)} \right]$$

▶ In the α -stable case $\hat{U}(x) \propto x^{\alpha \hat{\rho}}$ [Note in the excluded case that $\alpha = 2$ and $\rho = 1/2$, i.e. Brownian motion, $\hat{U}(x) = x$.]

19/125

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\mathbb{E}_{x}^{\uparrow}[f(\{cX_{c^{-\alpha_{S}}}:s\leq t\})]$$

$$=\mathbb{E}\left[f(\{cX_{c^{-\alpha_{S}}}^{(x)}:s\leq t\})\frac{(X_{c^{-\alpha_{t}}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c^{-\alpha_{t}}}^{(x)}\geq 0)}\right]$$

$$=\mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right]$$

$$=\mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})].$$

- ▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow})$, x > 0, a self-similar Markov process on $[0, \infty)$.
- Unlike the case of Brownian motion, the conditioned stable process does not have the law of the radial part of a 3-dimensional stable process (the analogue to the Brownian case).

20/125

(日)

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\begin{split} \mathbb{E}_{x}^{\uparrow} [f(\{cX_{c^{-\alpha_{S}}}:s\leq t\})] \\ &= \mathbb{E}\left[f(\{cX_{c^{-\alpha_{S}}}^{(x)}:s\leq t\})\frac{(X_{c^{-\alpha_{t}}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c^{-\alpha_{t}}}^{(x)}\geq 0)}\right] \\ &= \mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right] \\ &= \mathbb{E}_{cx}^{\uparrow} [f(\{X_{s}:s\leq t\})]. \end{split}$$

- ▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow})$, x > 0, a self-similar Markov process on $[0, \infty)$.
- Unlike the case of Brownian motion, the conditioned stable process does not have the law of the radial part of a 3-dimensional stable process (the analogue to the Brownian case).

20/125

For $c, x > 0, t \ge 0$ and appropriately bounded, measurable and non-negative f, we can write,

$$\mathbb{E}_{x}^{\uparrow}[f(\{cX_{c^{-\alpha_{S}}}:s\leq t\})]$$

$$=\mathbb{E}\left[f(\{cX_{c^{-\alpha_{S}}}^{(x)}:s\leq t\})\frac{(X_{c^{-\alpha_{t}}}^{(x)})^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{c^{-\alpha_{t}}}^{(x)}\geq 0)}\right]$$

$$=\mathbb{E}\left[f(\{X_{s}^{(cx)}:s\leq t\}\frac{(X_{t}^{(cx)})^{\alpha\hat{\rho}}}{(cx)^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}^{(cx)}\geq 0)}\right]$$

$$=\mathbb{E}_{cx}^{\uparrow}[f(\{X_{s}:s\leq t\})].$$

- ▶ This also makes the process $(X, \mathbb{P}_x^{\uparrow})$, x > 0, a self-similar Markov process on $[0, \infty)$.
- Unlike the case of Brownian motion, the conditioned stable process does not have the law of the radial part of a 3-dimensional stable process (the analogue to the Brownian case).

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§3. Lamperti Transform

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
N	οτάτι	ON											

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

$$-\log E(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$$
évy–Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} \mathrm{d}s, \qquad t \ge 0. \tag{1}$$

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

Also interested in the inverse process of I:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \qquad t \ge 0.$$

$$(2)$$

・ロト・日本・モート モー うへの

As usual, we work with the convention $\inf \emptyset = \infty$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
No	TATI	ON											

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

 $-\log E(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$ évy–Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0.$$
⁽¹⁾

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

Also interested in the inverse process of I:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \qquad t \ge 0.$$
(2)

・ロト・日本・モート モー うへの

As usual, we work with the convention $\inf \emptyset = \infty$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
N	οτάτι	ON											

▶ Use $\xi := \{\xi_t : t \ge 0\}$ to denote a Lévy process which is killed and sent to the cemetery state $-\infty$ at an independent and exponentially distributed random time, \mathbf{e}_q , with rate in $q \in [0, \infty)$. The characteristic exponent of ξ is thus written

$$-\log E(e^{i\theta\xi_1}) = \Psi(\theta) = q + L$$
évy–Khintchine

Define the associated integrated exponential Lévy process

$$I_t = \int_0^t e^{\alpha \xi_s} ds, \qquad t \ge 0.$$
⁽¹⁾

and its limit, $I_{\infty} := \lim_{t \uparrow \infty} I_t$.

Also interested in the inverse process of I:

$$\varphi(t) = \inf\{s > 0 : I_s > t\}, \quad t \ge 0.$$
 (2)

・ロト・日本・モート モー うへの

As usual, we work with the convention $\inf \emptyset = \infty$.

LAMPERTI TRANSFORM FOR POSITIVE ssMp

Theorem (Part (i))

Fix $\alpha > 0$. If $Z^{(x)}$, x > 0, is a positive self-similar Markov process with index of self-similarity α , then up to absorption at the origin, it can be represented as follows. For x > 0,

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}, \qquad t \ge 0,$$

where $\zeta^{(x)} = \inf\{t > 0 : Z_t^{(x)} = 0\}$ *and either*

ζ^(x) = ∞ almost surely for all x > 0, in which case ξ is a Lévy process satisfying lim sup_{t↑∞} ξ_t = ∞,

- (2) ζ^(x) < ∞ and Z^(x)_{ζ^(x) −} = 0 almost surely for all x > 0, in which case ξ is a Lévy process satisfying lim_{t↑∞} ξ_t = −∞, or
- (3) ζ^(x) < ∞ and Z^(x)_{ζ^(x)} > 0 almost surely for all x > 0, in which case ξ is a Lévy process killed at an independent and exponentially distributed random time.

In all cases, we may identify $\zeta^{(x)} = x^{\alpha}I_{\infty}$.

23/125 《 □ ▶ 《 @ ▶ 《 ē ▶ 《 ē ▶ 《 ē ▶ 《 ē ▶ 《 ē

LAMPERTI TRANSFORM FOR POSITIVE $\ensuremath{\mathsf{ssMp}}$

Theorem (Part (ii))

Conversely, suppose that ξ *is a given (killed) Lévy process. For each* x > 0*, define*

$$Z_t^{(x)} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\}\mathbf{1}_{\{t < x^{\alpha}I_{\infty}\}}, \qquad t \ge 0.$$

24/125

Then $Z^{(x)}$ *defines a positive self-similar Markov process, up to its absorption time* $\zeta^{(x)} = x^{\alpha}I_{\infty}$ *, with index* α *.*

	§1. §	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
--	-------	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

 \leftrightarrow

LAMPERTI TRANSFORM FOR POSITIVE $\ensuremath{\mathsf{ssMp}}$

 $(Z, P_x)_{x>0} pssMp$ $Z_t = exp(\xi_{S(t)}),$

${\it S}$ a random time-change

Z never hits zero Z hits zero continuously Z hits zero by a jump $(\xi, \mathbb{P}_y)_{y \in \mathbb{R}}$ killed Lévy $\xi_s = \log(Z_{T(s)}),$ *T* a random time-change

$$\begin{cases} \xi \to \infty \text{ or } \xi \text{ oscillates} \\ \xi \to -\infty \\ \xi \text{ is killed} \end{cases}$$

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10. §11. §12. §13. Reference	§1. §2.	2. §3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
--	---------	--------	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

LAMPERTI TRANSFORM FOR POSITIVE $\ensuremath{\mathsf{ssMp}}$

 $\begin{array}{ccc} (Z, P_x)_{x>0} \operatorname{pssMp} & (\xi, \mathbb{P}_y)_{y \in \mathbb{R}} \text{ killed Lévy} \\ Z_t = \exp(\xi_{S(t)}), & & & & & \\ S \text{ a random time-change} & & & T \text{ a random time-change} \end{array}$

 $\left. \begin{array}{c} Z \text{ never hits zero} \\ Z \text{ hits zero continuously} \\ Z \text{ hits zero by a jump} \end{array} \right\} \qquad \leftrightarrow \qquad \left\{ \begin{array}{c} \xi \to \infty \text{ or } \xi \text{ oscillates} \\ \xi \to -\infty \\ \xi \text{ is killed} \end{array} \right.$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§4. Positive self-similar Markov processes

- ▶ The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- ▶ This puts $Z_t^* := X_t \mathbb{1}_{(\underline{X}_t > 0)}, t \ge 0$, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

(日)(御)(王)(王)(王)

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- This puts Z^{*}_t := X_t1_(X_t>0), t ≥ 0, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

- コン・4回シュ ヨシュ ヨン・9 くの

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- This puts Z^t_t := X_t1(X_t>0), t ≥ 0, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- Write ξ^{*} = {ξ^{*}_t : t ≥ 0} for the underlying Lévy process and denote its killing rate by q^{*}.

- コン・4回シュ ヨシュ ヨン・9 くの

- The stable process cannot 'creep' downwards across the threshold 0 and so must do so with a jump.
- This puts Z^t_t := X_t1(X_t>0), t ≥ 0, in the class of pssMp for which the underlying Lévy process experiences exponential killing.
- ▶ Write $\xi^* = \{\xi_t^* : t \ge 0\}$ for the underlying Lévy process and denote its killing rate by q^* .

- コン・4回シュ ヨシュ ヨン・9 くの

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_t, on {X_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^{\ast}}^{\infty}\frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z^{\ast})_{t-}^{-\alpha}.$$

▶ On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, Z is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi_{\varphi(t)}^*} = q^* (Z^*)_t^{-\alpha}.$$

Comparing gives us

$$q^* = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}$$

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_t, on {X_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^{*}}^{\infty}\frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z^{*})_{t-}^{-\alpha}$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi_{\varphi(t)}^*} = q^* (Z^*)_t^{-\alpha}.$$

Comparing gives us

$$q^* = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}$$

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_t, on {X_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^{*}}^{\infty}\frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z^{*})_{t-}^{-\alpha}$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi^*_{\varphi(t)}} = q^* (Z^*)_t^{-\alpha}.$$

Comparing gives us

$$q^* = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}$$

• We know that the α -stable process experiences downward jumps at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\frac{1}{|x|^{1+\alpha}}\mathrm{d}x,\qquad x<0.$$

▶ Given that we know the value of Z^{*}_t, on {X_t > 0}, the stable process will pass over the origin at rate

$$\frac{\Gamma(1+\alpha)}{\pi}\sin(\pi\alpha\hat{\rho})\left(\int_{Z_{t-}^{*}}^{\infty}\frac{1}{|x|^{1+\alpha}}\mathrm{d}x\right) = \frac{\Gamma(1+\alpha)}{\alpha\pi}\sin(\pi\alpha\hat{\rho})(Z^{*})_{t-}^{-\alpha}$$

• On the other hand, the Lamperti transform says that on $\{t < \zeta\}$, as a pssMp, *Z* is sent to the origin at rate

$$q^* \frac{\mathrm{d}}{\mathrm{d}t} \varphi(t) = q^* \mathrm{e}^{-\alpha \xi_{\varphi(t)}^*} = q^* (Z^*)_t^{-\alpha}.$$

Comparing gives us

$$q^* = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}.$$

28/125

(日)

▶ Referring again to the Lamperti transform, we know that, under \mathbb{P}_1 (so that $\mathbb{P}_1(\xi_0^* = 0) = 1$),

$$Z_{\zeta-}^* = X_{\tau_0^-} = \mathrm{e}^{\xi_{\mathbf{e}_{q^*}}^*},$$

where \mathbf{e}_{q^*} is an exponentially distributed random variable with rate q^* . This motivates the computation

$$\mathbb{E}_{1}[(Z_{\zeta_{-}}^{*})^{\mathrm{i}\theta}] = \mathbb{E}_{1}[\mathrm{e}^{\mathrm{i}\theta\xi_{q_{\theta}^{*}}^{*}-}] = \frac{q^{*}}{(\Psi^{*}(z) - q^{*}) + q^{*}}, \qquad \theta \in \mathbb{R},$$

29/125

where Ψ^* is the characteristic exponent of ξ^* .

▶ Referring again to the Lamperti transform, we know that, under \mathbb{P}_1 (so that $\mathbb{P}_1(\xi_0^* = 0) = 1$),

$$Z_{\zeta-}^* = X_{\tau_0^-} = e^{\xi_{e_q^*}^*},$$

where e_{q*} is an exponentially distributed random variable with rate q*.
▶ This motivates the computation

$$\mathbb{E}_{1}[(Z_{\zeta-}^{*})^{\mathrm{i}\theta}] = \mathbb{E}_{1}[\mathrm{e}^{\mathrm{i}\theta\xi_{q_{*}}^{*}-}] = \frac{q^{*}}{(\Psi^{*}(z) - q^{*}) + q^{*}}, \qquad \theta \in \mathbb{R},$$

29/125

where Ψ^* is the characteristic exponent of ξ^* .

Setting

$$K = \frac{\sin \alpha \hat{\rho} \pi}{\pi} \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha \rho) \Gamma(\alpha \hat{\rho})},$$

Remembering the "overshoot-undershoot" distributional law at first passage (well known in the literature - see e.g. Chapter 8 of my book) and deduce that, for all $v \in [0, 1]$,

$$\begin{split} \mathbb{P}_1(X_{\tau_0^--} &\in \mathrm{d}v) \\ &= \hat{\mathbb{P}}_0(1 - X_{\tau_1^+-} \in \mathrm{d}v) \\ &= K\left(\int_0^\infty \int_0^\infty \mathbf{1}_{(y \leq 1 \wedge v)} \frac{(1-y)^{\alpha\hat{\rho}-1}(v-y)^{\alpha\rho-1}}{(v+u)^{1+\alpha}} \mathrm{d}u \mathrm{d}y\right) \mathrm{d}v \\ &= \frac{K}{\alpha} \left(\int_0^1 \mathbf{1}_{(y \leq v)} v^{-\alpha} (1-y)^{\alpha\hat{\rho}-1} (v-y)^{\alpha\rho-1} \mathrm{d}y\right) \mathrm{d}v, \end{split}$$

where $\hat{\mathbb{P}}_0$ is the law of -X issued from 0.

30/125 ▲□▶▲륜▶▲토▶▲토▶ 토 외९관

We are led to the conclusion that

$$\begin{split} \frac{q*}{\Psi^*(\theta)} &= \frac{K}{\alpha} \int_0^1 (1-y)^{\alpha\hat{\rho}-1} \int_0^\infty \mathbf{1}_{\{y \leq v\}} v^{\mathbf{i}\theta - \alpha\hat{\rho}-1} \left(1 - \frac{y}{v}\right)^{\alpha\rho-1} dv dy \\ &= \frac{K}{\alpha} \int_0^1 (1-y)^{\alpha\hat{\rho}-1} y^{\mathbf{i}\theta - \alpha\hat{\rho}} dy \frac{\Gamma(\alpha\hat{\rho} - \mathbf{i}\theta)\Gamma(\alpha\rho)}{\Gamma(\alpha - \mathbf{i}\theta)} \\ &= \frac{\Gamma(\alpha\hat{\rho} - \mathbf{i}\theta)\Gamma(\alpha\rho)\Gamma(1 - \alpha\hat{\rho} + \mathbf{i}\theta)\Gamma(\alpha\hat{\rho})\Gamma(\alpha + 1)}{\alpha\Gamma(\alpha\rho)\Gamma(\alpha\hat{\rho})\Gamma(1 - \alpha\hat{\rho})\Gamma(\alpha\hat{\rho})\Gamma(1 + \mathbf{i}\theta)\Gamma(\alpha - \mathbf{i}\theta)}, \end{split}$$

where in the first equality Fubini's Theorem has been used, in the second equality a straightforward substitution w = y/v has been used for the inner integral on the preceding line together with the classical beta integral and, finally, in the third equality, the Beta integral has been used for a second time. Inserting the respective values for the constants q^* and K, we come to rest at the following result:

31/125

Theorem

For the pssMp constructed by killing a stable process on first entry to $(-\infty, 0)$, the underlying killed Lévy process, ξ^* , that appears through the Lamperti transform has characteristic exponent given by

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)}, \qquad z \in \mathbb{R}.$$

32/125
STABLE PROCESSES CONDITIONED TO STAY POSITIVE

▶ Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = E\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

▶ Noting that $\Psi^*(-i\alpha\hat{\rho}) = 0$, the change of measure constitutes an Esscher transform at the level of ξ^* .

Theorem

The underlying Lévy process, ξ^{\uparrow} , that appears through the Lamperti transform applied to $(X, \mathbb{P}_x^{\uparrow}), x > 0$, has characteristic exponent given by

$$\Psi^{\uparrow}(z) = \frac{\Gamma(\alpha \rho - iz)}{\Gamma(-iz)} \frac{\Gamma(1 + \alpha \hat{\rho} + iz)}{\Gamma(1 + iz)}, \qquad z \in \mathbb{R}.$$

▶ In particular $\Psi^{\uparrow}(z) = \Psi^*(z - i\alpha\hat{\rho}), z \in \mathbb{R}$ so that $\Psi^{\uparrow}(0) = 0$ (i.e. no killing!)

• One can also check by hand that $\Psi^{\uparrow\prime}(0+) = E[\xi_1^{\uparrow}] > 0$ so that $\lim_{t\to\infty} \xi_t^{\uparrow} = \infty$.

33/125 ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 ∽ 역 ☉

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

▶ Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = E\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

► Noting that $\Psi^*(-i\alpha\hat{\rho}) = 0$, the change of measure constitutes an Esscher transform at the level of ξ^* .

Theorem

The underlying Lévy process, ξ^{\uparrow} , that appears through the Lamperti transform applied to $(X, \mathbb{P}_x^{\uparrow}), x > 0$, has characteristic exponent given by

$$\Psi^{\uparrow}(z) = \frac{\Gamma(\alpha \rho - iz)}{\Gamma(-iz)} \frac{\Gamma(1 + \alpha \hat{\rho} + iz)}{\Gamma(1 + iz)}, \qquad z \in \mathbb{R}.$$

▶ In particular $\Psi^{\uparrow}(z) = \Psi^*(z - i\alpha\hat{\rho}), z \in \mathbb{R}$ so that $\Psi^{\uparrow}(0) = 0$ (i.e. no killing!)

• One can also check by hand that $\Psi^{\uparrow\prime}(0+) = E[\xi_1^{\uparrow}] > 0$ so that $\lim_{t\to\infty} \xi_t^{\uparrow} = \infty$.

33/125 ▶ < @ ▶ < ≣ ▶ < ≣ ▶ ≣ ∽ Q ↔

STABLE PROCESSES CONDITIONED TO STAY POSITIVE

• Use the Lamperti representation of the α -stable process *X* to write, for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\uparrow}(A) = \mathbb{E}_{x}\left[\frac{X_{t}^{\alpha\hat{\rho}}}{x^{\alpha\hat{\rho}}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right] = E\left[e^{\alpha\hat{\rho}\xi_{\tau}^{*}}\mathbf{1}_{(\tau<\mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

Noting that Ψ^{*}(-iα p̂) = 0, the change of measure constitutes an Esscher transform at the level of ξ^{*}.

Theorem

The underlying Lévy process, ξ^{\uparrow} , that appears through the Lamperti transform applied to $(X, \mathbb{P}_x^{\uparrow}), x > 0$, has characteristic exponent given by

$$\Psi^{\uparrow}(z) = \frac{\Gamma(\alpha \rho - \mathrm{i}z)}{\Gamma(-\mathrm{i}z)} \frac{\Gamma(1 + \alpha \hat{\rho} + \mathrm{i}z)}{\Gamma(1 + \mathrm{i}z)}, \qquad z \in \mathbb{R}.$$

► In particular $\Psi^{\uparrow}(z) = \Psi^*(z - i\alpha\hat{\rho}), z \in \mathbb{R}$ so that $\Psi^{\uparrow}(0) = 0$ (i.e. no killing!)

• One can also check by hand that $\Psi^{\uparrow\prime}(0+) = E[\xi_1^{\uparrow}] > 0$ so that $\lim_{t\to\infty} \xi_t^{\uparrow} = \infty$.

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- ▶ However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - i(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - iz)}{\Gamma(1 - iz)} \frac{\Gamma(iz + \alpha\hat{\rho})}{\Gamma(iz)}$$

The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0) = 0$ and $\Psi^{\downarrow\prime}(0) < 0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow} , then $\lim_{t\to\infty} \xi_t^{\downarrow} = -\infty$.

34/125

イロト イポト イヨト イヨト 三日

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - i(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - iz)}{\Gamma(1 - iz)} \frac{\Gamma(iz + \alpha\hat{\rho})}{\Gamma(iz)}$$

The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0) = 0$ and $\Psi^{\downarrow\prime}(0) < 0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow} , then $\lim_{t\to\infty} \xi_t^{\downarrow} = -\infty$.

34/125

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha \hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha \hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - \mathbf{i}(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - \mathbf{i}z)}{\Gamma(1 - \mathbf{i}z)} \frac{\Gamma(\mathbf{i}z + \alpha\hat{\rho})}{\Gamma(\mathbf{i}z)}$$

The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0) = 0$ and $\Psi^{\downarrow\prime}(0) < 0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow} , then $\lim_{t\to\infty} \xi_t^{\downarrow} = -\infty$.

34/125

- In essence, the case of the stable process conditioned to stay positive boils down to an Esscher transform in the underlying (Lamperti-transformed) Lévy process.
- It was important that we identified a root of $\Psi^*(z) = 0$ in order to avoid involving a 'time component' of the Esscher transform.
- However, there is another root of the equation

$$\Psi^*(z) = \frac{\Gamma(\alpha - iz)}{\Gamma(\alpha\hat{\rho} - iz)} \frac{\Gamma(1 + iz)}{\Gamma(1 - \alpha\hat{\rho} + iz)} = 0,$$

namely $z = -i(1 - \alpha \hat{\rho})$.

And this means that

$$\mathrm{e}^{(1-\alpha\hat{\rho})\xi^*}, \qquad t \ge 0,$$

is a unit-mean Martingale, which can also be used to construct an Esscher transform:

$$\Psi^{\downarrow}(z) = \Psi^*(z - i(1 - \alpha\hat{\rho})) = \Psi^{\downarrow}(z) = \frac{\Gamma(1 + \alpha\rho - iz)}{\Gamma(1 - iz)} \frac{\Gamma(iz + \alpha\hat{\rho})}{\Gamma(iz)}$$

► The choice of notation is pre-emptive since we can also check that $\Psi^{\downarrow}(0) = 0$ and $\Psi^{\downarrow\prime}(0) < 0$ so that if ξ^{\downarrow} is a Lévy process with characteristic exponent Ψ^{\downarrow} , then $\lim_{t\to\infty} \xi_t^{\downarrow} = -\infty$.

§1. §2. §3. **§4.** §5. §6. §7. §8. §9. §10. §11. §12. §13. References

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = E\left[\mathrm{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

- In the same way we checked that (X, P[↑]_x), x > 0, is a pssMp, we can also check that (X, P[↓]_x), x > 0 is a pssMp. [Exercise!] Do it!
- ▶ In an appropriate sense, it turns out that $(X, \mathbb{P}_x^+), x > 0$ is the law of a stable process conditioned to continuously approach the origin from above.

35/125

< □ > < @ > < 图 > < 图 > < 图 > < 图</p>

§1. §2. §3. **§4.** §5. §6. §7. §8. §9. §10. §11. §12. §13. References

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = E\left[\mathrm{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

- In the same way we checked that (X, P[↑]_x), x > 0, is a pssMp, we can also check that (X, P[↓]_x), x > 0 is a pssMp. [Exercise!] Do it!
- ▶ In an appropriate sense, it turns out that $(X, \mathbb{P}_x^+), x > 0$ is the law of a stable process conditioned to continuously approach the origin from above.

35/125

§1. §2. §3. **§4.** §5. §6. §7. §8. §9. §10. §11. §12. §13. References

Reverse engineering

▶ What now happens if we define for $A \in \sigma(X_u : u \leq t)$,

$$\mathbb{P}_{x}^{\downarrow}(A) = E\left[\mathrm{e}^{(1-\alpha\hat{\rho})\xi_{\tau}^{*}}\mathbf{1}_{(\tau < \mathbf{e}_{q^{*}})}\mathbf{1}_{(A)}\right] = \mathbb{E}_{x}\left[\frac{X_{t}^{(1-\alpha\hat{\rho})}}{x^{(1-\alpha\hat{\rho})}}\mathbf{1}_{(\underline{X}_{t}>0)}\mathbf{1}_{(A)}\right],$$

where $\tau = \varphi(x^{-\alpha}t)$ is a stopping time in the natural filtration of ξ^* .

- In the same way we checked that (X, P[↑]_x), x > 0, is a pssMp, we can also check that (X, P[↓]_x), x > 0 is a pssMp. [Exercise!] Do it!
- In an appropriate sense, it turns out that (X, P[↓]_x), x > 0 is the law of a stable process conditioned to continuously approach the origin from above.

35/125

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
ξ*,	ξ^{\uparrow} at	ND ξ^\downarrow	-										

- ► The three examples of pssMp offer quite striking underlying Lévy processes
- ► Is this exceptional?

CENSORED STABLE PROCESSES

- ▶ Start with *X*, the stable process.
- Let $A_t = \int_0^t \mathbf{1}_{(X_t > 0)} dt$.
- Let γ be the right-inverse of A, and put $\check{Z}_t := X_{\gamma(t)}$.
- Finally, make zero an absorbing state: $Z_t = \check{Z}_t \mathbf{1}_{(t < T_0)}$ where

$$T_0 = \inf\{t > 0 : X_t = 0\}.$$

37/125

Note $T_0 < \infty$ a.s. if and only if $\alpha \in (1, 2)$ and otherwise $T_0 = \infty$ a.s.

This is the censored stable process.

CENSORED STABLE PROCESSES

Theorem

Suppose that the underlying Lévy process for the censored stable process is denoted by $\tilde{\xi}$. Then $\tilde{\xi}$ is equal in law to $\xi^{**} \oplus \xi^{C}$, with

- ξ^{**} equal in law to ξ^* with the killing removed,
- ▶ ξ^{C} a compound Poisson process with jump rate $q^{*} = \Gamma(\alpha) \sin(\pi \alpha \hat{\rho}) / \pi$.

Moreover, the characteristic exponent of $\check{\xi}$ is given by

$$\widetilde{\Psi}(z) = rac{\Gamma(\alpha
ho - iz)}{\Gamma(-iz)} rac{\Gamma(1 - \alpha
ho + iz)}{\Gamma(1 - \alpha + iz)}, \qquad z \in \mathbb{R}.$$

38/125

(日)(御)(王)(王)(王)

THE RADIAL PART OF A STABLE PROCESS

- Suppose that *X* is a symmetric stable process, i.e $\rho = 1/2$.
- We know that |X| is a pssMp.

Theorem

Suppose that the underlying Lévy process for |X| is written ξ , then it characteristic exponent is given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + 1))}{\Gamma(\frac{1}{2}(\mathrm{i} z + 1 - \alpha))}, \qquad z \in \mathbb{R}$$

[Exercise!] This is quite hard to prove for $\alpha \in (1, 2)$, but could can be proved in a straightforward way for $\alpha \in (0, 1]$. Try it!

[Hint!] Think about what happens after *X* first crosses the origin and apply the Markov property as well as symmetry. You will need to use the law of the overshoot of *X* below the origin given a few slides back.

HYPERGEOMETRIC LÉVY PROCESSES (REMINDER)

Definition (and Theorem)

For $(\beta, \gamma, \hat{\beta}, \hat{\gamma})$ in

$$\left\{ \begin{array}{l} \beta \leq 2, \ \gamma, \hat{\gamma} \in (0,1) \ \hat{\beta} \geq -1, \ \text{and} \ 1 - \beta + \hat{\beta} + \gamma \wedge \hat{\gamma} \geq 0 \end{array} \right\}$$

there exists a (killed) Lévy process, henceforth refered to as a hypergeometric Lévy process, having the characteristic function

$$\Psi(z) = \frac{\Gamma(1 - \beta + \gamma - iz)}{\Gamma(1 - \beta - iz)} \frac{\Gamma(\hat{\beta} + \hat{\gamma} + iz)}{\Gamma(\hat{\beta} + iz)} \qquad z \in \mathbb{R}$$

The Lévy measure of Y has a density with respect to Lebesgue measure is given by

$$\pi(x) = \begin{cases} -\frac{\Gamma(\eta)}{\Gamma(\eta-\hat{\gamma})\Gamma(-\gamma)} e^{-(1-\beta+\gamma)x} {}_2F_1\left(1+\gamma,\eta;\eta-\hat{\gamma};e^{-x}\right), & \text{if } x > 0, \\ \\ -\frac{\Gamma(\eta)}{\Gamma(\eta-\gamma)\Gamma(-\hat{\gamma})} e^{(\hat{\beta}+\hat{\gamma})x} {}_2F_1\left(1+\hat{\gamma},\eta;\eta-\gamma;e^x\right), & \text{if } x < 0, \end{cases}$$

where $\eta := 1 - \beta + \gamma + \hat{\beta} + \hat{\gamma}$, for |z| < 1, $_2F_1(a, b; c; z) := \sum_{k \ge 0} \frac{(a)_k(b)_k}{(c)_k k!} z^k$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§5. Entrance Laws

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- ▶ This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\},\$$

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).
- We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. $X \underline{X}$, where X is an α -stable process (or Brownian motion).

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- > This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\}$$

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).
- We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. $X \underline{X}$, where X is an α -stable process (or Brownian motion).

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- ▶ This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\}$$

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).
- We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. $X \underline{X}$, where X is an α -stable process (or Brownian motion).

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\}$$

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).
- We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. $X \underline{X}$, where X is an α -stable process (or Brownian motion).

- We have carefully avoided the issue of talking about pssMp issued from the origin.
- ▶ This should ring alarm bells when we look at the Lamperti transform

$$Z_t^{(x)} \mathbf{1}_{\{t < \zeta^{(x)}\}} = x \exp\{\xi_{\varphi(x^{-\alpha}t)}\} = \exp\{\xi_{\varphi(x^{-\alpha}t)} + \log x\}, \qquad t \ge 0,$$

• On the one hand $\log x \downarrow -\infty$, which is the point of issue of ξ , but

$$\varphi(x^{-\alpha}t) = \inf\{s > 0 : \int_0^s e^{\alpha(\xi_u + \log x)} du > t\}$$

- We know that 0 is an absorbing point, but it might also be an entrance point (can it be both?).
- We know that some of our new friends have no problem using the origin as an entrance point, e.g. |X|, where X is an α -stable process (or Brownian motion).
- ▶ We know that some of our new friends have no problem using the origin as an entrance point, but also a point of recurrence, e.g. $X \underline{X}$, where X is an α -stable process (or Brownian motion).

- We want to find a way to give a meaning to " $\mathbb{P}_0 := \lim_{x \downarrow 0} \mathbb{P}_x$ ".
- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$\mathbb{P}_0(Z_t \in \mathrm{d} y) := \lim_{x \downarrow 0} \mathbb{P}_x(Z_t \in \mathrm{d} y), \qquad t, y > 0.$$

▶ In that case, for any sequence of times $0 < t_1 \le t_2 \le \cdots \le t_n < \infty$ and $y_1, \cdots, y_n \in (0, \infty), n \in \mathbb{N}$, the Markov property gives us

$$\begin{aligned} \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &:= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}) \\ &= \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}). \end{aligned}$$

When the limit exists, it implies the existence of \mathbb{P}_0 as limit of \mathbb{P}_x as $x \downarrow 0$, in the sense of convergence of finite-dimensional distributions.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

- We want to find a way to give a meaning to " $\mathbb{P}_0 := \lim_{x \downarrow 0} \mathbb{P}_x$ ".
- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$\mathbb{P}_0(Z_t \in \mathrm{d} y) := \lim_{x \downarrow 0} \mathbb{P}_x(Z_t \in \mathrm{d} y), \qquad t, y > 0.$$

▶ In that case, for any sequence of times $0 < t_1 \le t_2 \le \cdots \le t_n < \infty$ and $y_1, \cdots, y_n \in (0, \infty)$, $n \in \mathbb{N}$, the Markov property gives us

$$\begin{aligned} \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &:= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}) \\ &= \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}). \end{aligned}$$

When the limit exists, it implies the existence of \mathbb{P}_0 as limit of \mathbb{P}_x as $x \downarrow 0$, in the sense of convergence of finite-dimensional distributions.

43/125

- We want to find a way to give a meaning to " $\mathbb{P}_0 := \lim_{x \downarrow 0} \mathbb{P}_x$ ".
- Could look at behaviour of the transition semigroup of Z as its initial value tends to zero. That is to say, to consider whether the weak limit below is well defined:

$$\mathbb{P}_0(Z_t \in \mathrm{d} y) := \lim_{x \downarrow 0} \mathbb{P}_x(Z_t \in \mathrm{d} y), \qquad t, y > 0.$$

▶ In that case, for any sequence of times $0 < t_1 \le t_2 \le \cdots \le t_n < \infty$ and $y_1, \cdots, y_n \in (0, \infty), n \in \mathbb{N}$, the Markov property gives us

$$\begin{split} \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &:= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}, \cdots, Z_{t_{n}} \in dy_{n}) \\ &= \lim_{x \downarrow 0} \mathbb{P}_{x}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}) \\ &= \mathbb{P}_{0}(Z_{t_{1}} \in dy_{1}) \mathbb{P}_{y_{1}}(Z_{t_{2}-t_{1}} \in dy_{2}, \cdots, Z_{t_{n}-t_{2}} \in dy_{n}). \end{split}$$

When the limit exists, it implies the existence of \mathbb{P}_0 as limit of \mathbb{P}_x as $x \downarrow 0$, in the sense of convergence of finite-dimensional distributions.

43/125 <□▶<@▶<≧▶<≧▶ ≧ ∽੧<

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

▶ We would like a stronger sense of convergence e.g. we would like

$$\mathbb{E}_0[f(Z_s:s\leq t)] := \lim_{x\to 0} \mathbb{E}_x[f(Z_s:s\leq t)]$$

for an appropriate measurable function on cadlag paths of length t.

- The right setting to discuss distributional convergence is with respect to so-called Skorokhod topology.
- ROUGHLY: There is a metric on cadlag path space which does a better job of measuring how "close" two paths are than e.g. the uniform functional metric.
- This metric induces a topology (the Skorokhod topology). From this topology, we build a measurable space around the space of cadlag paths.

44/125

イロト イロト イヨト イヨト ヨー のへぐ

▶ Think of P_x, x > 0 as a family of measures on this space and we want weak convergence "P₀ := lim_{x→0} P_x" on this space.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

▶ We would like a stronger sense of convergence e.g. we would like

$$\mathbb{E}_0[f(Z_s:s\leq t)] := \lim_{x\to 0} \mathbb{E}_x[f(Z_s:s\leq t)]$$

for an appropriate measurable function on cadlag paths of length t.

- The right setting to discuss *distributional convergence* is with respect to so-called *Skorokhod topology*.
- ROUGHLY: There is a metric on cadlag path space which does a better job of measuring how "close" two paths are than e.g. the uniform functional metric.
- This metric induces a topology (the Skorokhod topology). From this topology, we build a measurable space around the space of cadlag paths.

44/125

▶ Think of P_x, x > 0 as a family of measures on this space and we want weak convergence "P₀ := lim_{x→0} P_x" on this space.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

▶ We would like a stronger sense of convergence e.g. we would like

$$\mathbb{E}_0[f(Z_s:s\leq t)] := \lim_{x\to 0} \mathbb{E}_x[f(Z_s:s\leq t)]$$

for an appropriate measurable function on cadlag paths of length *t*.

- The right setting to discuss *distributional convergence* is with respect to so-called *Skorokhod topology*.
- ROUGHLY: There is a metric on cadlag path space which does a better job of measuring how "close" two paths are than e.g. the uniform functional metric.
- This metric induces a topology (the Skorokhod topology). From this topology, we build a measurable space around the space of cadlag paths.

44/125

Think of P_x, x > 0 as a family of measures on this space and we want weak convergence "P₀ := lim_{x→0} P_x" on this space.

Assume that *Z* is a pssMp with $\zeta = \infty$ a.s. Moreover, suppose that the Lévy process ξ , associated with *Z* through the Lamperti transform, is not a compound Poisson process.

Theorem

Under the assumption that $\mathbb{E}(\xi_1) > 0$, for any positive measurable function f and t > 0,

$$\mathbb{E}_{0}(f(Z_{t})) = \frac{1}{\alpha \mathbb{E}(\xi_{1})} E\left(\frac{1}{I_{\infty}} f\left(\left(\frac{t}{I_{\infty}}\right)^{1/\alpha}\right)\right),$$

where $I_{\infty}^{-} = \int_{0}^{\infty} \exp\{-\alpha \xi_{s}\} ds$.

Theorem

The limit $\mathbb{P}_0 := \lim_{x \to 0} \mathbb{P}_x$ exists in the sense of convergence with respect to the Skorokhod topology if and only if $\mathbb{E}(H_1^+) < \infty$ (H^+ is the ascending ladder process of ξ).

- ▶ The basic idea is to give a pathwise construction of a candidate for " (Z, \mathbb{P}_0) " then check that there is weak convergence to it.
- Suppose we can identify ξ° which is a version of the underlying Lévy process ξ of (Z, \mathbb{P}_x) , x > 0 but now indexed by \mathbb{R} rather than indexed by $[0, \infty)$, then we can identify the pathwise candidate for " (Z, \mathbb{P}_0) " by

$$Z_t^{(0)} = \exp\{\xi_{\varphi^\circ(t)}^\circ\}, \qquad t \ge 0,$$

where

$$I_t^{\circ} = \int_{-\infty}^t e^{\alpha \xi_s^{\circ}} ds \text{ and } \varphi^{\circ}(t) = \inf\{s > 0 : I_s^{\circ} \ge t\}.$$

- ▶ If the above makes sense, then ξ° must "enter" from the space-time point $(-\infty, -\infty)$.
- ▶ It is the existence of an ξ° and "convergence" to it of $\xi + \log x$ on [-s, f] as $x \to 0, s \to \infty$ which produces the necessary and sufficient condition that $E[H_1^{+1}] < \infty$.

- ► The basic idea is to give a pathwise construction of a candidate for " (Z, \mathbb{P}_0) " then check that there is weak convergence to it.
- Suppose we can identify ξ° which is a version of the underlying Lévy process ξ of (Z, \mathbb{P}_x) , x > 0 but now indexed by \mathbb{R} rather than indexed by $[0, \infty)$, then we can identify the pathwise candidate for " (Z, \mathbb{P}_0) " by

$$Z_t^{(0)} = \exp\{\xi_{\varphi^\circ(t)}^\circ\}, \qquad t \ge 0,$$

where

$$I_t^{\circ} = \int_{-\infty}^t e^{\alpha \xi_s^{\circ}} ds \text{ and } \varphi^{\circ}(t) = \inf\{s > 0 : I_s^{\circ} \ge t\}.$$

46/125

- ▶ If the above makes sense, then ξ° must "enter" from the space-time point $(-\infty, -\infty)$.
- ▶ It is the existence of an ξ° and "convergence" to it of $\xi + \log x$ on [-s, f] as $x \to 0, s \to \infty$ which produces the necessary and sufficient condition that $E[H_1^{+1}] < \infty$.

- ► The basic idea is to give a pathwise construction of a candidate for " (Z, \mathbb{P}_0) " then check that there is weak convergence to it.
- Suppose we can identify ξ° which is a version of the underlying Lévy process ξ of (Z, \mathbb{P}_x) , x > 0 but now indexed by \mathbb{R} rather than indexed by $[0, \infty)$, then we can identify the pathwise candidate for " (Z, \mathbb{P}_0) " by

$$Z_t^{(0)} = \exp\{\xi_{\varphi^\circ(t)}^\circ\}, \qquad t \ge 0,$$

where

$$I_t^{\circ} = \int_{-\infty}^t e^{\alpha \xi_s^{\circ}} ds \text{ and } \varphi^{\circ}(t) = \inf\{s > 0 : I_s^{\circ} \ge t\}.$$

46/125

- ► If the above makes sense, then ξ° must "enter" from the space-time point $(-\infty, -\infty)$.
- ▶ It is the existence of an ξ° and "convergence" to it of $\xi + \log x$ on [-s, f] as $x \to 0, s \to \infty$ which produces the necessary and sufficient condition that $E[H_1^{+1}] < \infty$.

- ► The basic idea is to give a pathwise construction of a candidate for " (Z, \mathbb{P}_0) " then check that there is weak convergence to it.
- Suppose we can identify ξ° which is a version of the underlying Lévy process ξ of (Z, \mathbb{P}_x) , x > 0 but now indexed by \mathbb{R} rather than indexed by $[0, \infty)$, then we can identify the pathwise candidate for " (Z, \mathbb{P}_0) " by

$$Z_t^{(0)} = \exp\{\xi_{\varphi^\circ(t)}^\circ\}, \qquad t \ge 0,$$

where

$$I_t^{\circ} = \int_{-\infty}^t e^{\alpha \xi_s^{\circ}} ds \text{ and } \varphi^{\circ}(t) = \inf\{s > 0 : I_s^{\circ} \ge t\}.$$

46/125

(日)(國)(王)(王)(王)

- ► If the above makes sense, then ξ° must "enter" from the space-time point $(-\infty, -\infty)$.
- ▶ It is the existence of an ξ° and "convergence" to it of $\xi + \log x$ on [-s, t] as $x \to 0, s \to \infty$ which produces the necessary and sufficient condition that $E[H_1^+] < \infty$.

- If ξ° enters from $(-\infty, \infty)$, then it must make first passage over any level *x* in a "stationary" way.
- ▶ Specifically, we would need that $(\xi_{\sigma_a^+}^\circ a, a \xi_{\sigma_a^+}^\circ)$ is independent of $a \in \mathbb{R}$, where $\sigma_a^+ = \inf\{t > -\infty : \xi_t^\circ > a\}$. This motivates the following construction:
- ► Take the stationary overshoot/undershoot law of ξ (which requires the necessary and sufficient condition $E[H_1^+] < \infty$)

$$\chi(\mathrm{d}y,\mathrm{d}z) = \frac{1}{\mathbb{E}[H_1^+]} \left(\widehat{U}_{\xi}(z) \Pi_{\xi}(z+\mathrm{d}y) \mathrm{d}z + \gamma \delta_0(\mathrm{d}y) \delta_0(\mathrm{d}z) \right), \qquad y, z \ge 0.$$

▶ Build the two-dimensional random variable $(\Delta, \Delta^{\uparrow})$ has distribution χ . Then

$$\xi_t^{\circ} := \begin{cases} \xi_t & \text{under } P_{\Delta} \text{ if } t \ge 0, \\ -\xi_{|t|-}^{\uparrow} & \text{under } P_{\Delta^{\uparrow}}^{\uparrow} \text{ if } t < 0, \end{cases}$$

where $(\xi, P_x), x > 0$ is an independent copy of the underlying Lévy process for Z and $\xi^{\uparrow} = \{\xi_i^{\uparrow} : t \ge 0\}$ under P_x^{\uparrow} is an independent copy of the process ξ conditioned to stay positive.

▶ Hidden catch: Before constructing the entrance of *Z* from 0, we need to construct the entrance of ξ^{\uparrow} from 0.

- If ξ° enters from $(-\infty, \infty)$, then it must make first passage over any level *x* in a "stationary" way.
- ► Specifically, we would need that $(\xi^{\circ}_{\sigma_{a}^{+}} a, a \xi^{\circ}_{\sigma_{a}^{+}})$ is independent of $a \in \mathbb{R}$, where $\sigma^{+}_{a} = \inf\{t > -\infty : \xi^{\circ}_{t} > a\}$. This motivates the following construction:
- ► Take the stationary overshoot/undershoot law of ξ (which requires the necessary and sufficient condition $E[H_1^+] < \infty$)

$$\chi(\mathrm{d}y,\mathrm{d}z) = \frac{1}{\mathbb{E}[H_1^+]} \left(\widehat{U}_{\xi}(z) \Pi_{\xi}(z+\mathrm{d}y) \mathrm{d}z + \gamma \delta_0(\mathrm{d}y) \delta_0(\mathrm{d}z) \right), \qquad y,z \ge 0.$$

▶ Build the two-dimensional random variable $(\Delta, \Delta^{\uparrow})$ has distribution χ . Then

$$\xi_t^{\circ} := \begin{cases} \xi_t & \text{under } P_{\Delta} \text{ if } t \ge 0, \\ -\xi_{|t|-}^{\uparrow} & \text{under } P_{\Delta^{\uparrow}}^{\uparrow} \text{ if } t < 0, \end{cases}$$

where $(\xi, P_x), x > 0$ is an independent copy of the underlying Lévy process for Z and $\xi^{\uparrow} = \{\xi_i^{\uparrow} : t \ge 0\}$ under P_x^{\uparrow} is an independent copy of the process ξ conditioned to stay positive.

▶ Hidden catch: Before constructing the entrance of *Z* from 0, we need to construct the entrance of ξ^{\uparrow} from 0.

- ▶ If ξ° enters from $(-\infty, \infty)$, then it must make first passage over any level *x* in a "stationary" way.
- ► Specifically, we would need that $(\xi_{\sigma_a^+}^\circ a, a \xi_{\sigma_a^+}^\circ)$ is independent of $a \in \mathbb{R}$, where $\sigma_a^+ = \inf\{t > -\infty : \xi_t^\circ > a\}$. This motivates the following construction:
- ► Take the stationary overshoot/undershoot law of ξ (which requires the necessary and sufficient condition $E[H_1^+] < \infty$)

$$\chi(\mathrm{d} y,\mathrm{d} z) = \frac{1}{\mathbb{E}[H_1^+]} \left(\widehat{U}_\xi(z) \Pi_\xi(z+\mathrm{d} y) \mathrm{d} z + \gamma \delta_0(\mathrm{d} y) \delta_0(\mathrm{d} z) \right), \qquad y,z \ge 0.$$

Build the two-dimensional random variable $(\Delta, \Delta^{\uparrow})$ has distribution χ . Then

$$\xi_t^{\circ} := \begin{cases} \xi_t & \text{under } P_{\Delta} \text{ if } t \ge 0, \\ -\xi_{|t|-}^{\uparrow} & \text{under } P_{\Delta^{\uparrow}}^{\uparrow} \text{ if } t < 0, \end{cases}$$

where $(\xi, P_x), x > 0$ is an independent copy of the underlying Lévy process for *Z* and $\xi^{\uparrow} = \{\xi_i^{\uparrow} : t \ge 0\}$ under P_x^{\uparrow} is an independent copy of the process ξ conditioned to stay positive.

▶ Hidden catch: Before constructing the entrance of *Z* from 0, we need to construct the entrance of ξ^{\uparrow} from 0.

47/125

- ▶ If ξ° enters from $(-\infty, \infty)$, then it must make first passage over any level *x* in a "stationary" way.
- ► Specifically, we would need that $(\xi_{\sigma_a^+}^\circ a, a \xi_{\sigma_a^+}^\circ)$ is independent of $a \in \mathbb{R}$, where $\sigma_a^+ = \inf\{t > -\infty : \xi_t^\circ > a\}$. This motivates the following construction:
- ► Take the stationary overshoot/undershoot law of ξ (which requires the necessary and sufficient condition $E[H_1^+] < \infty$)

$$\chi(\mathrm{d} y,\mathrm{d} z) = \frac{1}{\mathbb{E}[H_1^+]} \left(\widehat{\mathcal{U}}_{\xi}(z) \Pi_{\xi}(z+\mathrm{d} y) \mathrm{d} z + \gamma \delta_0(\mathrm{d} y) \delta_0(\mathrm{d} z) \right), \qquad y,z \ge 0.$$

▶ Build the two-dimensional random variable $(\Delta, \Delta^{\uparrow})$ has distribution χ . Then

$$\xi_t^{\circ} := \begin{cases} \xi_t & \text{under } P_{\Delta} \text{ if } t \ge 0, \\ -\xi_{|t|-}^{\uparrow} & \text{under } P_{\Delta^{\uparrow}}^{\uparrow} \text{ if } t < 0, \end{cases}$$

where $(\xi, P_x), x > 0$ is an independent copy of the underlying Lévy process for *Z* and $\xi^{\uparrow} = \{\xi_t^{\uparrow} : t \ge 0\}$ under P_x^{\uparrow} is an independent copy of the process ξ conditioned to stay positive.

▶ Hidden catch: Before constructing the entrance of *Z* from 0, we need to construct the entrance of ξ^{\uparrow} from 0.
CONSTRUCTION OF ξ°

- ▶ If ξ° enters from $(-\infty, \infty)$, then it must make first passage over any level *x* in a "stationary" way.
- ► Specifically, we would need that $(\xi_{\sigma_a^+}^\circ a, a \xi_{\sigma_a^+}^\circ)$ is independent of $a \in \mathbb{R}$, where $\sigma_a^+ = \inf\{t > -\infty : \xi_t^\circ > a\}$. This motivates the following construction:
- ► Take the stationary overshoot/undershoot law of ξ (which requires the necessary and sufficient condition $E[H_1^+] < \infty$)

$$\chi(\mathrm{d} y,\mathrm{d} z) = \frac{1}{\mathbb{E}[H_1^+]} \left(\widehat{\mathcal{U}}_{\xi}(z) \Pi_{\xi}(z+\mathrm{d} y) \mathrm{d} z + \gamma \delta_0(\mathrm{d} y) \delta_0(\mathrm{d} z) \right), \qquad y,z \ge 0.$$

▶ Build the two-dimensional random variable $(\Delta, \Delta^{\uparrow})$ has distribution χ . Then

$$\xi_t^{\circ} := \begin{cases} \xi_t & \text{under } P_{\Delta} \text{ if } t \ge 0, \\ -\xi_{|t|-}^{\uparrow} & \text{under } P_{\Delta^{\uparrow}}^{\uparrow} \text{ if } t < 0, \end{cases}$$

where $(\xi, P_x), x > 0$ is an independent copy of the underlying Lévy process for *Z* and $\xi^{\uparrow} = \{\xi_t^{\uparrow} : t \ge 0\}$ under P_x^{\uparrow} is an independent copy of the process ξ conditioned to stay positive.

► Hidden catch: Before constructing the entrance of *Z* from 0, we need to construct the entrance of ξ^{\uparrow} from 0.

- ▶ The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.
- A cadlag strong Markov process, $\vec{Z} := \{\vec{Z}_t: t \ge 0\}$ with probabilities $\{\vec{P}_x, x \ge 0\}$, is a *recurrent extension* of *Z* if, for each x > 0, the origin is not an absorbing state \vec{P}_x -almost surely and $\{\vec{Z}_{t \land \vec{C}}: t \ge 0\}$ under \vec{P}_x has the same law as (Z, P_x) , where

$$\vec{\zeta} = \inf\{t > 0 : \vec{Z}_t = 0\}.$$

Theorem

If $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$, then there exists a unique recurrent extension of Z which leaves 0 continuously if and only if there exists a $\beta \in (0, \alpha)$ such

$$\mathbb{E}(\mathrm{e}^{\beta\xi_1})=1.$$

48/125

< □ > < @ > < 图 > < 图 > < 图 > < 图</p>

- ► The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.
- A cadlag strong Markov process, $\vec{Z} := \{\vec{Z}_t: t \ge 0\}$ with probabilities $\{\vec{P}_x, x \ge 0\}$, is a *recurrent extension* of *Z* if, for each x > 0, the origin is not an absorbing state \vec{P}_x -almost surely and $\{\vec{Z}_{t \land \vec{C}}: t \ge 0\}$ under \vec{P}_x has the same law as (Z, P_x) , where

$$\vec{\zeta} = \inf\{t > 0 : \vec{Z}_t = 0\}.$$

Theorem

If $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$, then there exists a unique recurrent extension of Z which leaves 0 continuously if and only if there exists a $\beta \in (0, \alpha)$ such

$$\mathbb{E}(\mathrm{e}^{\beta\xi_1})=1.$$

48/125

- ► The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- ▶ We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.
- ► A cadlag strong Markov process, $\vec{Z} := \{\vec{Z}_t: t \ge 0\}$ with probabilities $\{\vec{P}_x, x \ge 0\}$, is a *recurrent extension* of *Z* if, for each x > 0, the origin is not an absorbing state \vec{P}_x -almost surely and $\{\vec{Z}_{t \land \vec{\zeta}}: t \ge 0\}$ under \vec{P}_x has the same law as (Z, P_x) , where

$$\vec{\zeta} = \inf\{t > 0 : \vec{Z}_t = 0\}.$$

Theorem

If $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$, then there exists a unique recurrent extension of Z which leaves 0 continuously if and only if there exists a $\beta \in (0, \alpha)$ such

$$\mathbb{E}(\mathrm{e}^{\beta\xi_1})=1.$$

48/125

- ► The previous construction has insisted that *Z* is a *pssMp* with $\zeta = \infty$ a.s. But what about the case that $\zeta < \infty$ a.s.
- We can say something about the case that $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$.
- ► A cadlag strong Markov process, $\vec{Z} := \{\vec{Z}_t: t \ge 0\}$ with probabilities $\{\vec{P}_x, x \ge 0\}$, is a *recurrent extension* of *Z* if, for each x > 0, the origin is not an absorbing state \vec{P}_x -almost surely and $\{\vec{Z}_{t \land \vec{\zeta}}: t \ge 0\}$ under \vec{P}_x has the same law as (Z, P_x) , where

$$\vec{\zeta} = \inf\{t > 0 : \vec{Z}_t = 0\}.$$

Theorem

If $\zeta < \infty$ a.s. and $X_{\zeta-} = 0$, then there exists a unique recurrent extension of Z which leaves 0 continuously if and only if there exists a $\beta \in (0, \alpha)$ such

$$\mathbb{E}(\mathrm{e}^{\beta\xi_1})=1.$$

48/125

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§6. Real valued self-similar Markov processes

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

So far we only spoke about $[0, \infty)$.

- ▶ What can we say about ℝ-valued self-similar Markov processes.
- This requires us to first investigate Markov Additive (Lévy) Processes

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

- So far we only spoke about $[0, \infty)$.
- ▶ What can we say about ℝ-valued self-similar Markov processes.
- This requires us to first investigate Markov Additive (Lévy) Processes

50/125

(ロト・(型ト・ミト・ミト) ヨークへで

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

- So far we only spoke about $[0, \infty)$.
- ▶ What can we say about ℝ-valued self-similar Markov processes.
- > This requires us to first investigate Markov Additive (Lévy) Processes

MARKOV ADDITIVE PROCESSES (MAPS)

- E is a finite state space
- ▶ $(J(t))_{t\geq 0}$ is a continuous-time, irreducible Markov chain on *E*
- ▶ process (ξ , J) in $\mathbb{R} \times E$ is called a *Markov additive process* (*MAP*) with probabilities $\mathbf{P}_{x,i}, x \in \mathbb{R}, i \in E$, if, for any $i \in E, s, t \ge 0$: Given {J(t) = i}, $(\xi(t+s) \xi(t), J(t+s)) \stackrel{d}{=} (\xi(s), J(s))$ with law $\mathbf{P}_{0,i}$.

51/125

PATHWISE DESCRIPTION OF A MAP

The pair (ξ, J) is a Markov additive process if and only if, for each $i, j \in E$,

- ► there exist a sequence of iid Lévy processes (ξⁿ_i)_{n≥0}
- ▶ and a sequence of iid random variables $(U_{ii}^n)_{n\geq 0}$, independent of the chain *J*,
- ▶ such that if $T_0 = 0$ and $(T_n)_{n \ge 1}$ are the jump times of *J*, the process ξ has the representation

$$\xi(t) = \mathbf{1}_{(n>0)}(\xi(T_n-) + U_{J(T_n-),J(T_n)}^n) + \xi_{J(T_n)}^n(t-T_n),$$

for $t \in [T_n, T_{n+1}), n \ge 0$.

 [Exercise!] Show that the property above implies the definition on the previous slide.

> 52/125 《 □ ▷ 《 쿱 ▷ 《 疌 ▷ 《 疌 ▷ - 亳 - ∽) < @

CHARACTERISTICS OF A MAP

- ▶ Denote the transition rate matrix of the chain *J* by $\mathbf{Q} = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- ▶ For each pair of $i, j \in E$ with $i \neq j$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Otherwise define $U_{i,i} \equiv 0$, for each $i \in E$.
- Write G(z) for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.
- Let

$$\Psi(z) = \operatorname{diag}(\psi_1(z), \ldots, \psi_N(z)) + \mathbf{Q} \circ G(z),$$

(when it exists), where o indicates elementwise multiplication.

• The matrix exponent of the MAP (ξ, J) is given by

$$\mathbf{E}_{0,i}(e^{z\xi(t)}; J(t) = j) = (e^{\Psi(z)t})_{i,j}, \qquad i, j \in E,$$

(when it exists).

53/125

• Take *J* to be irreducible on $E = \{1, -1\}$.

Let

$$Z_t = |x| e^{\xi(\tau(|x|^{-\alpha}t))} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) \mathrm{d}u > t\right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

54/125

- ▶ Then Z_t is a real-valued self-similar Markov process in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .
- The converse (within a special class of rssMps) is also true.
- ▶ [Exercise!] Explain what happens if e.g. *J* is an absorbing Markov Chain on {1, −1} with {1} as an absorbing state?

• Take *J* to be irreducible on
$$E = \{1, -1\}$$
.

Let

$$Z_t = |x| e^{\xi(\tau(|x|^{-\alpha}t))} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) \mathrm{d}u > t\right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

54/125

- ▶ Then Z_t is a real-valued self-similar Markov process in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .
- The converse (within a special class of rssMps) is also true.
- [Exercise!] Explain what happens if e.g. *J* is an absorbing Markov Chain on $\{1, -1\}$ with $\{1\}$ as an absorbing state?

• Take *J* to be irreducible on
$$E = \{1, -1\}$$
.

Let

$$Z_t = |x| e^{\xi(\tau(|x|^{-\alpha}t))} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) \mathrm{d}u > t\right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

54/125

イロン 不聞と 不良と 不良とう 間

- ▶ Then Z_t is a real-valued self-similar Markov process in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .
- The converse (within a special class of rssMps) is also true.
- ▶ [Exercise!] Explain what happens if e.g. *J* is an absorbing Markov Chain on {1, −1} with {1} as an absorbing state?

• Take *J* to be irreducible on
$$E = \{1, -1\}$$
.

Let

$$Z_t = |x| e^{\xi(\tau(|x|^{-\alpha}t))} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$$

where

$$\tau(t) = \inf\left\{s > 0 : \int_0^s \exp(\alpha\xi(u)) \mathrm{d}u > t\right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

54/125

- ▶ Then Z_t is a real-valued self-similar Markov process in the sense that the law of $(cZ_{tc-\alpha} : t \ge 0)$ under \mathbb{P}_x is \mathbb{P}_{cx} .
- The converse (within a special class of rssMps) is also true.
- ▶ [Exercise!] Explain what happens if e.g. *J* is an absorbing Markov Chain on {1, −1} with {1} as an absorbing state?

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
T													

ENTRANCE AT ZERO

Given the Lamperti-Kiu representation

 $Z_t = e^{\xi(\tau(|x|^{-\alpha}t)) + \log |x|} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$

it is clear that we can think of a similar construction from zero to the case of $\ensuremath{\mathsf{pss}}\xspace{\mathsf{Mp}}$.

- ▶ We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.
- ▶ Just like the theory of Lévy processes, by observing the range of the process (ξ_t, J_t) $t \ge 0$, only at the points of its new suprema, we see a process (H_t^+, J_t^+) , $t \ge 0$, which is also a MAP, where H^+ is has increasing paths.

Theorem

Suppose that J is irreducible.

Then the limit $\mathbb{P}_0 := \lim_{|x|\to 0} \mathbb{P}_x$ exists in the sense of convergence with respect to the Skorokhod topology if and only if $\mathbb{E}_1(H_1^+) + \mathbb{E}_{-1}(H_1^+) < \infty$, and otherwise limit does not exist.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
EN	ΤΌΛΝ	ICE A	TTT	PO									

ENTRANCE AT ZERO

Given the Lamperti-Kiu representation

 $Z_t = e^{\xi(\tau(|x|^{-\alpha}t)) + \log |x|} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$

it is clear that we can think of a similar construction from zero to the case of $\ensuremath{\mathsf{ps}}\xspace{\mathsf{Mp}}$

- ▶ We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.
- ▶ Just like the theory of Lévy processes, by observing the range of the process (ξ_t, J_t) $t \ge 0$, only at the points of its new suprema, we see a process (H_t^+, J_t^+) , $t \ge 0$, which is also a MAP, where H^+ is has increasing paths.

Theorem

Suppose that J is irreducible.

Then the limit $\mathbb{P}_0 := \lim_{|x|\to 0} \mathbb{P}_x$ exists in the sense of convergence with respect to the Skorokhod topology if and only if $\mathbb{E}_1(H_1^+) + \mathbb{E}_{-1}(H_1^+) < \infty$, and otherwise limit does not exist.

55/125

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
END	TDAN		TZE										

ENTRANCE AT ZERO

Given the Lamperti-Kiu representation

 $Z_t = e^{\xi(\tau(|x|^{-\alpha}t)) + \log |x|} J(\tau(|x|^{-\alpha}t)) \qquad 0 \le t < T_0,$

it is clear that we can think of a similar construction from zero to the case of $\ensuremath{\mathsf{ps}}\xspace{\mathsf{Mp}}$

- ▶ We need to construct a stationary version of the pair (ξ, J) which is indexed by \mathbb{R} and pinned at space-time point $(-\infty, \infty)$.
- ▶ Just like the theory of Lévy processes, by observing the range of the process (ξ_t, J_t) $t \ge 0$, **only** at the points of its new suprema, we see a process (H_t^+, J_t^+) , $t \ge 0$, which is also a MAP, where H^+ is has increasing paths.

Theorem

Suppose that J is irreducible.

Then the limit $\mathbb{P}_0 := \lim_{|x|\to 0} \mathbb{P}_x$ exists in the sense of convergence with respect to the Skorokhod topology if and only if $\mathbb{E}_1(H_1^+) + \mathbb{E}_{-1}(H_1^+) < \infty$, and otherwise limit does not exist.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.
- ▶ The matrix exponent of the underlying MAP is given by:

$$\left[\begin{array}{cc} \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ \\ -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{array} \right],$$

56/125

for $\operatorname{Re}(z) \in (-1, \alpha)$.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.
- ▶ The matrix exponent of the underlying MAP is given by:

$$\begin{bmatrix} \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{bmatrix},$$

56/125

for $\operatorname{Re}(z) \in (-1, \alpha)$.

An α -stable process is a rssMp

- An α -stable process up to absorption in the origin is a rssMp.
- When $\alpha \in (0, 1]$, the process never hits the origin a.s.
- When $\alpha \in (1, 2)$, the process is absorbs at the origin a.s.
- ▶ The matrix exponent of the underlying MAP is given by:

$$\begin{bmatrix} \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho}-z)\Gamma(1-\alpha\hat{\rho}+z)} & -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} \\ -\frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} & \frac{\Gamma(\alpha-z)\Gamma(1+z)}{\Gamma(\alpha\rho-z)\Gamma(1-\alpha\rho+z)} \end{bmatrix},$$

56/125

イロト イロト イモト イモト 一日

for $\operatorname{Re}(z) \in (-1, \alpha)$.

ESSCHER TRANSFORM FOR MAPS

- If $\Psi(z)$ is well defined then it has a real simple eigenvalue $\chi(z)$, which is larger than the real part of all its other eigenvalues.
- Furthermore, the corresponding right-eigenvector $\mathbf{v}(z) = (v_1(z), \cdots, v_N(z))$ has strictly positive entries and may be normalised such that $\pi \cdot \mathbf{v}(z) = 1$.

Theorem

Let $\mathcal{G}_t = \sigma\{(\xi(s), J(s)) : s \le t\}, t \ge 0$, and

$$M_t := \mathrm{e}^{\gamma \xi(t) - \chi(\gamma)t} \frac{v_{J(t)}(\gamma)}{v_i(\gamma)}, \qquad t \ge 0,$$

for some $\gamma \in \mathbb{R}$ such that $\chi(\gamma)$ is defined. Then, M_t , $t \ge 0$, is a unit-mean martingale. Moreover, under the change of measure

$$\left. \mathrm{d} \mathbf{P}_{0,i}^{\gamma} \right|_{\mathcal{G}_t} = M_t \left. \mathrm{d} \mathbf{P}_{0,i} \right|_{\mathcal{G}_t}, \qquad t \ge 0,$$

the process (ξ, J) remains in the class of MAPs with new exponent given by

$$\Psi_{\gamma}(z) = \mathbf{\Delta}_{v}(\gamma)^{-1}\Psi(z+\gamma)\mathbf{\Delta}_{v}(\gamma) - \chi(\gamma)\mathbf{I}.$$

Here, **I** *is the identity matrix and* $\Delta_{v}(\gamma) = \text{diag}(v(\gamma))$ *.*

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
Essc	HER	AND		т									

- Suppose that χ is defined in some open interval D of \mathbb{R} , then, it is smooth and convex on D.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.
- With all of the above

$$\lim_{t \to \infty} \frac{\xi_t}{t} = \chi'(0) \qquad \text{a.s.}$$

▶ [Exercise!] Show that in the above circumstances, if $\chi'(0) < 0$, then the associated ssMp hits the origin in an almost surely finite time, independently of its point of issue $x \in \mathbb{R}$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
Esso	HER	AND	DRIF	T									

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.
- ▶ With all of the above

$$\lim_{t \to \infty} \frac{\xi_t}{t} = \chi'(0) \qquad \text{a.s.}$$

▶ [Exercise!] Show that in the above circumstances, if $\chi'(0) < 0$, then the associated ssMp hits the origin in an almost surely finite time, independently of its point of issue $x \in \mathbb{R}$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
Esso	HER	AND	DRIF	T									

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.
- With all of the above

$$\lim_{t \to \infty} \frac{\xi_t}{t} = \chi'(0) \qquad \text{a.s.}$$

▶ [Exercise!] Show that in the above circumstances, if $\chi'(0) < 0$, then the associated ssMp hits the origin in an almost surely finite time, independently of its point of issue $x \in \mathbb{R}$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
Esso	HER	AND	DRIF	T									

- Suppose that χ is defined in some open interval *D* of \mathbb{R} , then, it is smooth and convex on *D*.
- Since $\Psi(0) = -\mathbf{Q}$, if, moreover, *J* is irreducible, we always have $\chi(0) = 0$ and $\mathbf{v}(0) = (1, \dots, 1)$. So $0 \in D$ and $\chi'(0)$ is well defined and finite.
- With all of the above

$$\lim_{t \to \infty} \frac{\xi_t}{t} = \chi'(0) \qquad \text{a.s.}$$

• [Exercise!] Show that in the above circumstances, if $\chi'(0) < 0$, then the associated ssMp hits the origin in an almost surely finite time, independently of its point of issue $x \in \mathbb{R}$.

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ \\ -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

- ▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$
- ▶ When $\alpha \in (1, 2)$, $\chi'(0) < 0$ (because the stable process touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $+\infty$.

59/125

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ \\ -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix}, \end{split}$$

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

- ▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$
- ▶ When $\alpha \in (1, 2)$, $\chi'(0) < 0$ (because the stable process touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $+\infty$.

59/125

ESSCHER AND THE STABLE-MAP

For the MAP that underlies the stable process $D = (-1, \alpha)$, it can be checked that $\det \Psi(\alpha - 1) = 0$ i.e. $\chi(\alpha - 1) = 0$, which makes

$$\begin{split} \Psi^{\circ}(z) &= \mathbf{\Delta}^{-1} \Psi(z+\alpha-1) \mathbf{\Delta} \\ &= \begin{bmatrix} \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\rho-z)\Gamma(\alpha\rho+z)} & -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\rho)\Gamma(1-\alpha\rho)} \\ \\ -\frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(\alpha\hat{\rho})\Gamma(1-\alpha\hat{\rho})} & \frac{\Gamma(1-z)\Gamma(\alpha+z)}{\Gamma(1-\alpha\hat{\rho}-z)\Gamma(\alpha\hat{\rho}+z)} \end{bmatrix} \end{split}$$

where $\Delta = \text{diag}(\sin(\pi \alpha \hat{\rho}), \sin(\pi \alpha \rho)).$

- ▶ When $\alpha \in (0, 1)$, $\chi'(0) > 0$ (because the stable process never touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $-\infty$
- ▶ When $\alpha \in (1, 2)$, $\chi'(0) < 0$ (because the stable process touches the origin a.s.) and $\Psi^{\circ}(z)$ -MAP drifts to $+\infty$.

59/125

- コン・4回シュ ヨシュ ヨン・9 くの

RIESZ-BOGDAN-ZAK TRANSFORM

Theorem (Riesz–Bogdan–Zak transform)

Suppose that X is an α -stable process as outlined in the introduction. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$

Then, for all $x \in \mathbb{R} \setminus \{0\}$, $(-1/X_{\eta(t)})_{t \ge 0}$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}^{\circ}_{-1/x})$, where

$$\frac{\mathrm{d}\mathbb{P}_{x}^{\circ}}{\mathrm{d}\mathbb{P}_{x}}\Big|_{\mathcal{F}_{t}} = \left(\frac{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathrm{sgn}(X_{t})}{\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\mathrm{sgn}(x)}\right) \left|\frac{X_{t}}{x}\right|^{\alpha-1} \mathbf{1}_{\{t < \tau^{\{0\}}\}}$$

and $\mathcal{F}_t := \sigma(X_s : s \le t), t \ge 0$. Moreover, the process $(X, \mathbb{P}^\circ_x), x \in \mathbb{R} \setminus \{0\}$ is a self-similar Markov process with underlying MAP via the Lamperti-Kiu transform given by $\Psi^\circ(z)$.

60/125 <□▶<클▶<볼▶ 물 ♡<...

WHAT IS THE Ψ° -MAP?

Thinking of the affect on the long term behaviour of the underlying MAP of the Esscher transform

▶ When $\alpha \in (0, 1)$, $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$ has the law of the the stable process conditioned to absorb continuously at the origin in the sense,

$$\mathbb{P}_y^{\circ}(A) = \lim_{a \to 0} \mathbb{P}_y(A, t < T_0 \mid \tau_{(-a,a)} < \infty),$$

for
$$A \in \mathcal{F}_t = \sigma(X_s, s \le t)$$
,
 $\tau_{(-a,a)} = \inf\{t > 0 : |X_t| < a\}$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

▶ When $\alpha \in (1,2)$, $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$ has the law of the stable process conditioned to avoid the origin in the sense

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t = \sigma(X_s, s \le t)$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

[Exercise!] Explain this change in behaviour heuristically.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§7. Isotropic stable processes in dimension $d \ge 2$ seen as Lévy processes

Isotropic α -stable process in dimension $d \ge 2$

For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- ▶ Necessarily, $\alpha \in (0, 2]$, we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{d}y \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

63/125

where $\sigma_1(d heta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

• X is Markovian with probabilities denoted by \mathbb{P}_x , $x \in \mathbb{R}^d$

Isotropic α -stable process in dimension $d \ge 2$

For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- ▶ Necessarily, $\alpha \in (0, 2]$, we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{d}y \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

63/125

where $\sigma_1(d heta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

• X is Markovian with probabilities denoted by \mathbb{P}_x , $x \in \mathbb{R}^d$

Isotropic α -stable process in dimension $d \ge 2$

For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}$$

- ▶ Necessarily, $\alpha \in (0, 2]$, we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{d}y \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

63/125

イロト イロト イヨト イヨト 三日

where $\sigma_1(d heta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

▶ X is Markovian with probabilities denoted by \mathbb{P}_x , $x \in \mathbb{R}^d$
For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \quad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ► Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\Pi(B) = \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy$$
$$= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_1(d\theta) \int_0^{\infty} \mathbb{1}_B(r\theta) \frac{1}{r^{\alpha+d}} dr,$$

where $\sigma_1(d\theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

• X is Markovian with probabilities denoted by \mathbb{P}_x , $x \in \mathbb{R}^d$

For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ► Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} \mathrm{d}y \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

63/125

- コン・4回シュ ヨシュ ヨン・9 くの

where $\sigma_1(d\theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

• X is Markovian with probabilities denoted by $\mathbb{P}_x, x \in \mathbb{R}^d$

For $d \ge 2$, let $X := (X_t : t \ge 0)$ be a *d*-dimensional isotropic stable process.

- X has stationary and independent increments (it is a Lévy process)
- Characteristic exponent $\Psi(\theta) = -\log \mathbb{E}_0(e^{i\theta \cdot X_1})$ satisfies

$$\Psi(\theta) = |\theta|^{\alpha}, \qquad \theta \in \mathbb{R}.$$

- Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian motion.
- ▶ Associated Lévy measure satisfies, for $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\begin{split} \Pi(B) &= \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} \int_{B} \frac{1}{|y|^{\alpha+d}} dy \\ &= \frac{2^{\alpha-1} \Gamma((d+\alpha)/2) \Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} r^{d-1} \sigma_{1}(\mathrm{d}\theta) \int_{0}^{\infty} \mathbf{1}_{B}(r\theta) \frac{1}{r^{\alpha+d}} \mathrm{d}r, \end{split}$$

where $\sigma_1(d\theta)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass.

▶ *X* is Markovian with probabilities denoted by \mathbb{P}_x , $x \in \mathbb{R}^d$

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

▶ Isotropy means, for all orthogonal transformations (e.g. rotations) $U : \mathbb{R}^d \mapsto \mathbb{R}^d$ and $x \in \mathbb{R}^d$,

under \mathbb{P}_x , the law of $(UX_t, t \ge 0)$ is equal to \mathbb{P}_{Ux} .

▶ If $(S_t, t \ge 0)$ is a stable subordinator with index $\alpha/2$ (a Lévy process with Laplace exponent $-t^{-1}\log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$) and $(B_t, t \ge 0)$ for a standard (isotropic) *d*-dimensional Brownian motion, then it is known that $X_t := \sqrt{2}B_{S_t}, t \ge 0$, is a stable process with index α .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}.$$

64/125

[Exercise!] Show, more generally, that if $(\Lambda_t, t \ge 0)$ is a subordinator and $(Y_t, t \ge 0)$ is a Lévy process (in \mathbb{R}^d), then $(Y_{\Lambda_t}, t \ge 0)$ is a Lévy process in \mathbb{R}^d .

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

▶ Isotropy means, for all orthogonal transformations (e.g. rotations) $U : \mathbb{R}^d \mapsto \mathbb{R}^d$ and $x \in \mathbb{R}^d$,

under \mathbb{P}_x , the law of $(UX_t, t \ge 0)$ is equal to \mathbb{P}_{Ux} .

▶ If $(S_t, t \ge 0)$ is a stable subordinator with index $\alpha/2$ (a Lévy process with Laplace exponent $-t^{-1}\log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$) and $(B_t, t \ge 0)$ for a standard (isotropic) *d*-dimensional Brownian motion, then it is known that $X_t := \sqrt{2}B_{S_t}, t \ge 0$, is a stable process with index α .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}.$$

64/125

[Exercise!] Show, more generally, that if $(\Lambda_t, t \ge 0)$ is a subordinator and $(Y_t, t \ge 0)$ is a Lévy process (in \mathbb{R}^d), then $(Y_{\Lambda_t}, t \ge 0)$ is a Lévy process in \mathbb{R}^d .

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

▶ Isotropy means, for all orthogonal transformations (e.g. rotations) $U : \mathbb{R}^d \mapsto \mathbb{R}^d$ and $x \in \mathbb{R}^d$,

under \mathbb{P}_x , the law of $(UX_t, t \ge 0)$ is equal to \mathbb{P}_{Ux} .

• If $(S_t, t \ge 0)$ is a stable subordinator with index $\alpha/2$ (a Lévy process with Laplace exponent $-t^{-1} \log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$) and $(B_t, t \ge 0)$ for a standard (isotropic) *d*-dimensional Brownian motion, then it is known that $X_t := \sqrt{2}B_{S_t}, t \ge 0$, is a stable process with index α .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}.$$

[Exercise!] Show, more generally, that if $(\Lambda_t, t \ge 0)$ is a subordinator and $(Y_t, t \ge 0)$ is a Lévy process (in \mathbb{R}^d), then $(Y_{\Lambda_t}, t \ge 0)$ is a Lévy process in \mathbb{R}^d .

64/125 《 □ ▷ 《 Ē ▷ 《 Ē ▷ 《 Ē ▷ 집 ♡ � ⓒ

Stable processes are also self-similar. For c > 0 and $x \in \mathbb{R}^d \setminus \{0\}$,

under \mathbb{P}_x , the law of $(cX_{c-\alpha_t}, t \ge 0)$ is equal to \mathbb{P}_{cx} .

▶ Isotropy means, for all orthogonal transformations (e.g. rotations) $U : \mathbb{R}^d \mapsto \mathbb{R}^d$ and $x \in \mathbb{R}^d$,

under \mathbb{P}_x , the law of $(UX_t, t \ge 0)$ is equal to \mathbb{P}_{Ux} .

• If $(S_t, t \ge 0)$ is a stable subordinator with index $\alpha/2$ (a Lévy process with Laplace exponent $-t^{-1} \log \mathbb{E}[e^{-\lambda S_t}] = \lambda^{\alpha}$) and $(B_t, t \ge 0)$ for a standard (isotropic) *d*-dimensional Brownian motion, then it is known that $X_t := \sqrt{2}B_{S_t}, t \ge 0$, is a stable process with index α .

$$\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta X_t}] = \mathbb{E}\left[\mathrm{e}^{-\theta^2 S_t}\right] = \mathrm{e}^{-|\theta|^{\alpha}t}, \qquad \theta \in \mathbb{R}.$$

[Exercise!] Show, more generally, that if $(\Lambda_t, t \ge 0)$ is a subordinator and $(Y_t, t \ge 0)$ is a Lévy process (in \mathbb{R}^d), then $(Y_{\Lambda_t}, t \ge 0)$ is a Lévy process in \mathbb{R}^d .

69/125

Х

Some classical properties: Transience

We are interested in the potential measure

$$U(x, \mathrm{d} y) = \int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = \left(\int_0^\infty p_t(y-x) \mathrm{d} t\right) \mathrm{d} y, \qquad x, y \in \mathbb{R}.$$

Note: stationary and independent increments means that it suffices to consider U(0, dy).

Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y - x)dy, $x, y \in \mathbb{R}^d$, where

$$u(z) = 2^{-\alpha} \pi^{-d/2} \frac{\Gamma((d-\alpha)/2)}{\Gamma(\alpha/2)} |z|^{\alpha-d}, \qquad z \in \mathbb{R}^d.$$

In this respect X is transient. It can be shown moreover that

$$\lim_{t\to\infty}|X_t|=\infty$$

almost surely

Some classical properties: Transience

We are interested in the potential measure

$$U(x, \mathrm{d} y) = \int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = \left(\int_0^\infty p_t(y-x) \mathrm{d} t\right) \mathrm{d} y, \qquad x, y \in \mathbb{R}.$$

Note: stationary and independent increments means that it suffices to consider U(0, dy).

Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y - x)dy, $x, y \in \mathbb{R}^d$, where

$$u(z) = 2^{-\alpha} \pi^{-d/2} \frac{\Gamma((d-\alpha)/2)}{\Gamma(\alpha/2)} |z|^{\alpha-d}, \qquad z \in \mathbb{R}^d.$$

In this respect X is transient. It can be shown moreover that

$$\lim_{t\to\infty}|X_t|=\infty$$

almost surely

Some classical properties: Transience

We are interested in the potential measure

$$U(x, \mathrm{d} y) = \int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d} y) \mathrm{d} t = \left(\int_0^\infty p_t(y-x) \mathrm{d} t\right) \mathrm{d} y, \qquad x, y \in \mathbb{R}.$$

Note: stationary and independent increments means that it suffices to consider U(0, dy).

Theorem

The potential of X is absolutely continuous with respect to Lebesgue measure, in which case, its density in collaboration with spatial homogeneity satisfies U(x, dy) = u(y - x)dy, $x, y \in \mathbb{R}^d$, where

$$u(z) = 2^{-\alpha} \pi^{-d/2} \frac{\Gamma((d-\alpha)/2)}{\Gamma(\alpha/2)} |z|^{\alpha-d}, \qquad z \in \mathbb{R}^d.$$

In this respect X is transient. It can be shown moreover that

$$\lim_{t\to\infty}|X_t|=\infty$$

almost surely

70/125

§1. §2. §3. §4. §5. §6. **§7.** §8. §9. §10. §11. §12. §13. References

PROOF OF THEOREM

Now note that, for bounded and measurable $f : \mathbb{R}^d \mapsto \mathbb{R}^d$,

$$\begin{split} \mathbb{E}\left[\int_{0}^{\infty} f(X_{t})dt\right] &= \mathbb{E}\left[\int_{0}^{\infty} f(\sqrt{2}B_{S_{t}})dt\right] \\ &= \int_{0}^{\infty} ds \int_{0}^{\infty} dt \,\mathbb{P}(S_{t} \in ds) \int_{\mathbb{R}} \mathbb{P}(B_{s} \in dx)f(\sqrt{2}x) \\ &= \frac{1}{\Gamma(\alpha/2)\pi^{d/2}2^{d}} \int_{\mathbb{R}} dy \int_{0}^{\infty} ds \, \mathrm{e}^{-|y|^{2}/4s} \mathrm{s}^{-1+(\alpha-d)/2}f(y) \\ &= \frac{1}{2^{\alpha}\Gamma(\alpha/2)\pi^{d/2}} \int_{\mathbb{R}} dy \, |y|^{(\alpha-d)} \int_{0}^{\infty} du \, \mathrm{e}^{-u} u^{-1+(d-\alpha/2)}f(y) \\ &= \frac{\Gamma((d-\alpha)/2)}{2^{\alpha}\Gamma(\alpha/2)\pi^{d/2}} \int_{\mathbb{R}} dy \, |y|^{(\alpha-d)}f(y). \end{split}$$

71/125 < □ ▶ < 클 ▶ < 클 ▶ < 클 ▶] つへぐ

Some classical properties: Polarity

▶ Kesten-Bretagnolle integral test, in dimension $d \ge 2$,

$$\int_{\mathbb{R}} \operatorname{Re}\left(\frac{1}{1+\Psi(z)}\right) \mathrm{d}z = \int_{\mathbb{R}} \frac{1}{1+|z|^{\alpha}} \mathrm{d}z \propto \int_{\mathbb{R}} \frac{1}{1+r^{\alpha}} r^{d-1} \mathrm{d}r \,\sigma_1(\mathrm{d}\theta) = \infty.$$

72/125

(日)(四)(日)(日)(日)

$$\blacktriangleright \mathbb{P}_x(\tau^{\{y\}} < \infty) = 0, \text{ for } x, y \in \mathbb{R}^d.$$

▶ i.e. the stable process cannot hit individual points almost surely.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§8. Isotropic stable processes in dimension $d \geq 2$ seen as a self-similar Markov process

Lemma *The process* $(|X_t|, t \ge 0)$ *is strong Markov and self-similar.*

- ► Temporarily write $(X_t^{(x)}, t \ge 0)$ in place of (X, \mathbb{P}_x)
- Markov property of *X* tells us that, for $s, t \ge 0$,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where $\tilde{X}^{(x)}$ is an independent copy of $X^{(x)}$

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

Lemma

The process $(|X_t|, t \ge 0)$ *is strong Markov and self-similar.*

- ▶ Temporarily write $(X_t^{(x)}, t \ge 0)$ in place of (X, \mathbb{P}_x)
- Markov property of *X* tells us that, for $s, t \ge 0$,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where $\tilde{X}^{(x)}$ is an independent copy of $X^{(x)}$

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

Lemma

The process $(|X_t|, t \ge 0)$ *is strong Markov and self-similar.*

- ▶ Temporarily write $(X_t^{(x)}, t \ge 0)$ in place of (X, \mathbb{P}_x)
- Markov property of *X* tells us that, for $s, t \ge 0$,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where $\tilde{X}^{(x)}$ is an independent copy of $X^{(x)}$.

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

Lemma

The process $(|X_t|, t \ge 0)$ *is strong Markov and self-similar.*

- ▶ Temporarily write $(X_t^{(x)}, t \ge 0)$ in place of (X, \mathbb{P}_x)
- Markov property of *X* tells us that, for $s, t \ge 0$,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where $\tilde{X}^{(x)}$ is an independent copy of $X^{(x)}$.

$$|X_{t+s}^{(x)}| = |\tilde{X}_{s}^{(y)}|_{y=X_{t}^{(x)}} =^{d} |\tilde{X}_{s}^{(z)}|_{z=(|X_{t}^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ▶ Self-similarity of |X| follows directly from the self-similarity of X.

Lemma

The process $(|X_t|, t \ge 0)$ *is strong Markov and self-similar.*

- ▶ Temporarily write $(X_t^{(x)}, t \ge 0)$ in place of (X, \mathbb{P}_x)
- Markov property of *X* tells us that, for $s, t \ge 0$,

$$X_{t+s}^{(x)} = \tilde{X}_s^{(X_t^{(x)})},$$

where $\tilde{X}^{(x)}$ is an independent copy of $X^{(x)}$.

$$|X_{t+s}^{(x)}| = |\tilde{X}_s^{(y)}|_{y=X_t^{(x)}} =^d |\tilde{X}_s^{(z)}|_{z=(|X_t^{(x)}|,0,0\cdots,0)}$$

- Hence Markov property holds, strong Markov property (and Feller property) can be developed from this argument
- ► Self-similarity of |X| follows directly from the self-similarity of X.

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that $\lim_{t\to\infty} |X_t| = \infty$ implies that $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$ for the Laplace exponent of ξ , then it is well defined for $\lambda \in (-d, \alpha)$ with roots at $\lambda = 0$ and $\lambda = \alpha d$.

Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that $|X_t| = \exp(\xi_{\varphi_t})$ and that φ_t is an almost surely finite stopping time (because $\lim_{t\to\infty} \xi_t = \infty$) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that $\lim_{t\to\infty} |X_t| = \infty$ implies that $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$ for the Laplace exponent of ξ , then it is well defined for $\lambda \in (-d, \alpha)$ with roots at $\lambda = 0$ and $\lambda = \alpha d$.

Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that $|X_t| = \exp(\xi_{\varphi_t})$ and that φ_t is an almost surely finite stopping time (because $\lim_{t\to\infty} \xi_t = \infty$) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

75/125

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that $\lim_{t\to\infty} |X_t| = \infty$ implies that $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$ for the Laplace exponent of ξ , then it is well defined for $\lambda \in (-d, \alpha)$ with roots at $\lambda = 0$ and $\lambda = \alpha d$.
- Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that $|X_t| = \exp(\xi_{\varphi_t})$ and that φ_t is an almost surely finite stopping time (because $\lim_{t\to\infty} \xi_t = \infty$) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

Theorem (Caballero-Pardo-Perez (2011))

For the pssMp constructed using the radial part of an isotropic d-dimensional stable process, the underlying Lévy process, ξ that appears through the Lamperti has characteristic exponent given by

$$\Psi(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-\mathrm{i} z + \alpha))}{\Gamma(-\frac{1}{2}\mathrm{i} z)} \frac{\Gamma(\frac{1}{2}(\mathrm{i} z + d))}{\Gamma(\frac{1}{2}(\mathrm{i} z + d - \alpha))}, \qquad z \in \mathbb{R}$$

- The fact that $\lim_{t\to\infty} |X_t| = \infty$ implies that $\lim_{t\to\infty} \xi_t = \infty$
- ▶ If we write $\psi(\lambda) = -\Psi(-i\lambda) = \log \mathbb{E}[e^{\lambda X_1}]$ for the Laplace exponent of ξ , then it is well defined for $\lambda \in (-d, \alpha)$ with roots at $\lambda = 0$ and $\lambda = \alpha d$.
- Note that

$$\exp((\alpha - d)\xi_t), \qquad t \ge 0,$$

is a martingale

▶ Recalling that $|X_t| = \exp(\xi_{\varphi_t})$ and that φ_t is an almost surely finite stopping time (because $\lim_{t\to\infty} \xi_t = \infty$) we can deduce that

$$|X_t|^{\alpha-d}, \qquad t \ge 0,$$

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \ne 0$$

Suppose that f is a bounded measurable function then, for all c > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

- ▶ Markovian, isotropy and self-similarity properties pass through to (X, \mathbb{P}_x°) , $x \neq 0$.
- Similarly $(|X|, \mathbb{P}_x^{\circ}), x \neq 0$ is a positive self-similar Markov process.

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

▶ Suppose that *f* is a bounded measurable function then, for all *c* > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

- ▶ Markovian, isotropy and self-similarity properties pass through to (X, \mathbb{P}_x°) , $x \neq 0$.
- Similarly $(|X|, \mathbb{P}_x^\circ), x \neq 0$ is a positive self-similar Markov process.

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

▶ Suppose that *f* is a bounded measurable function then, for all *c* > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

▶ Markovian, isotropy and self-similarity properties pass through to $(X, \mathbb{P}_x^\circ), x \neq 0$.

76/125

(日)

We can define the change of measure

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\bigg|_{\mathcal{F}_t} = \frac{|X_t|^{\alpha-d}}{|x|^{\alpha-d}}, \qquad t \ge 0, x \neq 0$$

▶ Suppose that *f* is a bounded measurable function then, for all *c* > 0,

$$\mathbb{E}_{x}^{\circ}[f(cX_{c-\alpha_{s}}, s \leq t)] = \mathbb{E}_{x}\left[\frac{|cX_{c-\alpha_{t}}|^{\alpha-d}}{|cx|^{d-\alpha}}f(cX_{c-\alpha_{s}}, s \leq t)\right]$$
$$= \mathbb{E}_{cx}\left[\frac{|X_{t}|^{\alpha-d}}{|cx|^{d-\alpha}}f(X_{s}, s \leq t)\right] = \mathbb{E}_{cx}^{\circ}[f(X_{s}, s \leq t)]$$

- ▶ Markovian, isotropy and self-similarity properties pass through to $(X, \mathbb{P}_x^\circ), x \neq 0$.
- Similarly $(|X|, \mathbb{P}_x^{\circ})$, $x \neq 0$ is a positive self-similar Markov process.

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \mathbf{k}) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \mathbf{k} | \tau_{a}^{\oplus} < \infty),$$

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on ξ , we note that the Lamperti transform of $(|X|, \mathbb{P}_x^\circ), x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

77/125

(日)

Given the pathwise interpretation of (X, \mathbb{P}_x°) , $x \neq 0$, it follows immediately that $\lim_{t\to\infty} \xi_t = -\infty$, \mathbb{P}_x° almost surely, for any $x \neq 0$.

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on ξ , we note that the Lamperti transform of $(|X|, \mathbb{P}_x^\circ), x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

77/125

▶ Given the pathwise interpretation of (X, \mathbb{P}_x°) , $x \neq 0$, it follows immediately that $\lim_{t\to\infty} \xi_t = -\infty$, \mathbb{P}_x° almost surely, for any $x \neq 0$.

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on ξ , we note that the Lamperti transform of $(|X|, \mathbb{P}_x^\circ)$, $x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

77/125

Given the pathwise interpretation of (X, \mathbb{P}_x^o) , $x \neq 0$, it follows immediately that $\lim_{t\to\infty} \xi_t = -\infty$, \mathbb{P}_x^o almost surely, for any $x \neq 0$.

- ▶ It turns out that (X, \mathbb{P}_x°) , $x \neq 0$, corresponds to the stable process conditioned to be continuously absorbed at the origin.
- ▶ More precisely, for $A \in \sigma(X_s, s \le t)$, if we set {0} to be 'cemetery' state and $k = \inf\{t > 0 : X_t = 0\}$, then

$$\mathbb{P}_{x}^{\circ}(A, t < \Bbbk) = \lim_{a \downarrow 0} \mathbb{P}_{x}(A, t < \Bbbk | \tau_{a}^{\oplus} < \infty),$$

where $\tau_a^{\oplus} = \inf\{t > 0 : |X_t| < a\}.$

▶ In light of the associated Esscher transform on ξ , we note that the Lamperti transform of $(|X|, \mathbb{P}_x^\circ)$, $x \neq 0$, corresponds to the Lévy process with characteristic exponent

$$\Psi^{\circ}(z) = 2^{\alpha} \frac{\Gamma(\frac{1}{2}(-iz+d))}{\Gamma(-\frac{1}{2}(iz+\alpha-d))} \frac{\Gamma(\frac{1}{2}(iz+\alpha))}{\Gamma(\frac{1}{2}iz)}, \qquad z \in \mathbb{R}.$$

77/125

- コン・4回シュ ヨシュ ヨン・9 くの

▶ Given the pathwise interpretation of $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$, it follows immediately that $\lim_{t\to\infty} \xi_t = -\infty$, \mathbb{P}°_{x} almost surely, for any $x \neq 0$.

\mathbb{R}^{d} -Self-Similar Markov processes

Definition

A \mathbb{R}^d -valued regular Feller process $Z = (Z_t, t \ge 0)$ is called a \mathbb{R}^d -valued self-similar Markov process if there exists a constant $\alpha > 0$ such that, for any x > 0 and c > 0,

the law of $(cZ_{c-\alpha_t}, t \ge 0)$ under P_x is P_{cx} ,

78/125

where P_x is the law of *Z* when issued from *x*.

- Same definition as before except process now lives on \mathbb{R}^d .
- Is there an analogue of the Lamperti representation?
\mathbb{R}^{d} -Self-Similar Markov processes

Definition

A \mathbb{R}^d -valued regular Feller process $Z = (Z_t, t \ge 0)$ is called a \mathbb{R}^d -valued self-similar Markov process if there exists a constant $\alpha > 0$ such that, for any x > 0 and c > 0,

the law of $(cZ_{c-\alpha_t}, t \ge 0)$ under P_x is P_{cx} ,

78/125

where P_x is the law of *Z* when issued from *x*.

▶ Same definition as before except process now lives on ℝ^d.

▶ Is there an analogue of the Lamperti representation?

\mathbb{R}^{d} -Self-Similar Markov processes

Definition

A \mathbb{R}^d -valued regular Feller process $Z = (Z_t, t \ge 0)$ is called a \mathbb{R}^d -valued self-similar Markov process if there exists a constant $\alpha > 0$ such that, for any x > 0 and c > 0,

the law of $(cZ_{c-\alpha_t}, t \ge 0)$ under P_x is P_{cx} ,

78/125

where P_x is the law of *Z* when issued from *x*.

- ▶ Same definition as before except process now lives on ℝ^d.
- Is there an analogue of the Lamperti representation?

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- ▶ Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

79/125

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments
- Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

79/125

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- ▶ Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

79/125

< □ > < @ > < 图 > < 图 > < 图 > < 图</p>

In order to introduce the analogue of the Lamperti transform in *d*-dimensions, we need to remind ourselves of what we mean by a Markov additive process in this context.

Definition

An $\mathbb{R} \times E$ valued regular Feller process $(\xi, \Theta) = ((\xi_t, \Theta_t) : t \ge 0)$ with probabilities $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in E$, and cemetery state $(-\infty, \dagger)$ is called a *Markov additive process* (MAP) if Θ is a regular Feller process on E with cemetery state \dagger such that, for every bounded measurable function $f : (\mathbb{R} \cup \{-\infty\}) \times (E \cup \{\dagger\}) \to \mathbb{R}, t, s \ge 0$ and $(x, \theta) \in \mathbb{R} \times E$, on $\{t < \varsigma\}$,

$$\mathbf{E}_{x,\theta}[f(\xi_{t+s} - \xi_t, \Theta_{t+s}) | \sigma((\xi_u, \Theta_u), u \le t)] = \mathbf{E}_{0,\Theta_t}[f(\xi_s, \Theta_s)]$$

where $\varsigma = \inf\{t > 0 : \Theta_t = \dagger\}.$

- Roughly speaking, one thinks of a MAP as a 'Markov modulated' Lévy process
- It has 'conditional stationary and independent increments'
- Think of the *E*-valued Markov process Θ as modulating the characteristics of ξ (which would otherwise be a Lévy processes).

Theorem

Fix $\alpha > 0$. The process Z is a ssMp with index α if and only if there exists a (killed) MAP, (ξ, Θ) on $\mathbb{R} \times \mathbb{S}_{d-1}$ such that

$$Z_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad , \qquad t \le I_{\varsigma},$$

where

$$\varphi(t) = \inf \left\{ s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t \right\}, \qquad t \le I_\varsigma,$$

and $I_{\varsigma} = \int_{0}^{\varsigma} e^{\alpha \xi_{\varsigma}} ds$ is the lifetime of Z until absorption at the origin. Here, we interpret $\exp\{-\infty\} \times \dagger := 0$ and $\inf \emptyset := \infty$.

▶ In the representation (??), the time to absorption in the origin,

$$\zeta = \inf\{t > 0 : Z_t = 0\},\$$

satisfies $\zeta = I_{\varsigma}$.

▶ Note $x \in \mathbb{R}^d$ if and only if

$$x = (|x|, \operatorname{Arg}(x)),$$

where $\operatorname{Arg}(x) = x/|x| \in \mathbb{S}_{d-1}$. The Lamperti–Kiu decomposition therefore gives us a *d*-dimensional skew product decomposition of self-similar Markov processes.

▶ The stable process *X* is an \mathbb{R}^d -valued self-similar Markov process and therefore fits the description above

81/125

- How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does Θ and what properties to the pair (ξ, Θ) have?

► The stable process *X* is an \mathbb{R}^d -valued self-similar Markov process and therefore fits the description above

81/125

- ► How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does Θ and what properties to the pair (ξ, Θ) have?

- ► The stable process *X* is an \mathbb{R}^d -valued self-similar Markov process and therefore fits the description above
- How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does Θ and what properties to the pair (ξ, Θ) have?

▶ The stable process *X* is an \mathbb{R}^d -valued self-similar Markov process and therefore fits the description above

81/125

イロン 不聞と 不良と 不良とう 間

- How do we characterise its underlying MAP (ξ, Θ)?
- We already know that |X| is a positive similar Markov process and hence ξ is a Lévy process, albeit corollated to Θ
- What properties does Θ and what properties to the pair (ξ, Θ) have?

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
M	AP is	OTRO	OPY										

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$ is equal in law to $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^d$, $\theta \in \mathbb{S}_{d-1}$.

Proof.

First note that $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$. It follows that

 $(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$

where the random times $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$ are stopping times in the natural filtration of *X*.

Now suppose that U is any orthogonal d-dimensional matrix and let $X' = U^{-1}X$. Since X is isotropic and since |X'| = |X|, and $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$, we see that, for $x \in \mathbb{R}$ and $\theta \in \mathbb{S}_{d-1}$

$$((\xi, U^{-1}\Theta), \mathbf{P}_{\log|x|, \theta}) = ((\log|\mathbf{X}_{A(\cdot)}|, U^{-1}\operatorname{Arg}(\mathbf{X}_{A(\cdot)})), \mathbb{P}_x)$$

$$\stackrel{d}{=} ((\log|\mathbf{X}_{A(\cdot)}|, \operatorname{Arg}(\mathbf{X}_{A(\cdot)})), \mathbb{P}_{U^{-1}x})$$

$$= ((\xi, \Theta), \mathbf{P}_{\log|x|, U^{-1}\theta})$$

82/125

as required.

§1. §2. §3. §4. §5. §6. §7. **§8.** §9. §10. §11. §12. §13. References MAP ISOTROPY

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$ is equal in law to $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^d$, $\theta \in \mathbb{S}_{d-1}$.

Proof.

First note that $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$. It follows that

 $(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$

where the random times $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$ are stopping times in the natural filtration of *X*.

Now suppose that U is any orthogonal d-dimensional matrix and let $X' = U^{-1}X$. Since X is isotropic and since |X'| = |X|, and $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$, we see that, for $x \in \mathbb{R}$ and $\theta \in \mathbb{S}_{d-1}$

$$((\xi, U^{-1}\Theta), \mathbf{P}_{\log|x|, \theta}) = ((\log|\mathbf{X}_{A(\cdot)}|, U^{-1}\operatorname{Arg}(\mathbf{X}_{A(\cdot)})), \mathbb{P}_x)$$

$$\stackrel{d}{=} ((\log|\mathbf{X}_{A(\cdot)}|, \operatorname{Arg}(\mathbf{X}_{A(\cdot)})), \mathbb{P}_{U^{-1}x})$$

$$= ((\xi, \Theta), \mathbf{P}_{\log|x|, U^{-1}\theta})$$

82/125

as required.

Theorem

Suppose (ξ, Θ) is the MAP underlying the stable process. Then $((\xi, U^{-1}\Theta), \mathbf{P}_{x,\theta})$ is equal in law to $((\xi, \Theta), \mathbf{P}_{x,U^{-1}\theta})$, for every orthogonal d-dimensional matrix U and $x \in \mathbb{R}^d$, $\theta \in \mathbb{S}_{d-1}$.

Proof.

First note that $\varphi(t) = \int_0^t |X_u|^{-\alpha} du$. It follows that

$$(\xi_t, \Theta_t) = (\log |X_{A(t)}|, \operatorname{Arg}(X_{A(t)})), \qquad t \ge 0,$$

where the random times $A(t) = \inf \{s > 0 : \int_0^s |X_u|^{-\alpha} du > t\}$ are stopping times in the natural filtration of *X*.

Now suppose that U is any orthogonal *d*-dimensional matrix and let $X' = U^{-1}X$. Since X is isotropic and since |X'| = |X|, and $\operatorname{Arg}(X') = U^{-1}\operatorname{Arg}(X)$, we see that, for $x \in \mathbb{R}$ and $\theta \in \mathbb{S}_{d-1}$

$$((\xi, U^{-1}\Theta), \mathbf{P}_{\log |x|, \theta}) = ((\log |X_{A(\cdot)}|, U^{-1}\operatorname{Arg}(X_{A(\cdot)})), \mathbb{P}_x)$$

$$\stackrel{d}{=} ((\log |X_{A(\cdot)}|, \operatorname{Arg}(X_{A(\cdot)})), \mathbb{P}_{U^{-1}x})$$

$$= ((\xi, \Theta), \mathbf{P}_{\log |x|, U^{-1}\theta})$$

as required.

82/125

MAP CORROLATION

• We will work with the increments $\Delta \xi_t = \xi_t - \xi_{t-} \in \mathbb{R}, t \ge 0$,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta} \left(\sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) under $\mathbb{P}_{0,\theta}$, $\sigma_1(\phi)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass and

$$c(\alpha) = 2^{\alpha - 1} \pi^{-d} \Gamma((d + \alpha)/2) \Gamma(d/2) / \left| \Gamma(-\alpha/2) \right|.$$

MAP CORROLATION

• We will work with the increments $\Delta \xi_t = \xi_t - \xi_{t-1} \in \mathbb{R}, t \ge 0$,

Theorem (Bo Li, Victor Rivero, Bertoin-Werner (1996))

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta} \left(\sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) under $\mathbf{P}_{0,\theta}$, $\sigma_1(\phi)$ is the surface measure on \mathbb{S}_{d-1} normalised to have unit mass and

$$c(\alpha) = 2^{\alpha - 1} \pi^{-d} \Gamma((d + \alpha)/2) \Gamma(d/2) / \left| \Gamma(-\alpha/2) \right|.$$

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ▶ Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d} y), \qquad |x| > 0,$$

for appropriately smooth functions.

• Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_x^{\circ}[f(X_t)] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_x[|X_t|^{\alpha - d}f(X_t)] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

• Straightforward algebra using $\mathcal{L}h = 0$ gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

• Equivalently, the rate at which (X, \mathbb{P}_x°) , $x \neq 0$ jumps given by

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d} |\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$

for $|x| > 0$ and $B \in \mathcal{B}(\mathbb{R}^{d}).$

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ▶ Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

• Straightforward algebra using $\mathcal{L}h = 0$ gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

• Equivalently, the rate at which (X, \mathbb{P}_x°) , $x \neq 0$ jumps given by

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$

for $|x| > 0$ and $B \in \mathcal{B}(\mathbb{R}^{d}).$

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ▶ Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using *Lh* = 0 gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

• Equivalently, the rate at which $(X, \mathbb{P}^{\circ}_{x})$, $x \neq 0$ jumps given by

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$

for $|x| > 0$ and $B \in \mathcal{B}(\mathbb{R}^{d}).$

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ▶ Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using $\mathcal{L}h = 0$ gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

• Equivalently, the rate at which (X, \mathbb{P}_x°) , $x \neq 0$ jumps given by

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$

for $|x| > 0$ and $B \in \mathcal{B}(\mathbb{R}^{d}).$

- Recall that $(|X_t|^{\alpha-d}, t \ge 0)$, is a martingale.
- ► Informally, we should expect $\mathcal{L}h = 0$, where $h(x) = |x|^{\alpha d}$ and \mathcal{L} is the infinitesimal generator of the stable process, which has action

$$\mathcal{L}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \Pi(\mathrm{d}y), \qquad |x| > 0,$$

for appropriately smooth functions.

▶ Associated to (X, \mathbb{P}_x) , $x \neq 0$ is the generator

$$\mathcal{L}^{\circ}f(x) = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}^{\circ}[f(X_{t})] - f(x)}{t} = \lim_{t \downarrow 0} \frac{\mathbb{E}_{x}[|X_{t}|^{\alpha - d}f(X_{t})] - |x|^{\alpha - d}f(x)}{|x|^{\alpha - d}t},$$

That is to say

$$\mathcal{L}^{\circ}f(x) = \frac{1}{h(x)}\mathcal{L}(hf)(x),$$

Straightforward algebra using $\mathcal{L}h = 0$ gives us

$$\mathcal{L}^{\circ}f(x) = \mathbf{a} \cdot \nabla f(x) + \int_{\mathbb{R}^d} [f(x+y) - f(x) - \mathbf{1}_{(|y| \le 1)} y \cdot \nabla f(x)] \frac{h(x+y)}{h(x)} \Pi(\mathrm{d}y), \qquad |x| > 0$$

• Equivalently, the rate at which $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$ jumps given by

$$\Pi^{\circ}(x,B) := \frac{2^{\alpha-1}\Gamma((d+\alpha)/2)\Gamma(d/2)}{\pi^{d}|\Gamma(-\alpha/2)|} \int_{\mathbb{S}_{d-1}} \mathrm{d}\sigma_{1}(\phi) \int_{(0,\infty)} \mathbf{1}_{B}(r\phi) \frac{\mathrm{d}r}{r^{\alpha+1}} \frac{|x+r\phi|^{\alpha-d}}{|x|^{\alpha-d}},$$

for $|x| > 0$ and $B \in \mathcal{B}(\mathbb{R}^{d}).$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
M	AP of	F(X,	$\mathbb{P}^{\circ}_{\cdot})$										

Theorem

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta}^{\circ} \left(\sum_{s>0} f(s,\xi_{s-},\Delta\xi_{s},\Theta_{s-},\Theta_{s}) \right) \\ &= \int_{0}^{\infty} \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} V_{\theta}^{\circ}(\mathrm{d}s,\mathrm{d}x,\mathrm{d}\vartheta) \sigma_{1}(\mathrm{d}\phi) \mathrm{d}y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^{y}\phi - \vartheta|^{\alpha+d}} f(s,x,-y,\vartheta,\phi), \end{split}$$

where

$$V^{\circ}_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}^{\circ}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) *under* $\mathbf{P}_{0,\theta}^{\circ}$ *.*

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of (ξ, Θ) under $\mathbf{P}_{x,\theta}^{\circ}, x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$, is precisely that of $(-\xi, \Theta)$ under $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in \mathbb{S}_{d-1}$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
MA	AP OF	F(X,	₽.)										

Theorem

Suppose that f is a bounded measurable function on $[0, \infty) \times \mathbb{R} \times \mathbb{R} \times \mathbb{S}_{d-1} \times \mathbb{S}_{d-1}$ such that $f(\cdot, \cdot, 0, \cdot, \cdot) = 0$, then, for all $\theta \in \mathbb{S}_{d-1}$,

$$\begin{split} \mathbf{E}_{0,\theta} \left(\sum_{s>0} f(s,\xi_{s-},\Delta\xi_s,\Theta_{s-},\Theta_s) \right) \\ &= \int_0^\infty \int_{\mathbb{R}} \int_{\mathbb{S}_{d-1}} \int_{\mathbb{R}} \int_{\mathbb{R}} V_{\theta}(\mathrm{d} s,\mathrm{d} x,\mathrm{d} \vartheta) \sigma_1(\mathrm{d} \phi) \mathrm{d} y \frac{c(\alpha) \mathrm{e}^{yd}}{|\mathrm{e}^y \phi - \vartheta|^{\alpha+d}} f(s,x,y,\vartheta,\phi), \end{split}$$

where

$$V_{\theta}(\mathrm{d} s, \mathrm{d} x, \mathrm{d} \vartheta) = \mathbf{P}_{0,\theta}(\xi_s \in \mathrm{d} x, \Theta_s \in \mathrm{d} \vartheta) \mathrm{d} s, \qquad x \in \mathbb{R}, \vartheta \in \mathbb{S}_{d-1}, s \ge 0,$$

is the space-time potential of (ξ, Θ) *under* $\mathbf{P}_{0,\theta}^{\circ}$ *.*

Comparing the right-hand side above with that of the previous Theorem, it now becomes immediately clear that the the jump structure of (ξ, Θ) under $\mathbf{P}_{x,\theta}^{\circ}, x \in \mathbb{R}$, $\theta \in \mathbb{S}_{d-1}$, is precisely that of $(-\xi, \Theta)$ under $\mathbf{P}_{x,\theta}, x \in \mathbb{R}, \theta \in \mathbb{S}_{d-1}$.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§9. Riesz-Bogdan-Żak transform

• Define the transformation $K : \mathbb{R}^d \mapsto \mathbb{R}^d$, by

$$\mathsf{K}x = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},\$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} .

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform, $d \ge 2$) Suppose that X is a *d*-dimensional isotropic stable process with $d \ge 2$. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

Then, for all $x \in \mathbb{R}^d \setminus \{0\}$, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}^{\circ}_{Kx})$.

• Define the transformation $K : \mathbb{R}^d \mapsto \mathbb{R}^d$, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} .

• In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform, $d \ge 2$) Suppose that X is a *d*-dimensional isotropic stable process with $d \ge 2$. Define

$$\eta(t) = \inf\{s > 0: \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

Then, for all $x \in \mathbb{R}^d \setminus \{0\}$, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}_{Kx}^{\circ})$.

• Define the transformation $K : \mathbb{R}^d \mapsto \mathbb{R}^d$, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the K-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} .

Theorem (*d*-dimensional Riesz–Bogdan–Žak Transform, $d \ge 2$) Suppose that X is a *d*-dimensional isotropic stable process with $d \ge 2$. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} \mathrm{d}u > t\}, \qquad t \ge 0.$$
(3)

Then, for all $x \in \mathbb{R}^d \setminus \{0\}$, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}^{\circ}_{Kx})$.

• Define the transformation $K : \mathbb{R}^d \mapsto \mathbb{R}^d$, by

$$Kx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} . In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform, $d \ge 2$) Suppose that X is a *d*-dimensional isotropic stable process with $d \ge 2$. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

Then, for all $x \in \mathbb{R}^d \setminus \{0\}$, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}^{\circ}_{Kx})$.

• Define the transformation $K : \mathbb{R}^d \mapsto \mathbb{R}^d$, by

$$Xx = \frac{x}{|x|^2}, \qquad x \in \mathbb{R}^d \setminus \{0\}.$$

- ▶ This transformation inverts space through the unit sphere $\{x \in \mathbb{R}^d : |x| = 1\}$.
- ▶ Write $x \in \mathbb{R}^d$ in skew product form $x = (|x|, \operatorname{Arg}(x))$, and note that

$$Kx = (|x|^{-1}, \operatorname{Arg}(x)), \qquad x \in \mathbb{R}^d \setminus \{0\},$$

showing that the *K*-transform 'radially inverts' elements of \mathbb{R}^d through \mathbb{S}_{d-1} . In particular K(Kx) = x

Theorem (*d*-dimensional Riesz–Bogdan–Żak Transform, $d \ge 2$) Suppose that X is a *d*-dimensional isotropic stable process with $d \ge 2$. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$
(3)

Then, for all $x \in \mathbb{R}^d \setminus \{0\}$, $(KX_{\eta(t)}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X, \mathbb{P}_{Kx}^{\circ})$.

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi \circ \eta(t)}}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

$$= \bigoplus_{s \to \infty} e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

$$= \bigoplus_{s \to \infty} e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi}(t)} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta}(t)}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi \circ \eta(t)}}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

$$= \varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} \mathrm{d}u > t\}$$

$$= \varphi \circ \eta(t) = \varphi \circ \eta(t) =$$

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi \circ \eta)(t)}{\mathrm{d}t} = \left. \frac{\mathrm{d}\varphi(s)}{\mathrm{d}s} \right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha \xi_{\varphi} \circ \eta(t)}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha\xi_u} du > t\}$$

$$(12)$$

We give a proof, different to the original proof of Bogdan and Żak (2010).

• Recall that $X_t = e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)}$, where

$$\int_0^{\varphi(t)} \mathrm{e}^{\alpha \xi_u} \, \mathrm{d}u = t, \qquad t \ge 0.$$

Note also that, as an inverse,

$$\int_0^{\eta(t)} |X_u|^{-2\alpha} \mathrm{d}u = t, \qquad t \ge 0.$$

Differentiating,

$$\frac{\mathrm{d}\varphi(t)}{\mathrm{d}t} = \mathrm{e}^{-\alpha\xi_{\varphi(t)}} \text{ and } \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{2\alpha\xi_{\varphi\circ\eta(t)}}, \qquad \eta(t) < \tau^{\{0\}}.$$

and chain rule now tells us that

$$\frac{\mathrm{d}(\varphi\circ\eta)(t)}{\mathrm{d}t} = \left.\frac{\mathrm{d}\varphi(s)}{\mathrm{d}s}\right|_{s=\eta(t)} \frac{\mathrm{d}\eta(t)}{\mathrm{d}t} = \mathrm{e}^{\alpha\xi_{\varphi\circ\eta(t)}}.$$

Said another way,

$$\int_0^{\varphi \circ \eta(t)} \mathrm{e}^{-\alpha \xi_u} \mathrm{d}u = t, \qquad t \ge 0,$$

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}$$

Next note that

$$KX_{\eta(t)} = \mathrm{e}^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}$$

- ▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$
- ▶ We have also seen that $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

90/125

• The statement of the theorem follows.

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}.$$

- ▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$
- ▶ We have also seen that $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

90/125

• The statement of the theorem follows.

Proof of Riesz–Bogdan– \dot{Z} ak transform

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} du > t\}$$

- ▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$
- ▶ We have also seen that $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

90/125

▶ The statement of the theorem follows.
PROOF OF RIESZ–BOGDAN–ŻAK TRANSFORM

Next note that

$$KX_{\eta(t)} = e^{-\xi_{\varphi \circ \eta(t)}} \Theta_{\varphi \circ \eta(t)}, \qquad t \ge 0,$$

and we have just shown that

$$\varphi \circ \eta(t) = \inf\{s > 0 : \int_0^s e^{-\alpha \xi_u} \mathrm{d}u > t\}$$

- ▶ It follows that $(KX_{\eta(t)}, t \ge 0)$ is a self-similar Markov process with underlying MAP $(-\xi, \Theta)$
- ▶ We have also seen that $(X, \mathbb{P}^{\circ}_{x}), x \neq 0$, is also a self-similar Markov process with underlying MAP given by $(-\xi, \Theta)$.

90/125

(日)

The statement of the theorem follows.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§10. Hitting spheres

Recall that a stable process cannot hit points

- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere $S_{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}$.
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (19) *If* $\alpha \in (1, 2)$ *, then*

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} 2F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \le |x|. \end{cases} \end{split}$$

Otherwise, if $\alpha \in (0,1]$ *, then* $\mathbb{P}_x(\tau^{\odot} = \infty) = 1$ *for all* $x \in \mathbb{R}^d$ *.*

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere $\mathbb{S}_{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}.$

Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (1969)) *If* $\alpha \in (1, 2)$ *, then*

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} 2F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \le |x|. \end{cases} \end{split}$$

Otherwise, if $\alpha \in (0,1]$ *, then* $\mathbb{P}_x(\tau^{\odot} = \infty) = 1$ *for all* $x \in \mathbb{R}^d$ *.*

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere $\mathbb{S}_{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}.$
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

heorem (Port (1969)) $f\alpha \in (1,2), then$ $\mathbb{P}_{x}(\tau^{\odot} < \infty)$ $= \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} 2F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \le |x|. \end{cases}$

Otherwise, if $lpha\in(0,1]$, then $\mathbb{P}_x(au^\odot=\infty)=1$ for all $x\in\mathbb{R}^d$.

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere $\mathbb{S}_{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}.$
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (1969))

If $\alpha \in (1, 2)$, then

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \left\{ \begin{array}{cc} {}_{2}F_{1}((d-\alpha)/2,1-\alpha/2,d/2;|x|^{2}) & 1 > |x| \\ \\ {}_{|x|^{\alpha-d}{}_{2}}F_{1}((d-\alpha)/2,1-\alpha/2,d/2;1/|x|^{2}) & 1 \leq |x|. \end{split} \right. \end{split}$$

Otherwise, if $\alpha \in (0, 1]$ *, then* $\mathbb{P}_x(\tau^{\odot} = \infty) = 1$ *for all* $x \in \mathbb{R}^d$ *.*

- Recall that a stable process cannot hit points
- ▶ We are ultimately interested in the distribution of the position of *X* on first hitting of the sphere $\mathbb{S}_{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}.$
- Define

$$\tau^{\odot} = \inf\{t > 0 : |X_t| = 1\}.$$

We start with an easier result

Theorem (Port (1969)) If $\alpha \in (1, 2)$, then $\mathbb{P}_{x}(\tau^{\odot} < \infty)$ $= \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} \begin{cases} 2F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; |x|^{2}) & 1 > |x| \\ |x|^{\alpha-d} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; 1/|x|^{2}) & 1 \le |x|. \end{cases}$

Otherwise, if $\alpha \in (0, 1]$, then $\mathbb{P}_x(\tau^{\odot} = \infty) = 1$ for all $x \in \mathbb{R}^d$.

92/125

• If (ξ, Θ) is the underlying MAP then

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \mathbf{P}_{\log |x|}(\tau^{\{0\}} < \infty) = \mathbf{P}_{0}(\tau^{\{\log(1/|x|)\}} < \infty),$$

where $\tau^{\{z\}} = \inf\{t > 0 : \xi_t = z\}, z \in \mathbb{R}$. (Note, the time change in the Lamperti–Kiu representation does not level out.)

▶ Using Sterling's formula, we have, $|\Gamma(x + iy)| = \sqrt{2\pi}e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1 + o(1))$, for $x, y \in \mathbb{R}$, as $y \to \infty$, uniformly in any finite interval $-\infty < a \le x \le b < \infty$. Hence,

$$\frac{1}{\Psi(z)} = \frac{\Gamma(-\frac{1}{2}iz)}{\Gamma(\frac{1}{2}(-iz+\alpha))} \frac{\Gamma(\frac{1}{2}(iz+d-\alpha))}{\Gamma(\frac{1}{2}(iz+d))} \sim |z|^{-\alpha}$$

93/125

(日)

uniformly on \mathbb{R} as $|z| \to \infty$.

From Kesten-Brestagnolle integral test we conclude that $(1 + \Psi(z))^{-1}$ is integrable and each sphere \mathbb{S}_{d-1} can be reached with positive probability from any *x* with $|x| \neq 1$ if and only if $\alpha \in (1, 2)$.

• If (ξ, Θ) is the underlying MAP then

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \mathbf{P}_{\log |x|}(\tau^{\{0\}} < \infty) = \mathbf{P}_{0}(\tau^{\{\log(1/|x|)\}} < \infty),$$

where $\tau^{\{z\}} = \inf\{t > 0 : \xi_t = z\}, z \in \mathbb{R}$. (Note, the time change in the Lamperti–Kiu representation does not level out.)

► Using Sterling's formula, we have, $|\Gamma(x + iy)| = \sqrt{2\pi}e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1 + o(1))$, for $x, y \in \mathbb{R}$, as $y \to \infty$, uniformly in any finite interval $-\infty < a \le x \le b < \infty$. Hence,

$$\frac{1}{\Psi(z)} = \frac{\Gamma(-\frac{1}{2}iz)}{\Gamma(\frac{1}{2}(-iz+\alpha))} \frac{\Gamma(\frac{1}{2}(iz+d-\alpha))}{\Gamma(\frac{1}{2}(iz+d))} \sim |z|^{-\alpha}$$

93/125

uniformly on \mathbb{R} as $|z| \to \infty$.

From Kesten-Brestagnolle integral test we conclude that $(1 + \Psi(z))^{-1}$ is integrable and each sphere \mathbb{S}_{d-1} can be reached with positive probability from any *x* with $|x| \neq 1$ if and only if $\alpha \in (1, 2)$.

• If (ξ, Θ) is the underlying MAP then

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \mathbf{P}_{\log |x|}(\tau^{\{0\}} < \infty) = \mathbf{P}_{0}(\tau^{\{\log(1/|x|)\}} < \infty),$$

where $\tau^{\{z\}} = \inf\{t > 0 : \xi_t = z\}, z \in \mathbb{R}$. (Note, the time change in the Lamperti–Kiu representation does not level out.)

► Using Sterling's formula, we have, $|\Gamma(x + iy)| = \sqrt{2\pi}e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}}(1 + o(1))$, for $x, y \in \mathbb{R}$, as $y \to \infty$, uniformly in any finite interval $-\infty < a \le x \le b < \infty$. Hence,

$$\frac{1}{\Psi(z)} = \frac{\Gamma(-\frac{1}{2}iz)}{\Gamma(\frac{1}{2}(-iz+\alpha))} \frac{\Gamma(\frac{1}{2}(iz+d-\alpha))}{\Gamma(\frac{1}{2}(iz+d))} \sim |z|^{-\alpha}$$

uniformly on \mathbb{R} as $|z| \to \infty$.

► From Kesten-Brestagnolle integral test we conclude that $(1 + \Psi(z))^{-1}$ is integrable and each sphere \mathbb{S}_{d-1} can be reached with positive probability from any *x* with $|x| \neq 1$ if and only if $\alpha \in (1, 2)$.

93/125

Note that

$$\frac{\Gamma(\frac{1}{2}(-\mathrm{i}z+\alpha))}{\Gamma(-\frac{1}{2}\mathrm{i}z)}\frac{\Gamma(\frac{1}{2}(\mathrm{i}z+d))}{\Gamma(\frac{1}{2}(\mathrm{i}z+d-\alpha))}$$

so that $\Psi(-iz)$, is well defined for $\operatorname{Re}(z) \in (-d, \alpha)$ with roots at 0 and $\alpha - d$.

We can use the identity

$$\mathbb{P}_x(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)},$$

providing

$$u_{\xi}(x) = rac{1}{2\pi \mathrm{i}} \int_{c+\mathrm{i}\mathbb{R}} rac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z, \qquad x \in \mathbb{R},$$

for $c \in (\alpha - d, 0)$.

▶ Build the contour integral around simple poles at $\{-2n - (d - \alpha) : n \ge 0\}$.

Note that

$$\frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+d))}{\Gamma(\frac{1}{2}(iz+d-\alpha))}$$

so that Ψ(-iz), is well defined for Re(z) ∈ (-d, α) with roots at 0 and α − d.
We can use the identity

$$\mathbb{P}_x(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)},$$

providing

$$u_{\xi}(x) = rac{1}{2\pi \mathrm{i}} \int_{c+\mathrm{i}\mathbb{R}} rac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z, \qquad x \in \mathbb{R},$$

for $c \in (\alpha - d, 0)$.

▶ Build the contour integral around simple poles at $\{-2n - (d - \alpha) : n \ge 0\}$.

$$\begin{aligned} &\frac{1}{2\pi i} \int_{c-iR}^{c+iR} \frac{e^{-zx}}{\Psi(-iz)} dz \\ &= -\frac{1}{2\pi i} \int_{c+Re^{i\theta}:\theta \in (\pi/2, 3\pi/2)} \frac{e^{-zx}}{\Psi(-iz)} dz \\ &+ \sum_{1 \le n \le \lfloor R \rfloor} \operatorname{Res} \left(\frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d-\alpha) \right) \end{aligned}$$

Note that

$$\frac{\Gamma(\frac{1}{2}(-iz+\alpha))}{\Gamma(-\frac{1}{2}iz)} \frac{\Gamma(\frac{1}{2}(iz+d))}{\Gamma(\frac{1}{2}(iz+d-\alpha))}$$

so that $\Psi(-iz)$, is well defined for $\operatorname{Re}(z) \in (-d, \alpha)$ with roots at 0 and $\alpha - d$. • We can use the identity

$$\mathbb{P}_x(\tau^{\odot} < \infty) = \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)},$$

providing

$$u_{\xi}(x) = rac{1}{2\pi \mathrm{i}} \int_{c+\mathrm{i}\mathbb{R}} rac{\mathrm{e}^{-zx}}{\Psi(-\mathrm{i}z)} \mathrm{d}z, \qquad x \in \mathbb{R},$$

for $c \in (\alpha - d, 0)$.

▶ Build the contour integral around simple poles at $\{-2n - (d - \alpha) : n \ge 0\}$.

94/125

▶ Now fix $x \le 0$ and recall estimate $|1/\Psi(-iz)| \lesssim |z|^{-\alpha}$. The assumption $x \le 0$ and the fact that the arc length of $\{c + Re^{i\theta} : \theta \in (\pi/2, 3\pi/2)\}$ is πR , gives us

$$\left| \int_{c+Re^{i\theta}:\theta\in(\pi/2,3\pi/2)} \frac{e^{-xz}}{\Psi(-iz)} dz \right| \le CR^{-(\alpha-1)} \to 0$$

as $R \to \infty$ for some constant C > 0.

Moreover

$$u_{\xi}(x) = \sum_{n \ge 1} \operatorname{Res} \left(\frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d - \alpha) \right)$$

= $\sum_{0}^{\infty} (-1)^{n+1} \frac{\Gamma(n + (d - \alpha)/2)}{\Gamma(-n + \alpha/2)\Gamma(n + d/2)} \frac{e^{2nx}}{n!}$
= $e^{x(d-\alpha)} \frac{\Gamma((d - \alpha)/2)}{\Gamma(\alpha/2)\Gamma(d/2)} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; e^{2x}).$

Which also gives a value for $u_{\xi}(0)$.

• Hence, for $1 \le |x|$,

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) &= \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)} \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{-2}). \end{split}$$

▶ Now fix $x \le 0$ and recall estimate $|1/\Psi(-iz)| \lesssim |z|^{-\alpha}$. The assumption $x \le 0$ and the fact that the arc length of $\{c + Re^{i\theta} : \theta \in (\pi/2, 3\pi/2)\}$ is πR , gives us

$$\left| \int_{c+Re^{i\theta}:\theta\in(\pi/2,3\pi/2)} \frac{e^{-xz}}{\Psi(-iz)} dz \right| \le CR^{-(\alpha-1)} \to 0$$

as $R \to \infty$ for some constant C > 0.

Moreover,

$$u_{\xi}(x) = \sum_{n \ge 1} \operatorname{Res} \left(\frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d - \alpha) \right)$$

= $\sum_{0}^{\infty} (-1)^{n+1} \frac{\Gamma(n + (d - \alpha)/2)}{\Gamma(-n + \alpha/2)\Gamma(n + d/2)} \frac{e^{2nx}}{n!}$
= $e^{x(d-\alpha)} \frac{\Gamma((d - \alpha)/2)}{\Gamma(\alpha/2)\Gamma(d/2)} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; e^{2x}).$

Which also gives a value for $u_{\xi}(0)$.

• Hence, for $1 \le |x|$

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) &= \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)} \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{-2}). \end{split}$$

▶ Now fix $x \le 0$ and recall estimate $|1/\Psi(-iz)| \lesssim |z|^{-\alpha}$. The assumption $x \le 0$ and the fact that the arc length of $\{c + Re^{i\theta} : \theta \in (\pi/2, 3\pi/2)\}$ is πR , gives us

$$\left| \int_{c+Re^{i\theta}:\theta\in(\pi/2,3\pi/2)} \frac{e^{-xz}}{\Psi(-iz)} dz \right| \le CR^{-(\alpha-1)} \to 0$$

as $R \to \infty$ for some constant C > 0.

Moreover,

$$u_{\xi}(x) = \sum_{n \ge 1} \operatorname{Res} \left(\frac{e^{-zx}}{\Psi(-iz)}; z = -2n - (d - \alpha) \right)$$

= $\sum_{0}^{\infty} (-1)^{n+1} \frac{\Gamma(n + (d - \alpha)/2)}{\Gamma(-n + \alpha/2)\Gamma(n + d/2)} \frac{e^{2nx}}{n!}$
= $e^{x(d-\alpha)} \frac{\Gamma((d - \alpha)/2)}{\Gamma(\alpha/2)\Gamma(d/2)} {}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; e^{2x}).$

Which also gives a value for $u_{\xi}(0)$.

• Hence, for $1 \le |x|$,

$$\begin{split} \mathbb{P}_{x}(\tau^{\odot} < \infty) &= \frac{u_{\xi}(\log(1/|x|))}{u_{\xi}(0)} \\ &= \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} |x|^{\alpha-d} {}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{-2}). \end{split}$$

- ► To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform to help us.</p>
- To this end we note that, for |x| < 1, |Kx| > 1

$$\mathbb{P}_{Kx}(\tau^{\odot} < \infty) = \mathbb{P}_{x}^{\circ}(\tau^{\odot} < \infty) = \mathbb{E}_{x}\left[\frac{|X_{\tau^{\odot}}|^{\alpha-d}}{|x|^{\alpha-d}}\mathbf{1}_{(\tau^{\odot} < \infty)}\right] = \frac{1}{|x|^{\alpha-d}}\mathbb{P}_{x}(\tau^{\odot} < \infty)$$

• Hence plugging in the expression for |x| < 1,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)}{}_{2}F_{1}((d - \alpha)/2, 1 - \alpha/2, d/2; |x|^{2})$$

96/125

thus completing the proof.

▶ To deal with the case x = 0, take limits in the established identity as $|x| \rightarrow 0$.

- ▶ To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform to help us.</p>
- To this end we note that, for |x| < 1, |Kx| > 1

$$\mathbb{P}_{Kx}(\tau^{\odot} < \infty) = \mathbb{P}_{x}^{\circ}(\tau^{\odot} < \infty) = \mathbb{E}_{x}\left[\frac{|X_{\tau^{\odot}}|^{\alpha-d}}{|x|^{\alpha-d}}\mathbf{1}_{(\tau^{\odot} < \infty)}\right] = \frac{1}{|x|^{\alpha-d}}\mathbb{P}_{x}(\tau^{\odot} < \infty)$$

• Hence plugging in the expression for |x| < 1,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{}_{2}F_{1}((d-\alpha)/2, 1-\alpha/2, d/2; |x|^{2}),$$

96/125

thus completing the proof.

▶ To deal with the case x = 0, take limits in the established identity as $|x| \rightarrow 0$.

- ▶ To deal with the case |x| < 1, we can appeal to the Riesz–Bogdan–Żak transform to help us.</p>
- To this end we note that, for |x| < 1, |Kx| > 1

$$\mathbb{P}_{Kx}(\tau^{\odot} < \infty) = \mathbb{P}_{x}^{\circ}(\tau^{\odot} < \infty) = \mathbb{E}_{x}\left[\frac{|X_{\tau^{\odot}}|^{\alpha-d}}{|x|^{\alpha-d}}\mathbf{1}_{(\tau^{\odot} < \infty)}\right] = \frac{1}{|x|^{\alpha-d}}\mathbb{P}_{x}(\tau^{\odot} < \infty)$$

• Hence plugging in the expression for |x| < 1,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)} {}_{2}F_{1}((d-\alpha)/2, 1 - \alpha/2, d/2; |x|^{2})$$

96/125

イロン 不聞と 不良と 不良とう 間

thus completing the proof.

▶ To deal with the case x = 0, take limits in the established identity as $|x| \rightarrow 0$.

Theorem

Suppose $\alpha \in (1, 2)$. For all $x \in \mathbb{R}^d$,

$$\mathbb{P}_{x}(\tau^{\odot} < \infty) = \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \int_{\mathbb{S}_{d-1}} |z-x|^{\alpha-d} \sigma_{1}(\mathrm{d}z),$$

where $\sigma_1(dz)$ is the uniform measure on \mathbb{S}_{d-1} , normalised to have unit mass. In particular, for $y \in \mathbb{S}_{d-1}$,

$$\int_{\mathbb{S}_{d-1}} |z-y|^{\alpha-d} \sigma_1(\mathrm{d} z) = \frac{\Gamma\left(\frac{d}{2}\right) \Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right) \Gamma\left(\frac{\alpha}{2}\right)}$$

97/125 《 ㅁ › 《 쿱 › 《 클 › 《 클 › 》 章 · ') 익 (~

SI. 32. 30. 31. 30. 30. 37. 30. 37. 30. 31. 312. 315. Re	§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	Referen
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	---------

- We know that $|X_t z|^{\alpha d}$, $t \ge 0$ is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_{d-1}} |z - X_{t \wedge \tau \odot}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

• Recall that $\lim_{t\to\infty} |X_t| = 0$ and $\alpha < d$ and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_{d-1}} |z - X_{\tau \odot}|^{\alpha - d} \sigma_1(\mathrm{d}z) \mathbf{1}_{(\tau \odot < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau \odot < \infty)}.$$

where, despite the randomness in $X_{ au\odot}$, by rotational symmetry,

$$C = \int_{\mathbb{S}_{d-1}} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d}z),$$

and $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$ is the 'North Pole' on \mathbb{S}_{d-1} .

▶ Since *M* is a UI martingale, taking expectations of *M*_∞

$$\int_{\mathbb{S}_{d-1}} |z-x|^{\alpha-d} \sigma_1(dz) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as
$$|x| \to 0$$
,
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.
 $(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

- We know that $|X_t z|^{\alpha d}$, $t \ge 0$ is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_{d-1}} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

• Recall that $\lim_{t\to\infty} |X_t| = 0$ and $\alpha < d$ and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_{d-1}} |z - X_{\tau \odot}|^{\alpha - d} \sigma_1(\mathrm{d} z) \mathbf{1}_{(\tau \odot < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau \odot < \infty)}.$$

where, despite the randomness in $X_{ au\odot}$, by rotational symmetry,

$$C = \int_{\mathbb{S}_{d-1}} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d}z),$$

and $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$ is the 'North Pole' on \mathbb{S}_{d-1} .

► Since *M* is a UI martingale, taking expectations of M_∞

$$\int_{\mathbb{S}_{d-1}} |z - x|^{\alpha - d} \sigma_1(dz) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as
$$|x| \to 0$$
,
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.
 $(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

- We know that $|X_t z|^{\alpha d}$, $t \ge 0$ is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_{d-1}} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

▶ Recall that $\lim_{t\to\infty} |X_t| = 0$ and $\alpha < d$ and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_{d-1}} |z - X_{\tau \odot}|^{\alpha - d} \sigma_1(dz) \mathbf{1}_{(\tau \odot < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau \odot < \infty)}.$$

where, despite the randomness in $X_{\tau^{\odot}}$, by rotational symmetry,

$$C = \int_{\mathbb{S}_{d-1}} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$ is the 'North Pole' on \mathbb{S}_{d-1} .

Since *M* is a UI martingale, taking expectations of M_∞

$$\int_{\mathbb{S}_{d-1}} |z-x|^{\alpha-d} \sigma_1(\mathrm{d} z) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as
$$|x| \to 0$$
,
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.
 $(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.

§1. §2. §3. §4. §5. §6. §7. §8. §9.	§10.	§11.	§12.	§13.	References
-------------------------------------	------	------	------	------	------------

- We know that $|X_t z|^{\alpha d}$, $t \ge 0$ is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_{d-1}} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

▶ Recall that $\lim_{t\to\infty} |X_t| = 0$ and $\alpha < d$ and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_{d-1}} |z - X_{\tau \odot}|^{\alpha - d} \sigma_1(dz) \mathbf{1}_{(\tau \odot < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau \odot < \infty)}.$$

where, despite the randomness in $X_{\tau^{\odot}}$, by rotational symmetry,

$$C = \int_{\mathbb{S}_{d-1}} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$ is the 'North Pole' on \mathbb{S}_{d-1} .

▶ Since *M* is a UI martingale, taking expectations of M_∞

$$\int_{\mathbb{S}_{d-1}} |z-x|^{\alpha-d} \sigma_1(\mathrm{d} z) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as $|x| \to 0$, $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$. $(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

- We know that $|X_t z|^{\alpha d}$, $t \ge 0$ is a martingale.
- Hence we know that

$$M_t := \int_{\mathbb{S}_{d-1}} |z - X_{t \wedge \tau^{\odot}}|^{\alpha - d} \sigma_1(\mathrm{d} z), \qquad t \ge 0,$$

is a martingale.

▶ Recall that $\lim_{t\to\infty} |X_t| = 0$ and $\alpha < d$ and hence

$$M_{\infty} := \lim_{t \to \infty} M_t = \int_{\mathbb{S}_{d-1}} |z - X_{\tau \odot}|^{\alpha - d} \sigma_1(dz) \mathbf{1}_{(\tau \odot < \infty)} \stackrel{d}{=} C \mathbf{1}_{(\tau \odot < \infty)}.$$

where, despite the randomness in $X_{\tau^{\odot}}$, by rotational symmetry,

$$C = \int_{\mathbb{S}_{d-1}} |z - 1|^{\alpha - d} \sigma_1(\mathrm{d} z),$$

and $1 = (1, 0, \dots, 0) \in \mathbb{R}^d$ is the 'North Pole' on \mathbb{S}_{d-1} .

▶ Since *M* is a UI martingale, taking expectations of M_∞

$$\int_{\mathbb{S}_{d-1}} |z - x|^{\alpha - d} \sigma_1(\mathrm{d}z) = \mathbb{E}_x[M_0] = \mathbb{E}_x[M_\infty] = C\mathbb{P}_x(\tau^{\odot} < \infty)$$

► Taking limits as
$$|x| \to 0$$
,
 $C = 1/\mathbb{P}(\tau^{\odot} < \infty) = \Gamma\left(\frac{d}{2}\right)\Gamma(\alpha - 1)/\Gamma\left(\frac{\alpha + d}{2} - 1\right)\Gamma\left(\frac{\alpha}{2}\right)$.
(98/12)

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

Sphere inversions

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

SPHERE INVERSIONS

- Fix a point $b \in \mathbb{R}^d$ and a value r > 0.
- The spatial transformation $x^* : \mathbb{R}^d \setminus \{b\} \mapsto \mathbb{R}^d \setminus \{b\}$

$$x^* = b + \frac{r^2}{|x-b|^2}(x-b),$$

is called an *inversion through the sphere* $\mathbb{S}_{d-1}(b, r) := \{x \in \mathbb{R}^d : |x - b| = r\}.$

Figure: Inversion relative to the sphere $\mathbb{S}_{d-1}(b, r)$.

100/125

(日)(御)(王)(王)(王)

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

INVERSION THROUGH $\mathbb{S}_{d-1}(b, r)$: Key properties

Inversion through $\mathbb{S}_{d-1}(b, r)$

$$x^* = b + \frac{r^2}{|x-b|^2}(x-b),$$

The following can be deduced by straightforward algebra

Self inverse

$$x = b + r^2 \frac{(x^* - b)}{|x^* - b|^2}$$

Symmetry

$$r^2 = |x^* - b||x - b|$$

Difference

$$|x^* - y^*| = \frac{r^2 |x - y|}{|x - b||y - b|}$$

Differential

$$\mathrm{d}x^* = \frac{r^{2d}}{|x-b|^{2d}}\mathrm{d}x$$

101/125

イロト イポト イヨト イヨト 三ヨー のへの

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

INVERSION THROUGH $\mathbb{S}_{d-1}(b, r)$: KEY PROPERTIES

▶ The sphere $\mathbb{S}_{d-1}(c, R)$ maps to itself under inversion through $\mathbb{S}_{d-1}(b, r)$ provided the former is orthogonal to the latter, which is equivalent to $r^2 + R^2 = |c - b|^2$.

In particular, the area contained in the blue segment is mapped to the area in the red segment and vice versa.

- コン・4日ン・4日ン・4日ン・4日ン

SPHERE INVERSION WITH REFLECTION

A variant of the sphere inversion transform takes the form

$$x^{\diamond} = b - \frac{r^2}{|x-b|^2}(x-b),$$

and has properties

Self inverse

$$x = b - \frac{r^2}{|x^\diamond - b|^2} (x^\diamond - b),$$

Symmetry

$$r^2 = |x^\diamond - b||x - b|,$$

Difference

$$|x^{\diamond} - y^{\diamond}| = \frac{r^2 |x - y|}{|x - b||y - b|}.$$

Differential

$$\mathrm{d}x^\diamond = \frac{r^{2d}}{|x-b|^{2d}}\mathrm{d}x$$

103/125

イロト イロト イモト イモト 一日

SPHERE INVERSION WITH REFLECTION

Fix $b \in \mathbb{R}^d$ and r > 0. The sphere $\mathbb{S}_{d-1}(c, R)$ maps to itself through $\mathbb{S}_{d-1}(b, r)$ providing $|c - b|^2 + r^2 = R^2$.

▶ However, this time, the exterior of the sphere $S_{d-1}(c, R)$ maps to the interior of the sphere $S_{d-1}(c, R)$ and vice versa. For example, the region in the exterior of $S_{d-1}(c, R)$ contained by blue boundary maps to the portion of the interior of $S_{d-1}(c, R)$ contained by the red boundary.

104/125

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§11. Spherical hitting distribution

PORT'S SPHERE HITTING DISTRIBUTION

A richer version of the previous theorem:

Theorem (Port (1969))

Define the function

$$h^{\odot}(x,y) = \frac{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)} \frac{||x|^2-1|^{\alpha-1}}{|x-y|^{\alpha+d-2}}$$

for $|x| \neq 1$, |y| = 1. Then, if $\alpha \in (1, 2)$,

$$\mathbb{P}_{x}(X_{\tau^{\odot}} \in dy) = h^{\odot}(x, y)\sigma_{1}(dy)\mathbf{1}_{(|x|\neq 1)} + \delta_{x}(dy)\mathbf{1}_{(|x|=1)}, \qquad |y| = 1$$

where $\sigma_1(dy)$ is the surface measure on \mathbb{S}_{d-1} , normalised to have unit total mass.

Otherwise, if $\alpha \in (0, 1]$, $\mathbb{P}_x(\tau^{\odot} = \infty) = 1$, for all $|x| \neq 1$.

PROOF OF PORT'S SPHERE HITTING DISTRIBUTION

• Write $\mu_x^{\odot}(dz) = \mathbb{P}_x(X_{\tau^{\odot}} \in dz)$ on \mathbb{S}_{d-1} where $x \in \mathbb{R}^d \setminus \mathbb{S}_{d-1}$.

Recall the expression for the resolvent of the stable process in Theorem 17 which states that, due to transience,

$$\int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d}y)\mathrm{d}t = C(\alpha)|x-y|^{\alpha-d}\mathrm{d}y, \qquad x, y \in \mathbb{R}^d,$$

where $C(\alpha)$ is an unimportant constant in the following discussion.

• The measure μ_x^{\odot} is the solution to the 'functional fixed point equation'

$$|x-y|^{\alpha-d} = \int_{\mathbb{S}_{d-1}} |z-y|^{\alpha-d} \mu(\mathrm{d} z), \qquad y \in \mathbb{S}_{d-1}.$$

Note that $y \in S_{d-1}$, so the occupation of y from x, will at least see the the process pass through the sphere S_{d-1} somewhere first (if not y).

With a little work, we can show it is the unique solution in the class of probability measures.

PROOF OF PORT'S SPHERE HITTING DISTRIBUTION

- ▶ Write $\mu_x^{\odot}(dz) = \mathbb{P}_x(X_{\tau^{\odot}} \in dz)$ on \mathbb{S}_{d-1} where $x \in \mathbb{R}^d \setminus \mathbb{S}_{d-1}$.
- Recall the expression for the resolvent of the stable process in Theorem 17 which states that, due to transience,

$$\int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d}y)\mathrm{d}t = C(\alpha)|x-y|^{\alpha-d}\mathrm{d}y, \qquad x,y \in \mathbb{R}^d,$$

where $C(\alpha)$ is an unimportant constant in the following discussion.

• The measure μ_x^{\odot} is the solution to the 'functional fixed point equation'

$$|x-y|^{\alpha-d} = \int_{\mathbb{S}_{d-1}} |z-y|^{\alpha-d} \mu(\mathrm{d} z), \qquad y \in \mathbb{S}_{d-1}.$$

Note that $y \in S_{d-1}$, so the occupation of *y* from *x*, will at least see the process pass through the sphere S_{d-1} somewhere first (if not *y*).

With a little work, we can show it is the unique solution in the class of probability measures.

(日)

PROOF OF PORT'S SPHERE HITTING DISTRIBUTION

- ▶ Write $\mu_x^{\odot}(dz) = \mathbb{P}_x(X_{\tau^{\odot}} \in dz)$ on \mathbb{S}_{d-1} where $x \in \mathbb{R}^d \setminus \mathbb{S}_{d-1}$.
- Recall the expression for the resolvent of the stable process in Theorem 17 which states that, due to transience,

$$\int_0^\infty \mathbb{P}_x(X_t \in \mathrm{d}y)\mathrm{d}t = C(\alpha)|x-y|^{\alpha-d}\mathrm{d}y, \qquad x,y \in \mathbb{R}^d,$$

where $C(\alpha)$ is an unimportant constant in the following discussion.

▶ The measure μ_x^{\odot} is the solution to the 'functional fixed point equation'

$$|x-y|^{\alpha-d} = \int_{\mathbb{S}_{d-1}} |z-y|^{\alpha-d} \mu(\mathrm{d} z), \qquad y \in \mathbb{S}_{d-1}.$$

Note that $y \in \mathbb{S}_{d-1}$, so the occupation of *y* from *x*, will at least see the the process pass through the sphere \mathbb{S}_{d-1} somewhere first (if not *y*).

 With a little work, we can show it is the unique solution in the class of probability measures.

- コン・4回シュ ヨシュ ヨン・9 くの
| §1. §2. §3. §4. §5. §6. §7. §8. §9. §10. | 0. | §9. § | §11. | §12. | §13. | References |
|--|----|-------|------|------|------|------------|
|--|----|-------|------|------|------|------------|

PROOF OF PORT'S SPHERE HITTING DISTRIBUTION

Recall, for $y^* \in S_{d-1}$, from the Riesz representation of the sphere hitting probability,

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_{d-1}} |z^* - y^*|^{\alpha-d} \sigma_1(\mathrm{d} z^*).$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation **first assuming that** |x| > 1

Apply the sphere inversion with respect to the sphere $S_{d-1}(x, (|x|^2 - 1)^{1/2})$ remembering that this transformation maps S_{d-1} to itself and using

$$\frac{1}{|z^* - x|^{d-1}}\sigma_1(\mathrm{d}z^*) = \frac{1}{|z - x|^{d-1}}\sigma_1(\mathrm{d}z)$$
$$(|x|^2 - 1) = |z^* - x||z - x| \quad \text{and} \quad |z^* - y^*| = \frac{(|x|^2 - 1)|z - y|}{|z - x||y - x|}$$

We have

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_{d-1}} |z^*-x|^{d-1}|z^*-y^*|^{\alpha-d} \frac{\sigma_1(\mathrm{d}z^*)}{|z^*-x|^{d-1}}$$
$$= \frac{(|x|^2-1)^{\alpha-1}}{|y-x|^{\alpha-d}} \int_{\mathbb{S}_{d-1}} \frac{|z-y|^{\alpha-d}}{|z-x|^{\alpha+d-2}} \sigma_1(\mathrm{d}z).$$

▶ For the case |x| < 1, use Riesz–Bogdan–Żak theorem again!

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10.	0.	§9. §	§11.	§12.	§13.	References
--	----	-------	------	------	------	------------

PROOF OF PORT'S SPHERE HITTING DISTRIBUTION

Recall, for $y^* \in \mathbb{S}_{d-1}$, from the Riesz representation of the sphere hitting probability,

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_{d-1}} |z^* - y^*|^{\alpha-d} \sigma_1(\mathrm{d} z^*).$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation first assuming that |x| > 1

• Apply the sphere inversion with respect to the sphere $\mathbb{S}_{d-1}(x, (|x|^2 - 1)^{1/2})$ remembering that this transformation maps \mathbb{S}_{d-1} to itself and using

$$\frac{1}{|z^* - x|^{d-1}}\sigma_1(dz^*) = \frac{1}{|z - x|^{d-1}}\sigma_1(dz)$$
$$(|x|^2 - 1) = |z^* - x||z - x| \quad \text{and} \quad |z^* - y^*| = \frac{(|x|^2 - 1)|z - y|}{|z - x||y - x|}$$

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_{d-1}} |z^*-x|^{d-1}|z^*-y^*|^{\alpha-d} \frac{\sigma_1(\mathrm{d}z^*)}{|z^*-x|^{d-1}}$$
$$= \frac{(|x|^2-1)^{\alpha-1}}{|y-x|^{\alpha-d}} \int_{\mathbb{S}_{d-1}} \frac{|z-y|^{\alpha-d}}{|z-x|^{\alpha+d-2}} \sigma_1(\mathrm{d}z).$$

► For the case |x| < 1, use Riesz–Bogdan–Żak theorem again! $(\square) + \square + \square + \square + \square = 0$ (\bigcirc)

§1. §2. §3. §4. §5. §6. §7. §8. §9. §10.	0.	§9. §	§11.	§12.	§13.	References
--	----	-------	------	------	------	------------

PROOF OF PORT'S SPHERE HITTING DISTRIBUTION

Recall, for $y^* \in \mathbb{S}_{d-1}$, from the Riesz representation of the sphere hitting probability,

$$\frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} = \int_{\mathbb{S}_{d-1}} |z^* - y^*|^{\alpha-d} \sigma_1(\mathrm{d} z^*).$$

we are going to manipulate this identity using sphere inversion to solve the fixed point equation first assuming that |x| > 1

• Apply the sphere inversion with respect to the sphere $\mathbb{S}_{d-1}(x, (|x|^2 - 1)^{1/2})$ remembering that this transformation maps \mathbb{S}_{d-1} to itself and using

$$\frac{1}{|z^* - x|^{d-1}}\sigma_1(dz^*) = \frac{1}{|z - x|^{d-1}}\sigma_1(dz)$$
$$(|x|^2 - 1) = |z^* - x||z - x| \quad \text{and} \quad |z^* - y^*| = \frac{(|x|^2 - 1)|z - y|}{|z - x||y - x|}$$

We have

$$\begin{aligned} \frac{\Gamma\left(\frac{d}{2}\right)\Gamma(\alpha-1)}{\Gamma\left(\frac{\alpha+d}{2}-1\right)\Gamma\left(\frac{\alpha}{2}\right)} &= \int_{\mathbb{S}_{d-1}} |z^*-x|^{d-1}|z^*-y^*|^{\alpha-d} \frac{\sigma_1(dz^*)}{|z^*-x|^{d-1}} \\ &= \frac{(|x|^2-1)^{\alpha-1}}{|y-x|^{\alpha-d}} \int_{\mathbb{S}_{d-1}} \frac{|z-y|^{\alpha-d}}{|z-x|^{\alpha+d-2}} \sigma_1(dz). \end{aligned}$$

► For the case |x| < 1, use Riesz–Bogdan–Żak theorem again!

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§12. Spherical entrance/exit distribution

BLUMENTHAL-GETOOR-RAY EXIT/ENTRANCE DISTRIBUTION

Theorem *Define the function*

$$g(x,y) = \pi^{-(d/2+1)} \Gamma(d/2) \sin(\pi\alpha/2) \frac{|1-|x|^2|^{\alpha/2}}{|1-|y|^2|^{\alpha/2}} |x-y|^{-d}$$

for $x, y \in \mathbb{R}^d \setminus \mathbb{S}_{d-1}$. Let $\tau^{\oplus} := \inf\{t > 0 : |X_t| < 1\}$ and $\tau_a^{\ominus} := \inf\{t > 0 : |X_t| > 1\}$. (i) Suppose that |x| < 1, then $\mathbb{P}_x(X_{\tau^{\ominus}} \in dy) = g(x, y)dy, \quad |y| \ge 1$. (ii) Suppose that |x| > 1, then $\mathbb{P}_x(X_{\tau^{\oplus}} \in dy, \tau^{\oplus} < \infty) = g(x, y)dy, \quad |y| \le 1$.

> 110/125 ロト < 置ト < ミト < ミト ミ の < で

 Appealing again to the potential density and the strong Markov property, it suffices to find a solution to

$$|x-y|^{\alpha-d} = \int_{|z|\ge 1} |z-y|^{\alpha-d} \mu(\mathrm{d}z), \qquad |y|> 1,$$

with a straightforward argument providing uniqueness.

The proof is complete as soon as we can verify that

$$|x-y|^{\alpha-d} = c_{\alpha,d} \int_{|z| \ge 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz$$

for |y| > 1 > |x|, where

$$c_{\alpha,d} = \pi^{-(1+d/2)} \Gamma(d/2) \sin(\pi \alpha/2).$$

 Appealing again to the potential density and the strong Markov property, it suffices to find a solution to

$$|x-y|^{\alpha-d} = \int_{|z|\ge 1} |z-y|^{\alpha-d} \mu(\mathrm{d}z), \qquad |y|> 1,$$

with a straightforward argument providing uniqueness.

The proof is complete as soon as we can verify that

$$|x-y|^{\alpha-d} = c_{\alpha,d} \int_{|z| \ge 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz$$

for |y| > 1 > |x|, where

$$c_{\alpha,d} = \pi^{-(1+d/2)} \Gamma(d/2) \sin(\pi \alpha/2).$$

▶ Transform $z \mapsto z^{\diamond}$ (sphere inversion with reflection) through the sphere $\mathbb{S}_{d-1}(x, (1-|x|^2)^{1/2})$, noting in particular that

$$|z^{\diamond} - y^{\diamond}| = (1 - |x|^2) \frac{|z - y|}{|z - x||y - x|}$$
 and $|z|^2 - 1 = \frac{|z - x|^2}{1 - |x|^2} (1 - |z^{\diamond}|^2)$

and

$$\mathrm{d} z^\diamond = (1-|x|^2)^d |z-x|^{-2d} \mathrm{d} z, \qquad z \in \mathbb{R}^d.$$

For
$$|x| < 1 < |y|$$
,
$$\int_{|z| \ge 1} |z - y|^{\alpha - d} \frac{|1 - |x|^2|^{\alpha/2}}{|1 - |z|^2|^{\alpha/2}} |x - z|^{-d} dz = |y - x|^{\alpha - d} \int_{|z^\diamond| \le 1} \frac{|z^\diamond - y^\diamond|^{\alpha - d}}{|1 - |z^\diamond|^2|^{\alpha/2}} dz^\diamond.$$

▶ Now perform similar transformation $z^{\diamond} \mapsto w$ (inversion with reflection), albeit through the sphere $S_{d-1}(y^{\diamond}, (1 - |y^{\diamond}|^2)^{1/2})$.

$$|y-x|^{\alpha-d} \int_{|z^{\diamond}| \le 1} \frac{|z^{\diamond} - y^{\diamond}|^{\alpha-d}}{|1-|z^{\diamond}|^{2}|^{\alpha/2}} \mathrm{d}z^{\diamond} = |y-x|^{\alpha-d} \int_{|w| \ge 1} \frac{|1-|y^{\diamond}|^{2}|^{\alpha/2}}{|1-|w|^{2}|^{\alpha/2}} |w-y^{\diamond}|^{-d} \mathrm{d}w.$$

▶ Transform $z \mapsto z^{\diamond}$ (sphere inversion with reflection) through the sphere $\mathbb{S}_{d-1}(x, (1-|x|^2)^{1/2})$, noting in particular that

$$|z^{\diamond} - y^{\diamond}| = (1 - |x|^2) \frac{|z - y|}{|z - x||y - x|}$$
 and $|z|^2 - 1 = \frac{|z - x|^2}{1 - |x|^2} (1 - |z^{\diamond}|^2)$

and

$$\mathrm{d} z^\diamond = (1-|x|^2)^d |z-x|^{-2d} \mathrm{d} z, \qquad z \in \mathbb{R}^d.$$

For
$$|x| < 1 < |y|$$
,
$$\int_{|z| \ge 1} |z - y|^{\alpha - d} \frac{|1 - |x|^2|^{\alpha/2}}{|1 - |z|^2|^{\alpha/2}} |x - z|^{-d} dz = |y - x|^{\alpha - d} \int_{|z^{\diamond}| \le 1} \frac{|z^{\diamond} - y^{\diamond}|^{\alpha - d}}{|1 - |z^{\diamond}|^2|^{\alpha/2}} dz^{\diamond}.$$

▶ Now perform similar transformation $z^{\diamond} \mapsto w$ (inversion with reflection), albeit through the sphere $S_{d-1}(y^{\diamond}, (1 - |y^{\diamond}|^2)^{1/2})$.

$$|y-x|^{\alpha-d} \int_{|z^{\circ}| \le 1} \frac{|z^{\circ} - y^{\circ}|^{\alpha-d}}{|1-|z^{\circ}|^{2}|^{\alpha/2}} \mathrm{d}z^{\circ} = |y-x|^{\alpha-d} \int_{|w| \ge 1} \frac{|1-|y^{\circ}|^{2}|^{\alpha/2}}{|1-|w|^{2}|^{\alpha/2}} |w-y^{\circ}|^{-d} \mathrm{d}w.$$

▶ Transform $z \mapsto z^{\diamond}$ (sphere inversion with reflection) through the sphere $\mathbb{S}_{d-1}(x, (1-|x|^2)^{1/2})$, noting in particular that

$$|z^{\diamond} - y^{\diamond}| = (1 - |x|^2) \frac{|z - y|}{|z - x||y - x|}$$
 and $|z|^2 - 1 = \frac{|z - x|^2}{1 - |x|^2} (1 - |z^{\diamond}|^2)$

and

$$\mathrm{d} z^\diamond = (1-|x|^2)^d |z-x|^{-2d} \mathrm{d} z, \qquad z \in \mathbb{R}^d.$$

• For
$$|x| < 1 < |y|$$
,

$$\int_{|z|\geq 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz = |y-x|^{\alpha-d} \int_{|z^\diamond|\leq 1} \frac{|z^\diamond - y^\diamond|^{\alpha-d}}{|1-|z^\diamond|^2|^{\alpha/2}} dz^\diamond.$$

▶ Now perform similar transformation $z^{\diamond} \mapsto w$ (inversion with reflection), albeit through the sphere $\mathbb{S}_{d-1}(y^{\diamond}, (1 - |y^{\diamond}|^2)^{1/2})$.

$$|y-x|^{\alpha-d} \int_{|z^{\diamond}| \le 1} \frac{|z^{\diamond} - y^{\diamond}|^{\alpha-d}}{|1-|z^{\diamond}|^{2}|^{\alpha/2}} \mathrm{d}z^{\diamond} = |y-x|^{\alpha-d} \int_{|w| \ge 1} \frac{|1-|y^{\diamond}|^{2}|^{\alpha/2}}{|1-|w|^{2}|^{\alpha/2}} |w-y^{\diamond}|^{-d} \mathrm{d}w.$$

112/125

PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I) Thus far:

$$\int_{|z|\geq 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz = |y-x|^{\alpha-d} \int_{|w|\geq 1} \frac{|1-|y^{\diamond}|^2|^{\alpha/2}}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} dw.$$

 Taking the integral in red and decomposition into generalised spherical polar coordinates

$$\int_{|v|\geq 1} \frac{1}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} \mathrm{d}w = \frac{2\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{r^{d-1}\mathrm{d}r}{|1-r^2|^{\alpha/2}} \int_{\mathbb{S}_{d-1}(0,r)} |z-y^{\diamond}|^{-d} \sigma_r(\mathrm{d}z)$$

▶ Poisson's formula (the probability that a Brownian motion hits a sphere of radius r > 0) states that

$$\int_{\mathbb{S}_{d-1}(0,r)} \frac{r^{d-2}(r^2 - |y^{\diamond}|^2)}{|z - y^{\diamond}|^d} \sigma_r(\mathrm{d}z) = 1, \qquad |y^{\diamond}| < 1 < r.$$

gives us

$$\begin{split} \int_{|v| \ge 1} \frac{1}{|1 - |w|^2 |^{\alpha/2}} |w - y^{\diamond}|^{-d} \mathrm{d}w &= \frac{\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{2r}{(r^2 - 1)^{\alpha/2} (r^2 - |y^{\diamond}|^2)} \mathrm{d}r \\ &= \frac{\pi}{\sin(\alpha \pi/2)} \frac{1}{(1 - |y^{\diamond}|^2)^{\alpha/2}} \end{split}$$

▶ Plugging everything back in gives the result for |x| < 1, |x| > 1, |x| > 1, |x| > 1, | PROOF OF B–G–R ENTRANCE/EXIT DISTRIBUTION (I) Thus far:

$$\int_{|z|\geq 1} |z-y|^{\alpha-d} \frac{|1-|x|^2|^{\alpha/2}}{|1-|z|^2|^{\alpha/2}} |x-z|^{-d} dz = |y-x|^{\alpha-d} \int_{|w|\geq 1} \frac{|1-|y^{\diamond}|^2|^{\alpha/2}}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} dw.$$

 Taking the integral in red and decomposition into generalised spherical polar coordinates

$$\int_{|v|\geq 1} \frac{1}{|1-|w|^2|^{\alpha/2}} |w-y^{\diamond}|^{-d} \mathrm{d}w = \frac{2\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{r^{d-1} \mathrm{d}r}{|1-r^2|^{\alpha/2}} \int_{\mathbb{S}_{d-1}(0,r)} |z-y^{\diamond}|^{-d} \sigma_r(\mathrm{d}z)$$

▶ Poisson's formula (the probability that a Brownian motion hits a sphere of radius r > 0) states that

$$\int_{\mathbb{S}_{d-1}(0,r)} \frac{r^{d-2}(r^2 - |y^{\diamond}|^2)}{|z - y^{\diamond}|^d} \sigma_r(dz) = 1, \qquad |y^{\diamond}| < 1 < r.$$

gives us

$$\begin{split} \int_{|v| \ge 1} \frac{1}{|1 - |w|^2 |^{\alpha/2}} |w - y^{\diamond}|^{-d} \mathrm{d}w &= \frac{\pi^{d/2}}{\Gamma(d/2)} \int_1^{\infty} \frac{2r}{(r^2 - 1)^{\alpha/2} (r^2 - |y^{\diamond}|^2)} \mathrm{d}r \\ &= \frac{\pi}{\sin(\alpha\pi/2)} \frac{1}{(1 - |y^{\diamond}|^2)^{\alpha/2}} \end{split}$$

▶ Plugging everything back in gives the result for |x| < 1.

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1) from the identity in (i) (i.e. |x| < 1).

Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

$$\mathbb{P}_{x}(X_{\tau\oplus} \in D) = \mathbb{P}^{\circ}_{Kx}(KX_{\tau\oplus} \in D),$$

where $Kx = x/|x|^2$, |Kx - Kz| = |x - z|/|x||z| and $KD = \{Kx : x \in D\}$.

Noting that $d(Kz) = |z|^{-2d} dz$, we have

$$\begin{split} \mathbb{P}_{x}(X_{\tau\oplus} \in D) \\ &= \int_{KD} \frac{|y|^{\alpha-d}}{|Kx|^{\alpha-d}} g(Kx,y) \mathrm{d}y \\ &= c_{\alpha,d} \int_{KD} |z|^{d-\alpha} |Kx|^{d-\alpha} \frac{|1-|Kx|^{2}|^{\alpha/2}}{|1-|y|^{2}|^{\alpha/2}} |Kx-y|^{-d} \mathrm{d}y \\ &= c_{\alpha,d} \int_{D} |z|^{2d} \frac{|1-|x|^{2}|^{\alpha/2}}{|1-|z|^{2}|^{\alpha/2}} |x-z|^{-d} \mathrm{d}(Kz) \\ &= c_{\alpha,d} \int_{D} \frac{|1-|x|^{2}|^{\alpha/2}}{|1-|z|^{2}|^{\alpha/2}} |x-z|^{-d} \mathrm{d}z \end{split}$$

114/125

・ロト・日本・モト・モー うん

The interesting part of the proof is the derivation of the the identity in (ii) (i.e. |x| > 1) from the identity in (i) (i.e. |x| < 1).

Start by noting from the Riesz–Bogdan–Żak transform that, for |x| > 1,

$$\mathbb{P}_{x}(X_{\tau\oplus} \in D) = \mathbb{P}^{\circ}_{Kx}(KX_{\tau\oplus} \in D),$$

where $Kx = x/|x|^2$, |Kx - Kz| = |x - z|/|x||z| and $KD = \{Kx : x \in D\}$.

• Noting that $d(Kz) = |z|^{-2d} dz$, we have

$$\begin{split} \mathbb{P}_{x}(X_{\tau \oplus} \in D) \\ &= \int_{KD} \frac{|y|^{\alpha - d}}{|Kx|^{\alpha - d}} g(Kx, y) \mathrm{d}y \\ &= c_{\alpha, d} \int_{KD} |z|^{d - \alpha} |Kx|^{d - \alpha} \frac{|1 - |Kx|^{2}|^{\alpha/2}}{|1 - |y|^{2}|^{\alpha/2}} |Kx - y|^{-d} \mathrm{d}y \\ &= c_{\alpha, d} \int_{D} |z|^{2d} \frac{|1 - |x|^{2}|^{\alpha/2}}{|1 - |z|^{2}|^{\alpha/2}} |x - z|^{-d} \mathrm{d}(Kz) \\ &= c_{\alpha, d} \int_{D} \frac{|1 - |x|^{2}|^{\alpha/2}}{|1 - |z|^{2}|^{\alpha/2}} |x - z|^{-d} \mathrm{d}z \end{split}$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

§13. Radial excursion theory

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_{d-1}$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

- ► Let $\ell = (\ell_t, t \ge 0)$, the local time at 0 of the reflected Lévy process $\xi_t \underline{\xi}_t, t \ge 0$, where $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$.
- ▶ The process ℓ serves as an adequate choice for the local time of the Markov process ($\xi \underline{\xi}, \Theta$) on the set {0} × S_{d-1}.
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that $d_t > g_t$ the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \le \zeta_{g_t} := d_t - g_t,$$

codes the excursions of $(\xi - \xi, \Theta)$ from the set $(0, \mathbb{S}_{d-1})$ or equivalently, excursions of $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$, from \mathbb{S}_{d-1} , or equivalently an excursion of X from its running radial infimum.

Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_l+s} = e^{\xi_{g_l}} e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s) = |X_{g_l}| e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s), \quad s \le \zeta_{g_l}.$$

$$116/122$$

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_{d-1}$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

- ► Let $\ell = (\ell_t, t \ge 0)$, the local time at 0 of the reflected Lévy process $\xi_t \underline{\xi}_t, t \ge 0$, where $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$.
- The process ℓ serves as an adequate choice for the local time of the Markov process (ξ − ξ, Θ) on the set {0} × S_{d−1}.
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

• For all t > 0 such that $d_t > g_t$ the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \le \zeta_{g_t} := d_t - g_t,$$

codes the excursions of $(\xi - \xi, \Theta)$ from the set $(0, \mathbb{S}_{d-1})$ or equivalently, excursions of $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$, from \mathbb{S}_{d-1} , or equivalently an excursion of X from its running radial infimum.

▶ Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_{l}+s} = e^{\xi_{g_{l}}} e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s) = |X_{g_{l}}| e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s), \quad s \leq \zeta_{g_{l}}, \qquad \text{116/125}$$

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_{d-1}$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

- ► Let $\ell = (\ell_t, t \ge 0)$, the local time at 0 of the reflected Lévy process $\xi_t \underline{\xi}_t, t \ge 0$, where $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$.
- The process ℓ serves as an adequate choice for the local time of the Markov process (ξ − ξ, Θ) on the set {0} × S_{d−1}.

Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that $d_t > g_t$ the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \le \zeta_{g_t} := d_t - g_t,$$

codes the excursions of $(\xi - \xi, \Theta)$ from the set $(0, \mathbb{S}_{d-1})$ or equivalently, excursions of $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$, from \mathbb{S}_{d-1} , or equivalently an excursion of X from its running radial infimum.

Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_{l}+s} = e^{\xi_{g_{l}}} e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s) = |X_{g_{l}}| e^{\epsilon_{g_{l}}(s)} \Theta_{g_{l}}^{\epsilon}(s), \quad s \leq \zeta_{g_{l}}, \qquad \text{116/125}$$

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_{d-1}$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

- ► Let $\ell = (\ell_t, t \ge 0)$, the local time at 0 of the reflected Lévy process $\xi_t \underline{\xi}_t, t \ge 0$, where $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$.
- The process ℓ serves as an adequate choice for the local time of the Markov process (ξ − ξ, Θ) on the set {0} × S_{d−1}.
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that $d_t > g_t$ the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \leq \zeta_{g_t} := d_t - g_t,$$

codes the excursions of $(\xi - \xi, \Theta)$ from the set $(0, \mathbb{S}_{d-1})$ or equivalently, excursions of $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$, from \mathbb{S}_{d-1} , or equivalently an excursion of X from its running radial infimum.

▶ Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_l+s} = e^{\xi_{g_l}} e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s) = |X_{g_l}| e^{\epsilon_{g_l}(s)} \Theta_{g_l}^{\epsilon}(s), \qquad s \le \zeta_{g_l}. \qquad 116/12$$

§1. §2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
---------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

Recall that we can represent an isotropic Lévy process through the Lamperti transform

$$X_t := e^{\xi_{\varphi(t)}} \Theta_{\varphi(t)} \qquad t \ge 0,$$

where

$$\varphi(t) = \inf\left\{s > 0 : \int_0^s e^{\alpha \xi_u} \, \mathrm{d}u > t\right\}$$

and (ξ, Θ) with probabilities $\mathbf{P}_{x,\theta}$, $x \neq 0$, $\theta \in \mathbb{S}_{d-1}$, is a MAP. Recall also that, although corollated to Θ , ξ alone is a Lévy process.

- ► Let $\ell = (\ell_t, t \ge 0)$, the local time at 0 of the reflected Lévy process $\xi_t \underline{\xi}_t, t \ge 0$, where $\underline{\xi}_t := \inf_{s \le t} \xi_s, t \ge 0$.
- The process ℓ serves as an adequate choice for the local time of the Markov process (ξ − ξ, Θ) on the set {0} × S_{d−1}.
- Define

$$g_t = \sup\{s < t : \xi_s = \underline{\xi}_s\} \text{ and } d_t = \inf\{s > t : \xi_s = \underline{\xi}_s\}.$$

For all t > 0 such that $d_t > g_t$ the process

$$(\epsilon_{g_t}(s), \Theta_{g_t}^{\epsilon}(s)) := (\xi_{g_t+s} - \xi_{g_t}, \Theta_{g_t+s}), \qquad s \leq \zeta_{g_t} := d_t - g_t,$$

codes the excursions of $(\xi - \xi, \Theta)$ from the set $(0, \mathbb{S}_{d-1})$ or equivalently, excursions of $(X_t / \inf_{s \le t} |X_s|, t \ge 0)$, from \mathbb{S}_{d-1} , or equivalently an excursion of X from its running radial infimum.

▶ Moreover, we see that, for all t > 0 such that dt > gt,

$$X_{g_t+s} = e^{\xi_{g_t}} e^{\epsilon_{g_t}(s)} \Theta_{g_t}^{\epsilon}(s) = |X_{g_t}| e^{\epsilon_{g_t}(s)} \Theta_{g_t}^{\epsilon}(s), \quad s \leq \zeta_{g_t}.$$

$$116/122$$

- ► The classical theory of exit systems in Maisonneuve (1975) now implies that there exists a family of *excursion measures*, \mathbb{N}_{θ} , $\theta \in \mathbb{S}_{d-1}$, such that:
- ▶ the map $\theta \mapsto \mathbb{N}_{\theta}$ is a kernel from \mathbb{S}_{d-1} to $\mathbb{R} \times \mathbb{S}_{d-1}$, such that $\mathbb{N}_{\theta}(1 e^{-\zeta}) < \infty$ and \mathbb{N}_{θ} is carried by the set { $(\epsilon(0), \Theta^{\epsilon}(0) = (0, \theta)$ } and { $\zeta > 0$ };
- we have the exit formula

$$\begin{split} \mathbf{E}_{\mathbf{x},\theta} \left[\sum_{\mathbf{g} \in G} F((\xi_s, \Theta_s) : s < \mathbf{g}) H((\epsilon_{\mathbf{g}}, \Theta_{\mathbf{g}}^{\epsilon})) \right] \\ &= \mathbf{E}_{\mathbf{x},\theta} \left[\int_0^\infty F((\xi_s, \Theta_s) : s < t) \mathbb{N}_{\Theta_t}(H(\epsilon, \Theta^{\epsilon})) d\ell_t \right], \end{split}$$

for $x \neq 0$, where *F* and *H* are continuous on the space of càdlàg paths on $\mathbb{R} \times \mathbb{S}_{d-1}$ and $G = \{g_s : s \ge 0\}$

- under any measure \mathbb{N}_{θ} the process $(\epsilon, \Theta^{\epsilon})$ is Markovian with the same *transition* semigroup as (ξ, Θ) stopped at its first hitting time of $(-\infty, 0] \times \mathbb{S}_{d-1}$.
- ▶ The couple $(\ell, \mathbb{N}_{\cdot})$ is called an exit system. The pair ℓ and the kernels \mathbb{N}_{θ} , $\theta \in \mathbb{S}_{d-1}$, are not unique, but once ℓ is chosen the measures \mathbb{N}_{θ} are determined but for a ℓ -neglectable set.

- ► The classical theory of exit systems in Maisonneuve (1975) now implies that there exists a family of *excursion measures*, \mathbb{N}_{θ} , $\theta \in \mathbb{S}_{d-1}$, such that:
- ▶ the map $\theta \mapsto \mathbb{N}_{\theta}$ is a kernel from \mathbb{S}_{d-1} to $\mathbb{R} \times \mathbb{S}_{d-1}$, such that $\mathbb{N}_{\theta}(1 e^{-\zeta}) < \infty$ and \mathbb{N}_{θ} is carried by the set { $(\epsilon(0), \Theta^{\epsilon}(0) = (0, \theta)$ } and { $\zeta > 0$ };
- we have the exit formula

$$\begin{split} \mathbf{E}_{\mathbf{x},\theta} \left[\sum_{\mathbf{g} \in G} F((\xi_s, \Theta_s) : s < \mathbf{g}) H((\epsilon_{\mathbf{g}}, \Theta_{\mathbf{g}}^{\epsilon})) \right] \\ &= \mathbf{E}_{\mathbf{x},\theta} \left[\int_0^\infty F((\xi_s, \Theta_s) : s < t) \mathbb{N}_{\Theta_t}(H(\epsilon, \Theta^{\epsilon})) d\ell_t \right], \end{split}$$

for $x \neq 0$, where *F* and *H* are continuous on the space of càdlàg paths on $\mathbb{R} \times \mathbb{S}_{d-1}$ and $G = \{g_s : s \ge 0\}$

- under any measure \mathbb{N}_{θ} the process $(\epsilon, \Theta^{\epsilon})$ is Markovian with the same *transition* semigroup as (ξ, Θ) stopped at its first hitting time of $(-\infty, 0] \times \mathbb{S}_{d-1}$.
- ▶ The couple $(\ell, \mathbb{N}.)$ is called an exit system. The pair ℓ and the kernels \mathbb{N}_{θ} , $\theta \in \mathbb{S}_{d-1}$, are not unique, but once ℓ is chosen the measures \mathbb{N}_{θ} are determined but for a ℓ -neglectable set.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

For bounded measurable f on \mathbb{R}^d and $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|, \arg(x)} \left[\sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where
$$(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}$$
.

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbb{P}_{\log|x|, \arg(x)}(\mathrm{e}^{-H_t^-}\Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty)\mathrm{d} t, \qquad |z| \le |x|.$$

- ▶ As X is transient, (H^-, Θ^-) experiences killing at Θ^- -dependent rate $\mathbb{N}_{\theta}(\zeta = \infty)$, $\theta \in \mathbb{S}_{d-1}$. Isotropy implies $\mathbb{N}_{\theta}(\zeta = \infty)$ independent of θ . Scaling of local time ℓ chosen so that $\mathbb{N}_{\theta}(\zeta = \infty) = 1$.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{\mathbb{G}(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(\mathrm{d}z)$$

$$(118/12)$$

$$(118/12)$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

For bounded measurable f on \mathbb{R}^d and $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|, \arg(x)} \left[\sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where
$$(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$$

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbf{P}_{\log |x|, \arg(x)} (\mathrm{e}^{-H_t^-} \Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty) \mathrm{d} t, \qquad |z| \le |x|.$$

- ▶ As X is transient, (H^-, Θ^-) experiences killing at Θ^- -dependent rate $\mathbb{N}_{\theta}(\zeta = \infty)$, $\theta \in \mathbb{S}_{d-1}$. Isotropy implies $\mathbb{N}_{\theta}(\zeta = \infty)$ independent of θ . Scaling of local time ℓ chosen so that $\mathbb{N}_{\theta}(\zeta = \infty) = 1$.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{\mathbb{G}(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(\mathrm{d}z)$$

$$\lim_{x \to \infty} d\mathbb{P} \mapsto d\mathbb{E} \mapsto d\mathbb{E} \mapsto \mathbb{E} \to \mathcal{O}(\mathbb{C})$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

For bounded measurable f on \mathbb{R}^d and $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|, \arg(x)} \left[\sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where $(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbf{P}_{\log |x|, \arg(x)} (\mathrm{e}^{-H_t^-} \Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty) \mathrm{d} t, \qquad |z| \le |x|.$$

- ▶ As *X* is transient, (H^-, Θ^-) experiences killing at Θ^- -dependent rate $\mathbb{N}_{\theta}(\zeta = \infty)$, $\theta \in \mathbb{S}_{d-1}$. Isotropy implies $\mathbb{N}_{\theta}(\zeta = \infty)$ independent of θ . Scaling of local time ℓ chosen so that $\mathbb{N}_{\theta}(\zeta = \infty) = 1$.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{\mathbb{G}(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(\mathrm{d}z)$$

$$118/125$$

$$118/125$$

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

For bounded measurable f on \mathbb{R}^d and $G(\infty) := \sup\{s \ge 0 : |X_s| = \inf_{u \le s} |X_u|\},\$

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \mathbf{E}_{\log|x|, \arg(x)} \left[\sum_{t \in G} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbf{1}(\zeta_{t} = \infty) \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\infty} f(\mathbf{e}^{\xi_{t}} \Theta_{t}) \mathbb{N}_{\Theta_{t}}(\zeta = \infty) d\ell_{t} \right]$$
$$= \mathbf{E}_{\log|x|, \arg(x)} \left[\int_{0}^{\ell_{\infty}} f(\mathbf{e}^{-H_{t}^{-}} \Theta_{t}^{-}) \mathbb{N}_{\Theta_{t}^{-}}(\zeta = \infty) dt \right]$$

where $(H_t^-, \Theta_t^-) = (-\xi_{\ell_t^{-1}}, \Theta_{\ell_t^{-1}}), t < \ell_{\infty}.$

$$U_x^-(\mathrm{d} z) := \int_0^\infty \mathbf{P}_{\log |x|, \arg(x)} (\mathrm{e}^{-H_t^-} \Theta_t^- \in \mathrm{d} z, \, t < \ell_\infty) \mathrm{d} t, \qquad |z| \le |x|.$$

- ▶ As *X* is transient, (H^-, Θ^-) experiences killing at Θ^- -dependent rate $\mathbb{N}_{\theta}(\zeta = \infty)$, $\theta \in \mathbb{S}_{d-1}$. Isotropy implies $\mathbb{N}_{\theta}(\zeta = \infty)$ independent of θ . Scaling of local time ℓ chosen so that $\mathbb{N}_{\theta}(\zeta = \infty) = 1$.
- In conclusion, we reach the identity

$$\mathbb{E}_{x}[f(X_{G(\infty)})] = \int_{|z| < |x|} f(z) U_{x}^{-}(dz)$$
^{118/12}

POINT OF CLOSEST REACH

Theorem (Point of Closest Reach to the origin)

The law of the point of closest reach to the origin is given by

$$\mathbb{P}_{x}(X_{G(\infty)} \in \mathrm{d}y) = \pi^{-d/2} \frac{\Gamma(d/2)^{2}}{\Gamma((d-\alpha)/2) \,\Gamma(\alpha/2)} \, \frac{(|x|^{2} - |y|^{2})^{\alpha/2}}{|x - y|^{d}|y|^{\alpha}} \mathrm{d}y, \qquad 0 < |y| < |x|.$$

First define, for $x \neq 0$, |x| > r, $\delta > 0$ and continuous, positive and bounded f on \mathbb{R}^d ,

$$\Delta_r^{\delta} f(x) := \frac{1}{\delta} \mathbb{E}_x \left[f(\arg(X_{\mathbb{G}_{\infty}})), |X_{\mathbb{G}_{\infty}}| \in [r - \delta, r] \right].$$

Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

$$\begin{split} &\Delta_{r}^{\delta}f(x) \\ &= \frac{1}{\delta} \int_{|y| \in [r-\delta,r]} \mathbb{P}_{x}(X_{\tau_{r}^{\oplus}} \in \mathrm{d}y; \, \tau_{r}^{\oplus} < \infty) \mathbb{E}_{y} \left[f(\mathrm{arg}(X_{\mathrm{G}_{\infty}})); \, |X_{\mathrm{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} \int_{|y| \in [r-\delta,r]} \mathrm{d}y \left| \frac{r^{2} - |x|^{2}}{r^{2} - |y|^{2}} \right|^{\alpha/2} |y - x|^{-d} \mathbb{E}_{y} \left[f(\mathrm{arg}(X_{\mathrm{G}_{\infty}})); \, |X_{\mathrm{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} |r^{2} - |x|^{2} |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y - x|^{-d}}{|r^{2} - |y|^{2} |^{\alpha/2}} \int_{r-\delta \le |z| \le |y|} U_{y}^{-}(\mathrm{d}z) f(\mathrm{arg}(z)), \end{split}$$

Lemma

Suppose that f is a bounded continuous function on \mathbb{R}^d . Then

$$\lim_{\delta \to 0} \sup_{|y| \in (r-\delta,r]} \left| \frac{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) f(z)}{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)} - f(y) \right| = 0.$$

► First define, for $x \neq 0$, |x| > r, $\delta > 0$ and continuous, positive and bounded *f* on \mathbb{R}^d ,

$$\Delta_r^{\delta} f(x) := \frac{1}{\delta} \mathbb{E}_x \left[f(\arg(X_{\mathbb{G}_{\infty}})), |X_{\mathbb{G}_{\infty}}| \in [r - \delta, r] \right].$$

▶ Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

$$\begin{split} &\Delta_{r}^{\delta} f(x) \\ &= \frac{1}{\delta} \int_{|y| \in [r-\delta,r]} \mathbb{P}_{x}(X_{\tau_{r}^{\oplus}} \in \mathrm{d}y; \, \tau_{r}^{\oplus} < \infty) \mathbb{E}_{y} \left[f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} \int_{|y| \in [r-\delta,r]} \mathrm{d}y \left| \frac{r^{2} - |x|^{2}}{r^{2} - |y|^{2}} \right|^{\alpha/2} |y-x|^{-d} \mathbb{E}_{y} \left[f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} |r^{2} - |x|^{2} |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^{2} - |y|^{2} |^{\alpha/2}} \int_{r-\delta \le |z| \le |y|} U_{y}^{-}(\mathrm{d}z) f(\mathrm{arg}(z)), \end{split}$$

Lemma

Suppose that f is a bounded continuous function on \mathbb{R}^d . Then

$$\lim_{\delta \to 0} \sup_{|y| \in (r-\delta,r]} \left| \frac{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) f(z)}{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)} - f(y) \right| = 0.$$

► First define, for $x \neq 0$, |x| > r, $\delta > 0$ and continuous, positive and bounded f on \mathbb{R}^d ,

$$\Delta_r^{\delta} f(x) := \frac{1}{\delta} \mathbb{E}_x \left[f(\arg(X_{\mathbb{G}_{\infty}})), |X_{\mathbb{G}_{\infty}}| \in [r - \delta, r] \right].$$

▶ Then, with the help of Blumenthal–Getoor–Ray first entry distribution,

$$\begin{split} &\Delta_{r}^{\delta} f(x) \\ &= \frac{1}{\delta} \int_{|y| \in [r-\delta,r]} \mathbb{P}_{x}(X_{\tau_{r}^{\oplus}} \in \mathrm{d}y; \, \tau_{r}^{\oplus} < \infty) \mathbb{E}_{y} \left[f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} \int_{|y| \in [r-\delta,r]} \mathrm{d}y \left| \frac{r^{2} - |x|^{2}}{r^{2} - |y|^{2}} \right|^{\alpha/2} |y-x|^{-d} \mathbb{E}_{y} \left[f(\mathrm{arg}(X_{\mathbb{G}_{\infty}})); \, |X_{\mathbb{G}_{\infty}}| \in (r-\delta, |y|] \right] \\ &= \frac{1}{\delta} C_{\alpha,d} |r^{2} - |x|^{2} |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^{2} - |y|^{2} |^{\alpha/2}} \int_{r-\delta \le |z| \le |y|} U_{y}^{-}(\mathrm{d}z) f(\mathrm{arg}(z)), \end{split}$$

Lemma

Suppose that f is a bounded continuous function on \mathbb{R}^d . Then

$$\lim_{\delta \to 0} \sup_{|y| \in (r-\delta,r]} \left| \frac{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) f(z)}{\int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)} - f(y) \right| = 0.$$

Hence

$$\begin{split} \Delta_r^{\delta} f(x) &\stackrel{\delta \downarrow 0}{\sim} \frac{1}{\delta} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2 |^{\alpha/2}} f(\arg(y)) \int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) \\ \text{and for } |y| \in (r-\delta,r], \end{split}$$

$$\int_{r-\delta \le |z| \le |y|} U_y^{-}(\mathrm{d}z) = \mathbb{P}_y(\tau_{r-\delta}^{\oplus} = \infty) = \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))$$

- ▶ The right hand side above can be determined explicitly thanks to the known Wiener–Hopf factorisation of ξ
- ► Note also

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \frac{1}{\delta} \int_{r-\delta}^r \rho^{d-1} \mathrm{d}\rho \frac{\mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))}{|r^2 - \rho^2|^{\alpha/2}} \int_{\rho \otimes_{d-1}} \sigma_{\rho}(\mathrm{d}\theta) |\rho \theta - x|^{-d} f(\theta) |\theta - x|^{-d} f($$

Lemma

Let $D_{\alpha,d} = \Gamma(d/2)/\Gamma((d-\alpha)/2)\Gamma(\alpha/2)$. Then

$$\lim_{\delta \to 0} \sup_{|y| \in [r-\delta,r]} \left| (\rho^2 - (r-\delta)^2)^{-\alpha/2} r^{\alpha} \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y)) - \frac{2D_{\alpha,d}}{\alpha} \right| = 0$$

Hence

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} \frac{1}{\delta} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} f(\mathrm{arg}(y)) \int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z)$$

and for $|y| \in (r - \delta, r]$,

$$\int_{r-\delta \le |z| \le |y|} U_y^{-}(\mathrm{d}z) = \mathbb{P}_y(\tau_{r-\delta}^{\oplus} = \infty) = \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))$$

- The right hand side above can be determined explicitly thanks to the known Wiener–Hopf factorisation of ξ
- Note also

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \frac{1}{\delta} \int_{r-\delta}^r \rho^{d-1} \mathrm{d}\rho \frac{\mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))}{|r^2 - \rho^2|^{\alpha/2}} \int_{\rho \mathbb{S}_{d-1}} \sigma_{\rho}(\mathrm{d}\theta) |\rho\theta - x|^{-d} f(\theta) |\theta|^{-d} f(\theta)$$

Lemma

Let $D_{\alpha,d} = \Gamma(d/2)/\Gamma((d-\alpha)/2)\Gamma(\alpha/2)$. Then

$$\lim_{\delta \to 0} \sup_{|y| \in [r-\delta,r]} \left| (\rho^2 - (r-\delta)^2)^{-\alpha/2} r^{\alpha} \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y)) - \frac{2D_{\alpha,d}}{\alpha} \right| = 0$$

Hence

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} \frac{1}{\delta} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} f(\arg(y)) \int_{r-\delta \le |z| \le |y|} U_y^-(\mathrm{d}z) \int_{|y| \in (r-\delta,r]} \mathrm{d}y \frac{|y-x|^{-d}}{|r^2 - |y|^2|^{\alpha/2}} \int_{|y| < 1} U_y^-(\mathrm{d}z) \int_{|y| < 1} U_y^-(\mathrm{d}z$$

and for $|y| \in (r - \delta, r]$,

$$\int_{r-\delta \le |z| \le |y|} U_y^{-}(\mathrm{d}z) = \mathbb{P}_y(\tau_{r-\delta}^{\oplus} = \infty) = \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))$$

- The right hand side above can be determined explicitly thanks to the known Wiener–Hopf factorisation of ξ
- Note also

$$\Delta_r^{\delta} f(x) \stackrel{\delta \downarrow 0}{\sim} C_{\alpha,d} |r^2 - |x|^2 |^{\alpha/2} \frac{1}{\delta} \int_{r-\delta}^r \rho^{d-1} \mathrm{d}\rho \frac{\mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y))}{|r^2 - \rho^2|^{\alpha/2}} \int_{\rho \mathbb{S}_{d-1}} \sigma_{\rho}(\mathrm{d}\theta) |\rho\theta - x|^{-d} f(\theta) |\theta|^{-d} f(\theta)$$

Lemma

Let $D_{\alpha,d} = \Gamma(d/2)/\Gamma((d-\alpha)/2)\Gamma(\alpha/2)$. Then

$$\lim_{\delta \to 0} \sup_{|y| \in [r-\delta,r]} \left| (\rho^2 - (r-\delta)^2)^{-\alpha/2} r^{\alpha} \mathbf{P}(\underline{\xi}_{\infty} \ge \log((r-\delta)/y)) - \frac{2D_{\alpha,d}}{\alpha} \right| = 0$$

121/125

イロト 不配 と 不同 と 不同 と

MORE EXCURSION THEORY-BASED RESULTS

Theorem (Triple law at first entrance/exit of a ball) Fix r > 0 and define, for $x, z, y, v \in \mathbb{R}^d \setminus \{0\}$,

$$\chi_x(z,y,v) := \pi^{-3d/2} \frac{\Gamma((d+\alpha)/2)}{|\Gamma(-\alpha/2)|} \frac{\Gamma(d/2)^2}{\Gamma(\alpha/2)^2} \frac{||z|^2 - |x|^2 |\alpha/2| |y|^2 - |z|^2 |\alpha/2|}{|z|^\alpha |z - x|^d |z - y|^d |v - y|^{\alpha+d}}.$$

(i) Write

$$G(\tau_r^{\oplus}) = \sup\{s < \tau_r^{\oplus} : |X_s| = \inf_{u \le s} |X_u|\}$$

for the instant of closest reach of the origin before first entry into rS_{d-1} . For |x| > |z| > r, |y| > |z| and |v| < r,

$$\mathbb{P}_{x}(X_{_{\mathcal{G}}(\tau_{r}^{\oplus})} \in \mathrm{d}z, X_{\tau_{r}^{\oplus}-} \in \mathrm{d}y, X_{\tau_{r}^{\oplus}} \in \mathrm{d}v; \tau_{r}^{\oplus} < \infty) = \chi_{x}(z, y, v) \,\mathrm{d}z \,\mathrm{d}y \,\mathrm{d}v.$$

(ii) Define $\mathcal{G}(t) = \sup\{s < t : |X_s| = \sup_{u \le s} |X_u|\}, t \ge 0$, and write

$$\mathcal{G}(\tau_r^{\ominus}) = \sup\{s < \tau_r^{\ominus} : |X_s| = \sup_{u \le s} |X_u|\}.$$

for the instant of furtherest reach from the origin immediately before first exit from rS_{d-1} . For |x| < |z| < r, |y| < |z| and |v| > r,

MORE EXCURSION THEORY-BASED RESULTS

Theorem

Write $M_t = \sup_{s \le t} |X_t|$, $t \ge 0$. *For all bounded measurable* $f : \mathbb{B}_d \mapsto \mathbb{R}$ *and* $x \in \mathbb{R} \setminus \{0\}$

$$\lim_{t \to \infty} \mathbb{E}_x[f(X_t/M_t)] = \pi^{-d/2} \frac{\Gamma((d+\alpha)/2)}{\Gamma(\alpha/2)} \int_{\mathbb{S}_{d-1}} \sigma_1(\mathrm{d}\phi) \int_{|w| < 1} f(w) \frac{|1 - |w|^2|^{\alpha/2}}{|\phi - w|^d} \mathrm{d}w,$$

(日)(御)(王)(王)(王)

where $\sigma_1(dy)$ is the surface measure on \mathbb{S}_{d-1} , normalised to have unit mass.

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References

References

§1.	§2.	§3.	§4.	§5.	§6.	§7.	§8.	§9.	§10.	§11.	§12.	§13.	References
-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------------

- L. E. Blumenson. A Derivation of n-Dimensional Spherical Coordinates. The American Mathematical Monthly, Vol. 67, No. 1 (1960), pp. 63-66
- K. Bogdan and T. Żak. On Kelvin transformation. J. Theoret. Probab. 19 (1), 89–120 (2006).
- J. Bretagnolle. Résultats de Kesten sur les processus à accroissements indépendants. In Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970), pages 21–36. Lecture Notes in Math., Vol. 191. Springer, Berlin (1971).
- M. E. Caballero, J. C. Pardo and J. L. Pérez. Explicit identities for Lévy processes associated to symmetric stable processes. *Bernoulli* 17 (1), 34–59 (2011).
- H. Kesten. Hitting probabilities of single points for processes with stationary independent increments. Memoirs of the American Mathematical Society, No. 93. American Mathematical Society, Providence, R.I. (1969).
- A. E., Kyprianou. Stable processes, self-similarity and the unit ball ALEA, Lat. Am. J. Probab. Math. Stat. (2018) 15, 617-690.
- ▶ B. Maisonneuve. Exit systems. Ann. Probability, 3(3):399-411, 1975.
- S. C. Port. The first hitting distribution of a sphere for symmetric stable processes. *Trans. Amer. Math. Soc.* 135, 115–125 (1969).

125/125

イロト イロト イヨト イヨト ヨー のへぐ